NGHIEN Cllu DONG LUG HOC PHANH XE KEO MOOC BANG MO HiNH MOT DAY PHI TUYEN 3 f ^ -_ / Nguyen NgQC Tit', Vo Vdn Hudng ^, Nguyin Vdn Tdn' T O M T A T Xe keo mooc co kich thudc ldn, kel cd
Trang 1NGHIEN Cllu DONG LUG HOC PHANH XE KEO MOOC
BANG MO HiNH MOT DAY PHI TUYEN 3 f ^ -_ /
Nguyen NgQC Tit', Vo Vdn Hudng ^, Nguyin Vdn Tdn'
T O M T A T
Xe keo mooc co kich thudc ldn, kel cdu hai thdn cd khdp noi nen tinh chdt chuyen ddng rat phitc tap dgc
bict Irong cdc trang Ihdi dieu khien nhu phanh hogc quay vong Bdi bdo Irinh bay vi4c Ihiit lap md hinh
dang luc hpc moi ddy phi tuyen xe keo mooc Phmmg phdp tdch cdu true h$ nhieu vgi vd h^ phuang trinh
Newlon - Euler duac dp dung de xdy dung chuyen dgng ciia limg phdn xe keo mooc Md hinh dgng lvc hgc
dugc md Id bdng phdn mem mdy linh Sit dung mdhinh khdo sdt trong mdt sd tntdng hgp chuyen dgng dgc
Irung nhu phanh, quay vdng Cdc kit qud dua ra la phit hgp vdi dieu ki?n thuc le
Tic khda: Gdc lech hai thdn xe; Vgn Idc gdc xoay Ihdn xe; Gia Idc gdc xoay Ihdn xe; Md hinh ldp phi tuyen
A STUDY ON D Y N A M I C S O F T R A C T O R - T R A I L E R BY NON-LINEAR
T W O - W H E E L M O D E L Nguyen Ngoc Tu ', Vo Van Huong ^, Nguyen Van Tan ^ SUMMARY
It is difficult to predict exactly the motion stability of tractor-trailer since the complicated structure of
the vehicle with a fil^h wheel especially in the case of braking process while turning In this research, a ID
dynamic model is established based on the Newton-Euler equation system The model is applied to
investigate the stability of tractor - trailer in the case of braking process while turning The archived results
are high accuracy and the same to previous results
Keywords: Tractor-trailer Yaw; Yaw rate of vehicle; Yaw acceleiiition of vehicle; Non-linear model of tire
L D ^ T V A N D E
Nhu ciu phat triSn hien nay dang c j n co cac dinh cua xe keo mooc nhim tang tmh an toan,
losii phuong tien da nang phvc vy cho nhu cJu gop p h t o lam gitoi tai nan giao thong,
v ^ chuyen hang hoa cung nhu di lai 6 Viet D l c6 t h l nghien cuu duoc dong lire hpc xe
Nam, ngoai viec phuc vu v t o chuyln hang hoa keo mooc, sit dung phuang phap tach cau tnic
trong pham vi nha may thi xe keo mooc dang he nhilu vat de xay dvmg mo hinh dpng luc hoc
din dupc nghien ciiu d l sil dung cho cac nhu Sau do dung p h t o m i m may tinh de mo phong
ciu di Iji nhu du lich theo gia dinh mo hinh toto hoc da lap
Xe keo mooc co k i t c i u hai thto lien k i t n KET QUA VA THAO LUAN
bang don keo co kich thuoc lon B t o thto don 1 Xay d u n g mo hinh
keo cOng lai dong vai tro la d i n huong cho p h t o y ; Nguyen ly lach cdu true vd phuang
mooc, dan d i n tinh chit dpng hfc hpc xe keo ,^;„;, Newlon - Euler
mooc rit phiic tap khi di chuyto Do do c t o co j a j ^^ \\g^ jjjt, thay cac luc hoac mo men
mo hinh dpng luc hoc nghien ciiu tinh chat 6n (,5 ^^^^ ^ 55^ y^ac chilu va c t o g phuong,
' ThS Tmimg B?i hpc Su pham ky thuSt Vinh huong ducmg la huong cua chuyln dpng M6i
^ PGS.TS Trudng Bai hQC Bach khoa Hi NQI vat CO khii luong m va khoi ttoi C voi cac mo
' PGS.TS HQC vicn ky thuSt quan su
Trang 2men quto tinh chuyto dpng dpc lap tuong doi
voi chuyln dpng trong he nhilu vat MBS
(Multibody System) [1]
Trong mjt nln, xe co hai chuyln dOng tjnh
tien va chuyen dpng goc quanh true z Tai trpng
ttoi xe ta dat hS tpa dp vat B(xyz) co true z song
song voi true Z cua he G(XYZ) Ngoai ra cac
btoh xe cung chuyen dpng tuong doi voi thto
xe va ta phai djnh nghla cho chiing cac h? con
Bwi(xwiy»i) Cac h? con B(xyz) va Bwi{x„iy„i)
deu quy chieu ve hS co dinh G(XYZ)
Phuong trinh Newton viet trong h^ co dinh:
°Fc=m\ (2.1)
Vec to luc trong he c6 dinh^F^ va trong he
cue bp^i^co quan he theo ma titoi xoay
^/fg nhu sau:
G c _ G p
Sc-C/ nl o 77
- Kg r^
(2.2)
(2.3)
= m °Vj -I- m Q Og X
m^Rl^
(v^ -ifTv^ycosift -(v^ +iffvjsiny/
= m''R'„ (yy+i/ri>Jcosi//+(v^-i/tVy)smif/
0
V,+!fT,
0
(2.4)
Phucmg trinh Euler trong h? vat B:
=
"
I, 0 0 '
0 /j 0
0 0 /,
d}^
6}^
fflj
+
a i j
0),
f i
X
dtjj -01 coj^ +0) ll)J, eii^l, +ei,iOjl2 -at^o.l, dlJi ~ 01,6)yl^ +0)^13)^1^
[/, U 0
0 ;, 0 [0 0 /,
^ r 6}^
a
'
^
^huong trinh Euler trong hB c6 duih G(XYZ)
"M^ = "R, 'M^
' 0
0
M,
=
cosiff -sin((/ 0
sin(i^ coiilf 0
0 0
" 0 '
0
M
=
0 "
0
M
(2.5)
(2.6)
Ap dung phucmg phap tach cau true he nhieu vat tac gia thiet lap mo hinh dpng l^rc hpc mgt vet thong qua cac m6 hinh:
- Mo hinh dao dpng ;
- Mo hinh chuyen dpng ;
- Mo hinh lop ;
- Mo hinh banh xe
1.2 Mo hinh dao dgngxe keo mooc
Trong mo hinh dao dpng tach xe thanh cac phan CO ban nhu sau :
- Phan dtrpc treo xe keo ;
- Phan dupc treo xe mooc ;
- Phan don keo va cau 3 ;
- Cac banh xe
H? phucmg trinh dao dpng phan dupc treo
xe keo:
"^A = Fc, +FKi + Fc2+F^2 -Fbi Jy,^,='(Fc,+F,,)l,HFc2+F,,)l, HF^i+F;,,)(h^-r)-M^-M, +F^x{h,-K2)-Fj,,-F^,{K,-h,)
(2.7)
Trang 3Hinh 1 Mo hinh dao dgngxe keo
rH
W
Hinh 3 Md Mnh dao dgng phan don keo
1.3 Mo hinh chuyen dongxe keo mooc
Trong mo hinh nay, tac gla tach xe keo mooc thanh 3 phan de mo ta chuyln dpng:
- Phan xe keo;
- Phan xe mooc;
- Phan chot keo va cau 3;
Hinh 2 Mo hinh dao dgngxe mooc
He phuang trinh dao dpng phan duoc treo
cua xe mooc:
Jyi^i = (FC.+FK.VA +(K,+F:,){h, ~r) (2.8)
[-M3 -M,-F^,(h, -K2)-F^A2
Y
Fy
oY
Fy, ^yi
Yi-^LFvi /
F X I / M Z J
FjS J
^rh / ~^
<L-J^i /
^kyl X
Hmh 4 Mo hinh chimin dgng xe keo
Trang 4H§ phucmg ttinh tong quat cho xe keo
•^1 (^1 ~ y\W\) = ^ijcos^- F^[ sin 5+F^.^
~F -F
'• v o l ^ f c t l
^i(yi+^iV'i) = ^.iSin^+/;,cos(y+F^j ^2.9)
+F -F
•^nV'i =(^^1 sin^+F^|COS(y)ai -F^jflj
Y
FA
~ T ^
Py/
/ ^ F \
i i ^ i ^
5r^
/atêF,,
"
Mi«
X
^ / l A 5 Mo hinh chuyen dgng xe mooc
He phuong trinh tong quat cho xe mooc:
M,(y, + x,<it,) = F„+F„, + F^, (2.10)
0
/fi«A 6 Md hinh chuyin dgng phdn mdm xoay
H? phuang trinh t6ng quat cho p h k ch6t
keo v^ cau 3:
\Ki^>.-y>t'V.) = K, + F^,-F^,
lM,(y,+x,i^,) = F^,+F^,-F^, (2.11)
[ ^ V^* = ^^1^* - F^/,, - FJ',, + M^, + M^,
2 M o hinh lop
Trong nghien curu nay, sur dung mo hinh i6p Ammon [2,3,4] de xac djnh cac lire tuang t^c tai cac banh xe duai dang:
F.i=F,,<p„; ( = 1-4 (2.12) Fyi=F.,<p^;
Trong do:
Fxj la luc tigp tuyin (tSng t6c hoSc phanh);
Fyj la lyc ngang b^nh xe;
Fzij la phan Iuc thang dung phuong z
(pxj, <Pxi he so truyen lire dpc va ngang
3 M o hinh b a n h xe
3.1 Mo hinh bdnh xe trong mat phdng thdng dung
Trong phuang thing dumg banh xe chiu tac dpng cua mo men banh xe, phan Iuc tir mat dudng, tinh chat mat duong
Phuang trinh tdng quat banh xe dupc vilt nhu sau:
J.y,j%=^.r^.Ậj^^-Jh-(h<)\ (2.13)
i = U 6 ; y = U 2 Trong do:
MAJJ la mo men tang toe;
MBIJ la mo men phanh tai cac banh xe;
Fxij la phan I\rc dpc;
Fz,j la phan lire thang dung tir mat duang
He so truat dpc cua bdnh xe khi phanh:
^ - , = - i - ^ (2.14) H? so trupt dpc cua banh xe khi tang toe:
s,=rAziL (2.15)
Trang 5, X
ImAXy ^
\jAiqii
1
Foi
Sn
FKTX \
FJ
FcLi FcLi
F^
Fd
Hmh 7 Mdhinh bdnh xe trong mat pli^g thing dimg
3.2 Mo hinh bdnh xe trong mat phdng ngang
a) b)
Hinh 8 Md hinh bdnh xe Irong mat phdng ngang
Xet mot banh xe trong mat phang ngang
chju cac phan luc tu ducmg sinh ra cac goc l?ch
ben banh xe Cac goc lech nay dugc tinh nhu
sau [5]:
Doi voi banh xe dan huong (Hinh 8a);
a, = 5 - a t a n i (2.16)
D6i vol cac banh xe bi dan huong (Hinh 8 b):
- a t a n j ^ ;; = 2+4 (2.17)
4 Ket qua khao sat Khao sat mo hinh dong lire hpc xe keo mooc voi mpt s6 gia thi6t nhu sau: Bo qua anh hufing cua he th6ng lai va hp th6ng phanh; Bo qua Slic can khong khi Khao sat m6 hinh trong mpt so trucmg hpp co ban sau day:
- Phanh voi cac mitc phanh khac nhau;
- Qua vong voi cac goc quay banh xe dan hucjng khac nhau
Ket qud khdo sdt
a) Truong hpp 1:
Khao sat khi phanh tren duong thang voi cac miic phanh khac nhau DiSu kien khao sat la
xe di thang 6 van toe 60 (km/h) va bat dJiu phanh 6 t^3s
u
Hinh 9 Do thi mo men phanh
1: Mo men phanh cSu 1 va 3 khi phanh 100%; 2: M6 men phanh cau 2 va 4 khi phanh 100%; 3: M6 men phanh c^u
1 vi 3 khi phanh 80%; 4: Mo men phanh cAu 2 vi 4 khi phanh 80%
Hinh 10 Dd thi gia toe phanh
1: Gia t6c phanh 100%; 2; Gia t6c phanh 80%
TAP CHI CONG NGHIEP NONG THON - SO 14 - 2014
Trang 6Ket qua khao sat cho thay, khi tang mo men
phanh thi gia toe phanh tSng Tuy nhien khi
phanh cang lon thi kha nang bi trupt cang cao
Tren hinh 10 cho thSy voi gia t6c phanh lon
(duong 1) thi gia toe co the dat muc 5,7 (m/s^)
tuy nhien sau do giam mpt chiit xuong 5,5
(m/s ) Con khi phanh val muc phanh nho thi
gia toe (duang 2) dat ddn mure 5,1 (m/s^) va giu
on dinh quanh gid tri ndy
^
Hinh 11 Dd thf h? so truat dgc khi phanh 100%
N \
\
\
1
\
1
— »
1
Hinh 12 Do thi he sd trugt dgc khi phanh 80%
Doi voi he s6 trupt ciia cac banh xe thi khi
phanh voi mo men phanh 100% (hinh 11) thi
cac banh xe cau sau S2 va S4 bi trupt hoan toan
sau khi phanh NSu gidm mo men phanh xu6ng
miic 80% thi chi co banh xe cau sau xe keo la bj
trupt hoan toan Di^u nay la do quan tinh khi
phanh se phan bo lam cho tai trpng tac dung len
cau sau giam Neu chi can mpt luc ngang tac
dpng thi xe se mat on dinh hudng Trong truofng
42 TAP
hpp nay cau sau xe keo dl bi trupt, co the lam tang goc l^ch giiia hai thdn, tdng hanh lang di chuygn ngang, anh huong den cac phuong tien khac
b) Trudng hpp 2:
Khao sdt xe keo mooc quay vong vdi cdc goc quay bdnh xe dan hudng khac nhau
35
J "
I S
as
1 H
ji
2 4 6 a to 12
Hinh 13 Dd thi gdc gdc quay bdnh xe ddn hudng
Khao sat thuc hipn vdi cac goc quay banh
xe dan huong la 5i-4 (deg) va §2=2 (deg) a van t6c v=40 (kra/h)
Hlnh 14 Do thi gia tdc ngang
Ket qua hinh 3.6 cho thay khi quay vong voi goc lon (6i=4 (deg)) thi gia toe ngang ciia xe keo (a,n) c6 thS dat dSn 3,5 (m/s^) sau do giam
\e dao dpng quanh miic 3 (m/s^) Tiep tuc quay
vong thi gia toe nay co xu huong giam dieu na^
la do mo hinh dupc xay dung co mo ta tinh chat phi tuySn, khi do da co sir truat ngang lam giam gia toe ngang Doi vol xe mooc thi sy tang gia t6c cham hon (ay2i) Sau thai gian qui do thi ciing CO xu huong sat vai xe keo Khi giam goc
Trang 7quay banh xe dan huong (82=2 (deg)) thi cdc gia
toe ngang tang d6n mpt gia tri khoang 1,5 (m/s )
sau do gia an dinh ma khong giam Dieu nay la
do voi goc quay nho chuySn d^ng ngang xe van
nam trong vung tuySn tinh
M
\,;A-r'
2 4 e
Hmh 15 Dd Ihj vgn tdc vd gia ldc gdc xoay xe keo
1: V9nt6cg6c xoay than xek^o khi 5|=4 (deg); 2: Gia toe
goc xoay thSn xe kio khi 5i=4 (deg); 3: Van toe g6c xoay
than xe mooc khi 82=2 (deg); 4; Gia toe goc xoay than xe
mooc khi §2=2 (deg);
Ve tinh chit chuyen dpng, khi quay vdi goc
xoay banh xe dan hudng nhd 82=2 (deg)
thi xe cd quay vong du Cdc ket qud cho
thdy trong giai doan qua dp do tinh chat dan hoi
ciia he thong nen cdc gia tri van toe va gia toe
goc xoay than xe keo co xu hudng dao dpng
Bien dp dao dpng cang ldn khi goc quay banh
xe din hudng cdng ldn Khi dd xe co xu hudng
giam nhe van toe gdc xoay than xe (dudng 1)
ddn den gia t6c co xu hudng am nhe, xe hai cd
xu hudng quay vong thua [1]
Xu hudng quay vong cua xe mooc d thdi diem qua dp eimg tuang t\r nhu xe keo nhung bien dp dao dpng la Idn hon iTng vdi goc 51 =4 (deg) gia toe gdc xoay than xe cd the gidm din -7 (deg/s^)
in KET LUAN
Mo hinh dpng luc hpc mpt vet xe keo mooc dupc xay d\mg theo nguyen ly tach cau tnic he nhieu vat co mo ta phi tuyen qua mo hinh lop
Mo hinh da thiet lap duac moi lien h? dpng hpc
va dpng luc hpc giira cdc phdn cua xe keo mooc Cac ket qua khdo sat cho thay, khi phanh vdi mo men ldn thi cdc bdnh xe cau sau co xu hudng bi truat hoan toan Dieu ndy la mdt trong nhiJng nguyen nhan cd the ddn den mat dn dinh hudng chuyen dpng khi phanh Con khi quay vong vdi goc quay banh xe dan hudng ldn thi xe
cd kha nang bi trupt ngang va de bi mat on dinh Nghien cuu mdi chi khao sat trong mpt so trudng hpp ca bdn ma chua xet den anh hudng cua dieu kien ngoai cdnh va tinh chat dieu khien tich hpp din chuyln ddng xe keo mooc Can co cac nghien cuu sau han de danh gid dn dinh chuyen dpng xe keo mooc
Tai li^u tham khao
[1] ve van Hufmg, Nguyin Tiln Dung, Dirong Ngoc Khanh, Dam Hoang Phuc (2014), Dgng luc hpc 6
to, NXB Giao dye Vi?t Nam;
[2] Ryszard Andrzejewski (2005): Nonlinear Dynamics of a Wheeled Vehicle, Springer Publisher, USA http://springeronline.de
[3] Ammonn, D (1997): Modellbildung und Systementwicklung in der Fahrzeugtechink, BG Teubner [4] V6 van Huong, Nguyen Ti6n Dung (2013): Nghien cuu dS xuit mo hinh dgng lire hpc 6 to, Tap chi
Co khi Viet Nam, Ha Npi
[5] Raesh Rajamani (2006): Vehicle Dynamics and Control, Springer Publisher, USA
Hlnh 16 Dd thj vgn tdc vd gia toe gdc xoay xe mooc
1: VSn toe g6c xoay than xe mooc khi S | ^ (deg); 2:
Gia tfic goc xoay than xe mooc khi 5|=4 (deg); 3: VJin toe
g6c xoay than xe mooc khi 52=2 (deg); 4: Gia tfle g6c
xoay thSn xe mooc khi 82=2 (deg);
Ngiy nhan bai: 20/9/2014 Ngiy phan bifn: 28/9/2014 NguM phan bifn: TS Dau Thl Nhu, Vi?n Co dipn nong nghiep va Cong nghp STH