Ctmg vdi nhiing ydu clu tir cac CO quan quin ly tlu ca d nhilu dia phuong trong thdi gian gin day, da tiln hinh nghien ciiu str dung phuong phap phan tich cay hu hdng phan tich h6 thdng
Trang 1KHOA HOC CbNG NGHfe
PHAIM TiCH CAY H U HOIMG
TrIn Gia Thlii
T6MTAT
Hau hit cac tau danh ca Viet Nam hien nay la tau v6 gd, dong theo kinh nghidm dan gian, khdng cd thiet
ke, vdi may chinh rat da dang ve cdng suat va chiing loai, co ca cac dpng ca otd, dpng ca lai may phat didn
da qua sir dung; do do viec nghien cuu danh gia dp tin cay cua he dpng luc cac tau danh ca d nuoc ta co vai
tro va y nghla quan trpng Nhom nghien ciiu da su dung mo hinh cay hu hong, kit hpp voi sd lieu thdng kd
hu hong thuc t l tir nam 2006 den 2008 cua hd dpng luc 115 tau ca luoi vay Binh Dinh, xiy dung md hinh
tinh danh gia dp tin cay he dpng luc tau ca Viet Nam noi chung va ciia cac tau ca ludi viy d Binh Dinh cd sir
dung loai dpng ca bp cu hieu Mitsubishi (Nhat Ban) noi rieng Kit qua cho thay, thdi gian lam vide an toan
cua cac phan hd thupc he thdng dpng luc tau danh ca ludi vay Binh Dinh ddi vdi dpng ca chinh la 109 ngay,
ddi voi h? true chan vit la 233 ngay, con hpp sd co dp an toan cao ban la 749 ngay, thdi gian hdi phuc ciia
cac phan tu hd thdng la 5,4 - 6,9 ngay, xac suat hu hong ciia toan hd dpng luc la 0,294
Tir khda: Cayhu hong, he dong luc, Mitsubishi, tau danh caludi vay
LDATVANDE
Danh bit tiitiy san ludn la mdt trong nhiing
nglnh kinh tl miii nhpn ciia Viet Nam, do dd viec
nghien ciru cac gili phap nhlm dirh bio an toln tau
dinh el II vln dl rIt quan trpng Thuc t l cho thly,
hlu hit tlu danh ca d nude ta hidn nay diu II tlu vd
gd ddng theo kinh nghiem, khdng cd thilt kl, vdi
chung loai mIy chinh trdn tlu rIt da dang vl cd cdng
suit ngly cing cao Dilm dac bidt la trong thdi gian
gin day cd nhilu tlu cl dung elc loai ddng co cu da
qua sir dung, tham chi cd c l ddng co bd, ddng co lai
mIy phat didn ciia cac hang Mitsubishi, Cumin,
Hino, v.v
Do gia thanh rIt re va phln nIo dip ling dupe
ydu clu ciia nghi nen viec su dung loai dpng co cii
dang nay dl lam may chinh budc diu da mang lai
mdt sd Ipi ich kinh tl tnrdc mlt cho d c ngu dan Tuy
nhidn, do khdng tinh dii chi phi vl hidu qua kinh t l
nen vi$c sir dung ddng co cu, ddng co bp cii tiln nhu
hiln nay cd thi cd Ipi ich trude mlt, nhtmg xet cl
qui trinh lau dai cd thi se gay nhilu thilt hai vl tinh
an toln vl Ipi nhuan khai thIc thuc tl ndn cin cd
nghien ciiu dinh gil viec str dung loai ddng co dang
nly trdn dpi tlu cl, lam ca sd khoa hpc vimg chic
cho cle quylt dinh cua co quan quan ly vl ngu dan
trong viec cho phep hay khdng tilp tuc sii dung loai
ddng CO nly trdn tlu Ctmg vdi nhiing ydu clu tir cac
CO quan quin ly tlu ca d nhilu dia phuong trong thdi gian gin day, da tiln hinh nghien ciiu str dung phuong phap phan tich cay hu hdng (phan tich h6 thdng) dinh gil an toln vl dp tin cay ciia hd ddng lire tau cl, nhlt II cic tlu dang str dung ddng co bd cu lam may chinh nhlm nang cao tinh an toln vl hidu qua dinh bit dpi tlu danh ca nude ta hidn nay
n PHUONG PHAP NGHIEN CUU
Cd nhilu phuong phap dinh gil dp tin cay voi
tm, nhupc dilm vl pham vi Ip dung khic nhau Tuy nhidn khi Ip dung vIo dinh gil tinh an toln hd dpng luc tlu thuy cd thi nit ra mdt sd nhan x l t
He ddng luc tlu ndi chung va ciia tlu danh ca ndi ridng II he thdng phiic tap, gdm nhilu phln tii cd tinh nang khic nhau vl ndi tilp vdi nhau, nghla la hu hdng cua mdt phln tu nao dd cd trong hd tiidng sfi dan din hu hdng ciia nhiing phln tii khic hoac ciia
c l he thdng
Xlc suit hu hdng elc phln tir trong h$ dpng luc tlu khdng gidng nhau vl cd thi do nhilu nguyin nhan, vi vay phuong phip xac dinh nguyen nhan hu hdng hidu qui nhlt II ndn dua theo nguyen tic ngupc, bit diu tir su xult hien hu hdng he tiidng d^ lln tim nguyen nhan
Thuc t l khai tiiac he ddng luc tau cho thly rIt cin xac dinh chmh xlc tap hpp hu hdng vl cac nguydn nhan gay hdng cac phan tii hd tiidng ndi rieng va ciia ca h$ thdng ndi chung nhlm xay dung Khoa Ky thu^t Tau thuy - Trudng D^i hpc Nha Trang
Trang 2KHOA HOC CbNG NGHfe
kl hoach sua chira nhanh chdng, phii hpp, dam hlo
an toan tren biln
Cin du bao dupe nguyen nhan, thdi gian xuat
hien cac hu hdng trong qua trinh khai tiiac he ddng
luc tlu dl lam tdt cdng tic du trii vat tu, dinh ky siia
chiia vi elc hu hdng xly ra trdn biln se rIt khd stra
chtra
Xult phat tir dac dilm he ddng luc tlu thiiy neu
tien, cung vdi vide phan tich tm nhuoc dilm ciia cae
phuong phap danh gia dd tin cay hidn nay, da nhan
tiily ed thi gili quylt hidu qui bli toln blng phuong
phap phan tich cay hu hdng (Fault Tree Analysis
Method), trdn co sd str dung dd thi va dai sd logic md
tl mdi quan bd giira cac phln tii he thdng va dimg
quan he nly dl danh gia kha nang xly ra hu hdng,
quan he giiia cac dang hu hdng, hu hdng cac thanh
phln ciia he thdng Phan tich bit diu tir su kien hu
hdng ciia he thdng gpi la sukien dinh, sau dd ngupc
lan theo dau vet xac dinh nguyen nhan hu hdng, tir
dd xac dinh chi tieu dd tin cay, tinh an toan he thdng
dang xlt Vl thi, ndi dung quan trpng ciia phuong
phap la xay dung chinh xlc cay hu hdng he thdng
khao sat, dupe hiiu II dd thi hinh cay dimg md t l
mdi quan he logic giira elc phln tii hu hdng trong he
thdng, giiia cac hu hdng co bin vdi hu hdng trung
gian va hu hdng dinh, ciing nhu sai llm cua con
ngudi trong qua trinh s'i dung va cac nhan td ciia
mdi trudng ben ngoai da gay ra hu hdng ciia he
thdng Trong mdt cay hu hdng thudng cd dii ba dang
hu hdng ndu tren, ling vdi elc thlnh phln cay, gdm:
Gdc la su kien hu hdng cua he thdng dang xet,
cdn dupe gpi II sukien hu hdng gd'ehay sukien dinh
va thudng dupe ky hieu blng hinh chii nhat
Nhanh hoac canh la nhung hu hdng tnmg gian
nlm giiia hu hdng dinh vl hu hdng co bin, ciing
dupe ky hieu blng hinh chii nhat
LI II cac dang hu hdng co bin thudng dupe ky
hieu blng mdt hinh trdn
Cdng logic nlm giiia cac thlnh phan cay hu
hdng, tiic giiia gdc vdi nhlnh va giua nhanh vdi la,
nhlm md t l quan hd nhan qui giiia cic hu hdng vl
tai cdng logic cd cac su kien vio va su kien ra Su
kien di tir phia la din cdng la su kien vIo vl su kien
di tii cdng vl phia su kien gdc la su kien ra Cd hai
loai cdng logic dupe dimg trong phuong phap cay hu
hdng la cdng AND va cdng OR cho bilt each cac str
kien vao tac ddng din su kidn ra, trong dd cdng AND
cho bilt mudn xult su kien ra thi cac su kien vao phii xly ra ddng thdi, ung vdi phep nhan logic (phip hdi), cdng OR cho bilt su kien ra se xult hien chi khi xly ra mdt trong sd cle su kien vIo, tuong ling phep cdng logic (phep tuyln)
X4
(a) (b) Hinh 1: So dd bilu diln cay hu hdng
Hinh 1II cac dang md hinh cay hu hdng thdng dung vdi cac ky hieu thudng: I la str kien gdc (hu hdng dinh) va la su kien ciia cdng logic, AND va OR (VA vl HOAC) la cle cdng logic; Xj X2, X3, X4 la cac
hu hdng CO bin vl la su kien vao ciia cdng logic
Tir cay hu hdng, dimg ly thuylt xac suit tinh xac suit xay ra hu hdng ddi vdi str kien gdc va vdi timg thanh phln dl kit luan dp tin cay he thdng, vdi ham logic md t l cay hu hdng nhu sau:
Theo md hinh a: I = Xj JC2-X3 JC4; Theo md hinh:
I = Xi+X2+X3+X4
B KET QUA NGHEN CUU
1 D$c dilm vl so dd clu tnic h | ddng lye tlu dinh cl Vi|t Nam
Kit qui khIo sit thuc t l cho thly hd ddng luc da
sd tlu cl Viet nam cd dac dilm chung gdm mdt ddng
CO chinh bd tri d phln dudi tlu, ndi vdi mdt hd true chan vit qua hop sd thiiy luc mdt d p tdc dp (cl tiln
vl liii) llm ludn nhiem vu bd ly hpp dIo chilu ddng
CO dat dpc theo dudng tam tlu Da sd tlu cd true trung gian ndi hdp so vdi true chan vit va dimg khdp ndi, tiiudng II khdp d c dang hln kit vl hnyln chuyen ddng tir hop sd din tnic chan vjt, hoac giiia
d c thlnh phan true vdi nhau Nhu vay, hd ddng luc tlu gdm nhilu phan tu tinh nang khac nhau, bd tri ndi tilp va thupc hd thdng phuc hdi, tiic II khi mdt phln tii bi hdng thi cd the sua chiia dl phuc hdi kha nang lam viec trd lai Md hinh d y hu hdng ciia d c ddi tupng nghien ciiu dupe xay dung dua tren so dd clu tnic cua he thdng, so dd d u tnic lai dupe xay dung dua trdn so dd nguyen ly he thdng nhtmg
Trang 3KHGA HOC CbNG NGHfe
khdng ddng nhlt nhau, vi so dd clu tnic xay dung
dua tren dac diem hoat dpng va Inh hudng cua
nhiing hu hdng phln tii din boat ddng he thdng, cdn
so dd nguyen ly la md ta mdi lien kit vat ly giiia cac
phln tii he thdng Tir kit qua khIo sat thuc tl dac
dilm kit cau, nguyen ly lam vide cua hd ddng luc cac
tau danh ca cd thi xay dung dupe so dd d u tnic cua
he ddng luc cac tau danh d Viet nam nhu trdn hinh 2
Hmh 2 : So dd nguydn ly chung cua hd ddng luc tlu
ludi vay Bmh Dinh
1 Cic he thdng phu; 2 Ddng co; 3 Hop sd; 4
Khdp ndi true; 5 True trung gian ; 6 6 do true trung
gian ; 7 Ong bao true ; 8 True chin nt; 9 6 kin
nude dudi tau ; 10 6 do true chin vit; 11 Chin vit
Tir so dd nguydn ly ciia he ddng lire tlu ludi vay
ndu trdn nhan thly day II he thdng phiic tap, gdm
cae nhdm phln tii la cac thilt hi, cum thilt bi hay hd
thdng nhd cd tinh nang, dac dilm kit clu, nguyen ly
boat ddng ridng nlm trong tinh nang, kit clu,
nguyen ly boat ddng chung ctia he ddng luc Timg
nhdm phln hi ndu tren lai gdm d c phln ttr II d c chi
tilt, cum chi tilt cd tinh nang, dac dilm kit clu,
nguyen ly lam viec khac nhau, do dd trong qua trinh
lam vide ciia he ddng luc tau khao sat timg chi tilt,
cum chi tilt, timg phln tii, nhdm phan tii cd kilu va
nguydn nhan hu hdng khic nhau Do dd dl dam bio
qua trinh tinh toan va danh gia an toln he ddng luc
tlu thuan tien, chinh xlc va dua ra dupe d c gili
phap cd tinh khoa hpc va khi thi nhlm nang cao tinh
an toln he ddng luc tlu, phan hd ddng luc tlu thlnh
d c nhdm phan tu quy ddi vi phin td quy ddi (hay
phan he va phln tii) phu hpp, theo nguyen tic mdi
phan he cd tinh nang cu thi gdm cac phln tii cd lien
he chat vdi nhau vl mat kit d u , tinh nang vl nguyen
ly boat ddng vl cd Inh hudng lln nhau khi xly ra cac
hu hdng Khi tiln hanh stra chiia hu hdng mdt hay
mdt sd chi tilt cua phln tii nIo dd, thudng phai thao
va xem xlt tinh trang ky thuat cac chi tilt khac cd
trong phan tii, tuong ling khi stra chiia hu hdng cua
phln tii nao dd thudng ciing phai xem xlt tinh trang
ky thuat ciia cac phln tii khac trong phan bd Dua
vao so dd nguyen ly va phan tich da neu, cd '" phan
he ddng luc tau ludi vay ciia Binh Dinh i aih ba phan he la ddng co chinh, hop sd va he tioic chan vjt vdi d c ky hieu tuong ling la X, Y, Z Mat khac, mdi quan he giiia cac phan he la mdi quan he giiia cac phln tu dde lap, ndi tilp vdi nhau, tiic la khi xly ra hu hdng d mdt trong ba phan hd thi se din din hu hdng
he ddng luc tlu (hinh 3)
Hmh 3 : So dd d u tnic theo phan hd ciia hd dpng luc
tlu ludi vay Binh Djnh Din lupt mmh, timg phan he lai gdm cac phan tii vdi ky hieu tuong ling nhu trong blng 1
TT
Bang 1: CIc phln tii trong ttmg phan Cac phan tu cua phan h$ dpng ca chinh
hi
Ky hi?u
I Phan h$ dgng ca chinh
1
2
3
4
5
6
Ca cau piston - thanh truyin - true khuy
Ca cau phan phoi khi
Hd thong nhien lidu H$ thong boi tron H^ thong lam mat H^ thong ho trp dpng ca chinh
X,
x^
X3
X,
Xs
Xe
II Phan h^ hop sd
1
2
Cum thuy luc hop sd Cum ca khi hop sd
Y,
Y2
III Phan h$ h$ true chan vjt
1
2
3
4
5
6
7
Cac khop noi true True chan vit
0 6x3 true chan vjt
Chan vjt True trung gian
0 Ab true trung gian
0 kin nude duoi sau
z
Z2 Z3 Z4 Z5
Ze
z
Mdi quan he giiia d c phln tii trong tiing phan
he la mdi quan he ciia d c phln tii dde lap vl ndi tilp
Vi du trdn hinh 4 la so dd d u tnic cua phan hd ddng
CO chinh
Hmh 4 : So dd d u tnic aia phan hti
Xl —
;a chinh
Trang 4KHOA HOC CbNG NGHE
Tir so dd clu tnic he thdng va cac phan he neu
tren day, cd thi xay dung dupe so dd clu tnic ciia he
ddng luc tau tau danh ca Viet Nam nhu trdn hmh 5
Phan he true chan vit (7^, Z() Phan he hop sd
(Y2, Yi) Phan he ddng co chinh 0^, Xi)
Hinh 5: So dd d u tnic chung cua hd ddng luc tlu
ifiZj ludi vay Binh Dinh
2 Xay dung md hinh hd thdng ( d y hu hdng)
cay hu hdng la co sd dl phan tich va tinh xlc
suit hu hdng ctia he thdng va phln tii trong he ttr dd
chi ra khau ylu nhat dl dinh gia an toan va dl xuat
giai phap nang cao an toan cho he thdng Do do viec
phan tich, lua chpn md hinh cay hu hdng phii hpp he
thdng dang xet, dap ling ydu clu dat ra khi danh gia
tinh an toan he thdng la rIt quan trpng va anh hudng
din dd chinh xac kit qui Trong trudng hpp nay, do
ddi tupng nghien cuu II he ddng luc tlu ca ndn cac
ylu td dimg phan tich la dac dilm kit clu, chiic nang
boat ddng ciia d c phln tii va dilu kien lam viec thuc
tl ciia chiing Tir so dd d u tnic he ddng luc cac tlu
danh cl nhu md t l d hinh 3, cd the xlc dinh cac
thanh phln cay hu hdng ciia ddi tupng nghien ciru
nhu sau:
Gdc (sir kien dinh) II hu hdng cudi cung ciia he
thdng khIo sat, tiic II d c hu hdng xly ra ddi vdi he
ddng lire ciia cac tlu ludi vay, khai thac xa bd tai
Binh Dinh
Nhanh (su kien trung gian) II d c hu hdng nlm
giiia hu hdng dinh vl cac hu hdng co ban, II hu hdng
cila ba phan he cua he thdng gdm ddng co chinh,
hop sd va he true chan vit Phan tich quan he logic
ba su kien trung gian neu tren vdi d c su kien thlnh
phln tilp theo se nhan dupe sir kien trung gian d p
dudi, tiic hu hdng cac phan tii trong tiing phan he
Ten gpi vl ky hieu d c phan he, cimg cac phln tii
tiong he thdng dupe cho trong blng 1
La (su kien co bin) la nguyen nhan diu tien gay
hu hdng cac phln tii, la str kien khdng thi tilp tuc
phan tich thanh cac str kien d p dudi khac Trong
tiirdng hpp dang nghien ciiu thi day chmh la nhiing
hu hdng ciia cac phln tii theo nhiing nguydn nhan
khac nhau gay ra Dl don gian va thdng nhat each
gpi trong qua tiinh phan tich xay dung md hmh cay
hu hdng ddi vdi he ddng lire tlu, sir dung ky hieu d c phan he cho hu hdng ciia chung da cu thi nhu sau :
Su kien dinh I la hu hdng ciia he ddng luc tlu thiiy
Su kien trung gian: gdm d c su kien trung gian
~ va cac su kien trung gian d p dudi
- Cac su kien trung gian:
X - hu hdng ciia phan he ddng co chinh; Y- hu hdng ciia phan he hop sd; Z - hu hdng ciia phan he
he true chan vit
- cac su kien trung gian d p dudi gdm cd:
Xj (i = 1, , 6) - hu hdng phln tii thii i thude phan he X; Xi - hu hdng piston - thanh truyin - true khiiy; X2 - hu hdng co d u phan phdi khi; X3 - hu hdng
he tiidng nhien heu; X4 - hu hdng he thdng bdi tron; X5 - hu hdng he thdng lam mat; Xg - hu hdng he tiidng phuc vu may chinh; Yj (i = 1, 2) - hu hdng ciia phln tii thtr i; Yj - hu hdng ciia cum thiiy luc; Yj - hu hdng ciia cum co khi; Zj (i = 1, , 7) - hu hdng ciia phan tii thii i thupc phan he Z; Zi - hu hdng khdp ndi true; Z2 - hu hdng true chan vit; Z3 - hu hdng d do true chan viti Z4 - hu hdng chan vit; Z5 - hu hdng true trung gian; Zg - hu hdng d do true trung gian; Z7 - hu hdng cua d kin nude dudi tlu
Su kien co bin Xjj (i = 1, , 6 ;j = 1, , 8): hu hdng phln tii thir i ciia phan he X do nguyen nhan thii j gay ra
y,j(i = 1, 2 ; j = 1, , 8):hu hdng phln tii thii i cua phan he Y do nguyen nhan thii j gay ra
Zjj (i = 1, , 7 ; j = 1, , 8): hu hdng phln tii thii i ciia phan he Z do nguyen nhan thii j gay ra
Nguyen nhan hdng duoc xac dinh nhu sau: j = 1
la do mdi trudng lam vide; j =2 la do tac ddng co hpc
j = 3 la do gil hda, hao mdn trong qua trinh sii dung; j
= 4II do sai trong thilt kl, chi tao, lip dat; j = 5 la do bio dudng khdng diing ky thuat; j = 6 la do Idi trong qua trinh khai thac, van hinh tlu; j = 7 la do lln siia tnrdc khdng dat chit lupng; j = 8 la do sii dung vupt khi nang thilt hi (qua tai)
Theo so do d u tnic hd thdng nhan thly, khi hd ddng luc tlu danh d khIo sit hi hu hdng, ciing cd nghia II da xly ra nhiing hu hdng ciia it nhlt la mdt trong d c phan he cua he thdng nay, tiic la, su kien gdc I xay ra khi xult hien su kien nao dd trong su kien trung gian X, Y, Z ndn theo phuong phip cay hu hdng thi X, Y, Z II su kien vao ciia su kidn ra I ndi
Trang 5KHOA HOC CbNG NGHfe
nhau qua cdng logic OR, nen md hinh cay hu hdng
cua sir kien gdc I vdi cac phan he da neu dupe md t l
trdn hinh 6
r c m ^
Hinh 6: Md hinh d y hu hdng ciia su kidn I vdi d c
phanhd Phan tich mdi hen he logic ctia su kien X vdi d c
su kien thanh phln tilp theo se nhan dupe su kien
trung gian d p dudi ciia nd la cac su kien X; Tuong
ttr, Xj chinh la cac sir kien vao ciia su kien ra X theo
so dd clu tnic vi chiing cd mdi quan he ndi tilp nen
ndi vdi nhau bdi cdng logic OR Tilp tuc lln theo diu
vlt nguyen nhan hu hdng se tim dupe cac str kien
d p dudi ciia su kien Xj Mdi mdt su kien Xj xly ra II
do it nhlt mdt nguyen nhan gay nen, tiic la da cd str
xult hien ciia mdt trong cac str kien Xy nIo dd, vl day
ciing chinh la cac str kidn co ban ciia cac su kidn Xj
neu d tren Theo each xlc dinh mdi quan he da neu
thi Xjj la su kien vao ctia cac su kien ra Xj vl chung
duoc ndi vdi nhau bdi cdng logic OR Phan he
(nhanh) X ciia cay hu hdng dupe bilu diln d hinh 7
(a)
OR
OR
m
Vu r
OR
1
I i yij
r 1
Hmh 7 : Mo hmh nhlnh X ciia h§ thdng
(dyhuhdng) Tuong tu mdi quan he logic ciia su kien trung gian Y, Z vdi cac su kien thlnh phln nhu sau:
CIc su kien Yi la su kien vIo cua str kien ra Y va yjj la su kien vIo ciia d c sir kien ra Yj dupe ndi vdi nhau bdi d c cdng logic OR vl phan he Y ciia cay hu hdng bilu diln d hinh 8a
CIc su kiln Zj la str ki|n vIo ciia su ki$n ra Z vk
Zg II su kien vao ciia d c str ki^n ra Zj diu dupe ndi vdi nhau bdi d c cdng logic OR vl phan he Z cua cay
hu hdng bilu diln d hinh 8b
yij
Hinh 8: Md hmh nhlnh Y vl Z cua hd thdng ( d y hu hdng) Tdng hpp kit qui cac budc tiiuc hien tren se xay ^^^^^ cua hd ddng luc tlu dinh cl Vidt Nam nhu ti-dn dung dupe md hinh hd thdng (cay hu hdng) tdng ^"^" "•
Trang 6KHOA HOC CbNG NGHfe
ii.'
{'I
X
OR
ih :
-f l ' : ' '
V'
X,
1
OR
r
-7^
\
Xd
1
OR
"~^ \^—
Xjj • • • Xjj Xii •
T Hinh 9 : Mdhinh
IV 1 ruAO LUA N
Xij
d y
yii
[luhdi
I
OR
Y
OR
z
OR
\ t
\-\
V
1
OR
1
J ••
V:
OR
-J U—
Vii Y,3
- - v l
z,
OR
i ] r-^
-f
rn
z
OR
^ j
Zij 1 Zji 1 1 Zij 1 Zij 1
ig tdng quat ciia hd ddng luc tlu dinh d Vift Nam
he d dne lut : tau tron 8- ti -udi n? ho p cu tilf ' ^ hdm
Tir md hmh cay hu hdng da dupe xay dung duoc,
kit hpp vdi nhiing sd lieu thdng kd thuc t l v l cac hu
hdng ciia he ddng luc ddi vdi mdt chiing loai tau ca
nhlt dinh vl trong khoing thdi gian cu thi, b l n g
each tinh xac suit hu hdng su kien dinh (he ddng
luc) va cac su kien nhanh (cac thlnh phln) cd t h i
nghien ciiu da sii dung md hinh cay hu hdng ndi trdn, k i t hpp vdi cac sd heu thdng ke thuc t l trong 3 nam tir 2006 d i n 2008 v l tinh hinh hu hdng he ddng luc 115 tlu d i n h c l ludi vay ciia tinh Binh Dinh cd str dung ddng co bd cil hieu Mitsubihi lam may chinh,
da xac dinh thdi gian lam viec an toan, cudng dd hu hdng nhu b l n g 2
xac dinh dupe d c thdng sd dung danh gia dp tin cay
Blng 2 : Thdi gian llm vide trung binh an toan va cudng dO h u hdng d c p h i n hd cua hd ddng luc d c tlu ludi
vay Binh Dinh Thii tir Kibieu
X
Ddi tupng Hop sd
He true chan vit Ddng CO chinh
Thdi gian lam vipc trung binh
an toan To (ngay) 748,99 232,99 108,98
Cudng dp hdng "k
(ngay^) 0,001335 0,004292 0,009176 Nhu vay, ddi vdi hd ddng luc cac tlu khIo s i t tiii ^^ ^^ ^ toln cao hon II 750 ngly Thdi gian hdi tiidi gian llm vide an toan tioing bmh cua dpng co P^tic d c phan he ciia he ddng luc tlu ludi vay dao khoang 109 ngay, hd tinic chan vit la 233 ngay, hop sd ^^ng tii 5,4 - 6,9 ngay ( b l n g 3)
Blng 3 : Thdi gian hdi phuc v l cudng dd hdi phuc d c phan h | cua hd ddng luc d c tau ludi vay Bmh Dinh Thii: tir Kibieu Ddi tupng Thdi gian trung binh hdi phuc Tg
(ngay)
Cudng dp hdi phuc
Pjj (ngay-')
Trang 7KHOA HOC CbNG NGHfe
Xac suit hu hdng cac phan he ciia he ddng luc
bao gdm hop sd va true chan vit I I I I kha tiilp, cdn
cua ddng ca va he ddng luc tau la cao (bang 4)
Blng 4 : Xlc suit hu hdng ciia d c phan hd v l hd
ddng luc d c tlu ludi vay Binh Dinh
TT
1
2
3
Ki hieu
Y
Z
X
I
Doi tupng Hop sd
He true chan vit
Dpng ca chinh
He dong luc tau
Xac suat hu hong (Q) 0,031805 0,096184 0,193394 0,294163 Tren co sd xac xuat hu hdng ciia ba phan he
gdm Ddng co, he true chan vit va hop sd cd t h i tinh
dupe xac xult cua he ddng luc tlu ludi vay la I =
0,294163 Tir dd cd t h i giup xac dinh dupe thdi gian
phuc hdi chinh xac cua he thdng ddng luc nhdm tlu
ludi vay khIo sat
V KFT LUAN
Sir dung phuong phap phan tich cay hu hdng d l
danh gia tinh an toan va muc dd tin cay ciia he thdng
may ndi chung va he ddng luc tlu ca ndi rieng, da
giup cho vide xac dinh nguyen nhan hu hdng mdt
each chinh xac d l d l xult cac bien phip khic phuc
hidu qui Nhd dd, khdng nhiing nang cao tinh an
toan cua he ddng lire do loai tni d c nguydn nhan dan
den hu hdng (trir cac hu hdng b i t thudng do tic
ddng cua dilu kien bdn ngoai khdng the ludng trude), ma cdn cho phep tilt kiem dupe chi phi vat lieu, trang thilt bi, tiidi gian bao hanh, siia chiia, v.v
Da xac dinh dupe thdi gian lam viec an toan cua cac phan he thupc he thdng ddng luc tau ludi vay tai Binh Dinh vdi ddng co la 109 ngay, he true chan vit
233 ngay va hop sd cd dp an toan cao hon, dat 749 ngay Ddng thdi da xac dinh dupe thdi gian hdi phuc cac phln tu cua he thdng la 5,4 - 6,9 ngay Xac suat
hu hdng ciia toan he ddng luc la 0,294
Kit qua danh gia dp tin cay he ddng luc tau danh ca ap dung tai Binh Dinh da dupe cac doanh nghiep, nha quin ly dia phuong tilp thu, irng dung cho cac loai ddng luc ed hen quan khic
TAIUEUTHAMKHAO
1 Bao cao thdng kd tlu thuyin nghi ca Binh Dinh 2000 - 2008 Chi cue Bio vd Ngudn Ipi Thuy sin Binh Dinh
2 Phan Van Khdi Co sd dinh gii dp tin cay
Nha xult b i n Khoa hpc v l Ky thuat, H I Ndi, 1987
3 Jianwen Xiang Fault Tree Analysis and Formal Metiiods for Requirements Engineering,
2005
THE STUDY OF EVALUATING THE RELIABILITY OF VIETNAMESE FISHING BOATS POWER PLANT
BY FAULT TREE ANALYSIS METHOD
Tran Gia Thai Summary
Most of the Vietnamese fishing vessels are made from wood by traditional experience, without design
drawings with the ship main engine is very diverse in power and variety, including old automobile engines,
generators Therefore, the study of evaluating the reliability of power plant of Vietnamese fishing vessels
has role and significance The group researchs used the model of fault trees, combined with the actual
statistics failure data of power plan of 115 purse seine fishing vessels in Binh Dinh province from 2006 to
2008 for building mathematical model of reliability evaluation of power plant of Vietnamese fishing vessels
in general and by purse seine fishing vessels in Binh Dinh have used the old engine Mitsubishi Qapan) in
particular The results show that, the safety working time of the modules in the power plant of purse seine
fishing vessels in Binh Dinh province: engines is 109 days, propeller shaft is 233 days, the safety of gear is
higher than the 749 days, the recovery time of elements in power plant is from 5.4 to 6.9 days, failure
probability of power plant is 0.294
Keywords: Fault Pee, power plant, Mitsubishi, purse seine Sshing vessel.-,
Ngudi phln bidn: GS.TSKH Pham v a n Lang ''