1. Trang chủ
  2. » Tất cả

toan 8 bai 7 giai bai toan bang cach lap phuong trinh tiep

18 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giải bài toán bằng cách lập phương trình (tiếp)
Chuyên ngành Toán
Thể loại Bài tập
Định dạng
Số trang 18
Dung lượng 264,76 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài 7 Giải bài toán bằng cách lập phương trình (tiếp) Câu hỏi 1 trang 28 SGK Toán lớp 8 Tập 2 Trong ví dụ trên, hay thử chọn ẩn số theo cách khác Gọi s (km) là quãng đường từ Hà Nội đến điểm gặp nhau[.]

Trang 1

Bài 7: Giải bài toán bằng cách lập phương trình (tiếp) Câu hỏi 1 trang 28 SGK Toán lớp 8 Tập 2: Trong ví dụ trên, hay thử chọn ẩn số

theo cách khác: Gọi s (km) là quãng đường từ Hà Nội đến điểm gặp nhau của hai

xe Điền vào bảng sau rồi lập phương trình với ẩn số s:

Vận tốc(km/h) Quãng đường đi (km) Thời gian đi (h)

Ô tô

Lời giải

Vận tốc (km/h) Quãng đường đi (km) Thời gian đi (h)

35

45

Ô tô xuất phát sau xe máy 2

5 giờ nên:

s 90 s 2

35 45 5

Câu hỏi 2 trang 28 SGK Toán lớp 8 Tập 2: Giải phương trình nhận được rồi suy

ra đáp số của bài toán So sánh hai cách chọn ẩn, em thấy cách nào cho lời giải gọn hơn ?

Lời giải

Trang 2

s 90 s 2

35 45 5

9s 7(90 s) 2.63

315 315 315

⇔ 9s = 7(90 - s) + 126

⇔ 9s = 756 – 7s

⇔ 16s = 756

⇔ s = 47,25(km)

Thời gian để hai xe gặp nhau từ lúc xe máy khởi hành là:

s 47, 25 27

35 = 35 = 20 ( giờ)

So sánh hai cách chọn ẩn, cách đầu tiên (chọn ẩn là thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau) cho cách giải ngắn gọn hơn vì phương trình đơn giản hơn

Bài tập

Bài 37 trang 30 SGK Toán lớp 8 tập 2: Lúc 6 giờ sáng, một xe máy khởi hành

từ A để đến B Sau đó 1 giờ, một ô tô cũng xuất phát từ A đến B với vận tốc trung bình lớn hơn vận tốc trung bình của xe máy 20km/h Cả hai xe đến B đồng thời vào lúc 9 giờ 30 phút sáng cùng ngày Tính độ dài quãng đường AB và vận tốc trung bình của xe máy

Lời giải:

* Phân tích bài toán:

Chọn x là vận tốc trung bình của xe máy

(Các bạn có thể chọn x là quãng đường AB và làm tương tự)

Trang 3

Thời gian Vận tốc Quãng đường AB

Ô tô 2,5 x + 20 2,5(x + 20)

Lời giải:

Gọi vận tốc trung bình của xe máy là x (x > 0, km/h)

Thời gian xe máy đi từ A đến B: 9h30 – 6h = 3,5 (h)

Quãng đường AB (tính theo xe máy) là: 3,5.x (km)

Vận tốc trung bình của ô tô lớn hơn vận tốc trung bình của xe máy 20km/h

⇒ Vận tốc trung bình của ô tô là: x + 20 (km/h)

Ô tô xuất phát sau xe máy 1h

⇒ thời gian ô tô đi từ A đến B là: 3,5 – 1 = 2,5 (h)

Quãng đường AB (tính theo ô tô) là: 2,5(x + 20) (km)

Vì quãng đường AB là không đổi nên ta có phương trình:

3,5x = 2,5(x + 20)

⇔ 3,5x = 2,5x + 50

⇔ 3,5x – 2,5x = 50

⇔ x = 50 (thỏa mãn)

Trang 4

⇒ Quãng đường AB:

S = v.t = 3,5.50 = 175 (km)

Vậy quãng đường AB dài 175km và vận tốc trung bình của xe máy là 50km/h

Bài 38 trang 30 SGK Toán 8 tập 2: Điểm kiểm tra Toán của một tổ học tập được

cho trong bảng sau:

Biết điểm trung bình của cả tổ là 6,6 Hãy điền các giá trị thích hợp vào hai ô còn trống (được đánh dấu *)

Lời giải:

Gọi x là số học sinh (tần số) được điểm 5 (x ∈ ; 0 ≤ x ≤ 4)

Tần số hay số học sinh được điểm 9 là:

10 – (1 + 2 + 3 + x) = 4 – x

Điểm trung bình của cả tổ bằng 6,6 điểm nên:

4.1 5.x 7.2 8.3 9.(4 x)

6,6 10

 4 + 5x + 14 + 24 + 36 – 9x = 66

 - 4x + 78 = 66

 - 4x = - 12

x 3

 = (thỏa mãn điều kiện)

Do đó tần số điểm 5 là 3; tần số điểm 9 là 1

Ta có bảng sau:

Trang 5

Điểm số (x) 4 5 7 8 9

Bài 39 trang 30 SGK Toán lớp 8 tập 2: Lan mua hai loại hàng và phải trả tổng

cộng 120 nghìn đồng, trong đó đã tính cả 10 nghìn đồng là thuế giá trị gia tăng (viết tắt là thuế VAT) Biết rằng thuế VAT đối với loại hàng thứ nhất là 10%; thuế VAT đối với loại hàng thứ 2 là 8% Hỏi nếu không kể thuế VAT thì Lan phải trả mỗi loại hàng bao nhiêu tiền?

Ghi chú: Thuế VAT là thuế mà người mua hàng phải trả, người bán hàng thu và

nộp cho Nhà nước Gỉa sử thuế VAT đối với mặt hàng A được quy định là 10% Khi đó nếu giá bán của A là a đồng thì kể cả thuế VAT, người mua mặt hàng này phải trả tổng cộng là a + 10% a đồng

Lời giải:

* Phân tích:

Vì trong 120000 đồng Lan trả có 10000 đồng thuế VAT nên giá gốc của hai sản phẩm không tính VAT là 110000 đồng

Hàng thứ 2 110000 – x 0,08.(110000 – x)

Thuế VAT của cả hai mặt hàng là 10 nghìn nên có phương trình:

0,1x + 0,08(110000 – x) = 10000

Lời giải

Gọi giá gốc của mặt hàng thứ nhất là x (0 < x < 110000 đồng)

Trang 6

Vì trong 120000 đồng Lan trả đã có 10000 đồng thuế VAT nên tổng giá gốc của

cả hai mặt hàng chỉ bằng: 120000 – 10000 = 110000 (nghìn đồng)

⇒ Giá gốc của mặt hàng thứ hai là: 110000 – x ( đồng)

Thuế VAT của mặt hàng thứ nhất bằng: 10%.x = 0,1x (đồng)

Thuế VAT của mặt hàng thứ hai bằng: 8%.(110000 – x) = 0,08.(110000 – x) (đồng)

Thuế VAT của cả hai mặt hàng bằng: 0,1x + 0,08(110000 – x) (nghìn đồng) Theo đề bài, tổng thuế VAT của cả hai mặt hàng là 10000 đồng nên ta có phương trình:

0,1x + 0,08(110000 – x) = 10000

⇔ 0,1x + 8800 – 0,08x = 10000

⇔ 0,02x = 1200

⇔ x = 60000 (thỏa mãn điều kiện)

Vậy không kể VAT thì giá của mặt hàng thứ nhất là 60000 đồng, giá của mặt hàng thứ hai là 110000 – 60000 = 50000 đồng

Luyện tập trang 31- 32

Bài 40 trang 31 SGK Toán lớp 8 tập 2 Năm nay, tuổi mẹ gấp 3 lần tuổi

Phương Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương thôi Hỏi năm nay Phương bao nhiêu tuổi?

Lời giải:

* Phân tích:

Tuổi Phương Tuổi mẹ

Trang 7

13 năm sau x + 13 3x + 13

Sử dụng dữ kiện 13 năm sau tuổi mẹ chỉ gấp hai lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

Lời giải:

Gọi x là tuổi Phương năm nay (x > 0; x ∈ )

Tuổi của mẹ năm nay là: 3x

Tuổi Phương 13 năm sau: x + 13

Tuổi của mẹ 13 năm sau: 3x + 13

Vì 13 năm nữa tuổi mẹ chỉ gấp 2 lần tuổi Phương nên ta có phương trình:

3x + 13 = 2(x + 13)

⇔ 3x + 13 = 2x + 26

⇔ 3x – 2x = 26 – 13

⇔ x = 13 (thỏa mãn điều kiện xác định)

Vậy năm nay Phương 13 tuổi

Bài 41 trang 31 SGK Toán lớp 8 tập 2: Một số tự nhiên có hai chữ số Chữ số

hàng đơn vị gấp hai lần chữ số hàng chục Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu 370 Tìm số ban đầu

Lời giải:

* Phân tích:

Với một số có hai chữ số bất kì ta luôn có: xy 10x= +y

Khi thêm chữ số 1 xen vào giữa ta được số:x1y 100x 10= + +y

Trang 8

Vì chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên ta có y = 2x

Số mới lớn hơn số ban đầu 370 nên ta có phương trình:

100x + 10 + 2x = 10x + 2x + 370

Lời giải:

Gọi chữ số hàng chục của số cần tìm là x (x ∈ ; 0 < x ≤ 9)

⇒ Chữ số hàng đơn vị là 2x

⇒ Số cần tìm bằng A= x(2x) 10x= +2x 12x=

Sau khi viết thêm chữ số 1 vào giữa hai chữ số ta được số mới là:

B=x1(2x) 100x 10 2x= + + =102x 10+

Theo đề bài số mới lớn hơn số ban đầu 370, ta có B = A + 370 nên ta có phương trình

102x + 10 = 12x + 370

⇔ 102x – 12x = 370 – 10

⇔ 90x = 360

⇔ x = 4 (thỏa mãn)

Vậy số cần tìm là 48

Bài 42 trang 31 SGK Toán lớp 8 tập 2: Tìm số tự nhiên có hai chữ số, biết rằng

nếu viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải số đó thì ta được một số lớn hơn gấp 153 lần số ban đầu

Lời giải:

Gọi số có hai chữ số cần tìm là xy ( 10xy 99; x; y )

Khi viết thêm một chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì ta được

số mới là 2xy2 =2000 xy0+ + =2 2002 10xy+

Trang 9

Theo đề bài, số mới gấp 153 lần số ban đầu nên ta có phương trình:

2002 10xy 153xy+ =

153xy 10xy 2002

143xy 2002

xy 14

 = (thỏa mãn điều kiện)

Vậy số cần tìm là 14

Bài 43 trang 31 SGK Toán lớp 8 tập 2: Tìm phân số có đồng thời các tính chất

sau:

a) Tử số của phân số là số tự nhiên có một chữ số;

b) Hiệu giữa tử số và mẫu số bằng 4

c) Nếu giữ nguyên tử số và viết thêm vào bên phải của mẫu số một chữ số đúng bằng tử số, thì ta được một phân số bằng phân số 1

5

Lời giải:

Gọi tử số của phân số cần tìm là x (0 < x < 10, x ∈ ;x 4 )

+ Hiệu giữa tử số và mẫu số bằng 4 nên mẫu số bằng x – 4

+ Viết thêm chữ số đúng bằng tử số vào bên phải của mẫu số ta được mẫu số mới là: (x−4)x =10.(x−4)+ =x 10x−40+ =x 11x−40

Phân số mới bằng 1

5 nên ta có phương trình :

11x 40 = 5

5x 1.(11x 40)

5(11x 40) 5(11x 4))

Trang 10

Suy ra: 5x = 11x – 40

5x – 11x = - 40

- 6x = -40

40 20

x

− ( không thỏa mãn điều kiện)

Vậy không có phân số thỏa mãn yêu cầu đề bài

Bài 44 trang 31 SGK Toán lớp 8 tập 2: Điểm kiểm tra Toán của một lớp được

cho trong bảng dưới đây:

Điểm (x) 1 2 3 4 5 6 7 8 9 10

Tần số (f) 0 0 2 * 10 12 7 6 4 1 N = *

trong đó có 2 ô còn trống (thay bằng dấu *) Hãy điền số thích hợp vào ô trống,

nếu điểm trung bình của lớp là 6,06

Lời giải:

Gọi x là tần số của điểm 4 (x > 0; x ∈ )

Số học sinh của lớp:

2 + x + 10 + 12 + 7 + 6 + 4 + 1 = 42 + x

Vì điểm trung bình bằng 6,06 nên:

2.3 4.x 5.10 6.12 7.7 6.8 9.4 10.1

6,06

42 x

+

⇔ 6 + 4x + 50 + 72 + 49 + 48 + 36 + 10 = 6,06(42 + x)

⇔ 271 + 4x = 254,52 + 6,06x

271 254,52 6,06x 4x

Trang 11

⇔ 16,48 = 2,06x

⇔ x = 8 (thỏa mãn điều kiện)

Tần số điểm 4 là 8 và tổng số học sinh cả lớp là 42 + 8 = 50 (học sinh)

Vậy ta có kết quả điền vào như sau:

Điểm (x) 1 2 3 4 5 6 7 8 9 10

Tần số (f) 0 0 2 8 10 12 7 6 4 1 N = 50

Bài 45 trang 31 SGK Toán lớp 8 tập 2: Một xí nghiệp kí hợp đồng dệt một số

tấm thảm len trong 20 ngày Do cải tiến kĩ thuật, năng suất dệt của xí nghiệp đã tăng 20% Bởi vậy, chỉ trong 18 ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nữa Tính số tấm thảm len mà xí

nghiệp phải dệt theo hợp đồng

Lời giải:

* Phân tích:

Ta có: Số sản phẩm dệt được = năng suất số ngày dệt

Năng suất Số ngày dệt Tổng sản phẩm

Thực tế sau khi cải tiến x + 20%.x = 1,2x 18 18.1,2.x Thực tế dệt được nhiều hơn dự tính 24 tấm nên ta có phương trình:

18.1,2x = 20x + 24

Lời giải:

Gọi x là năng suất dự tính của xí nghiệp (sản phẩm/ngày); (x ∈ *)

Trang 12

⇒ Số thảm len dệt được theo dự tính là: 20x (thảm)

Sau khi cải tiến, năng suất của xí nghiệp đã tăng 20% nên năng suất trên thực tế là: x + 20%.x = x + 0,2x = 1,2x (sản phẩm/ngày)

Sau 18 ngày, xí nghiệp dệt được: 18.1,2x = 21,6.x (thảm)

Vì sau 18 ngày, xí nghiệp không những hoàn thành số thảm cần dệt mà còn dệt thêm được 24 tấm nên ta có phương trình:

21,6.x = 20x + 24

⇔ 21,6x – 20x = 24

⇔ 1,6x = 24

⇔ x = 15 (thỏa mãn)

Vậy số thảm mà xí nghiệp phải dệt ban đầu là: 20.15 = 300 (thảm)

Bài 46 trang 31-32 SGK Toán lớp 8 tập 2: Một người lái ô tô dự định đi từ A

đến B với vận tốc 48km/h Nhưng sau khi đi được 1 giờ với vận tốc ấy, ô tô bị tàu hỏa chắn đường trong 10 phút Do đó, để kịp đến B đúng thời gian đã định, người

đó phải tăng vận tốc thêm 6km/h Tính quãng đường AB

Lời giải:

* Phân tích:

Ta luôn có: Quãng đường = vận tốc.thời gian

Gọi C là địa điểm ô tô gặp tàu hỏa

Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48.1 = 48km Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h)

Trang 13

Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1

6 giờ (là thời gian chờ tàu hỏa)

Quãng đường BC Vận tốc Thời gian

48

54

Ta có phương trình: x x 1

48 − 54 = 6

Lời giải

Gọi C là địa điểm ô tô gặp tàu hỏa

Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ

⇒ SAC = 48.1 = 48 (km)

Gọi quãng đường BC dài là x (km; x > 0)

Vận tốc dự tính đi trên BC là: 48 km/h

⇒ Thời gian dự tính đi quãng đường BC hết: x

48 (giờ)

Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h)

⇒ Thời gian thực tế ô tô đi quãng đường BC là: x

54 (giờ)

Trang 14

Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là

10 phút = 1

6 (giờ)

Do đó ta có phương trình:

48− 54 = 6

9x 8x 72

432 432 432

9x – 8x = 72

⇔ x = 72 (thỏa mãn điều kiện)

Nên quãng đường BC là 72 (km)

Vậy quãng đường AB là:

SAB = SAC + SBC = 48 + 72 = 120 (km)

Bài 47 trang 32 SGK Toán lớp 8 tập 2: Bà An gửi vào quỹ tiết kiệm x nghìn

đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vốn cho tháng sau

a) Hãy viết biểu thức biểu thị:

+ Số tiền lãi sau tháng thứ nhất;

+ Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất;

+ Tổng số tiền lãi có được sau tháng thứ hai

b) Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?

Lời giải:

a) Bà An gửi vào quỹ tiết kiệm: x đồng (x > 0)

Trang 15

Lãi suất mỗi tháng là a% tháng nên số tiền lãi sau tháng thứ nhất bằng: a%.x

Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất: x + a%.x = (1 + a%)x

Số tiền lãi sau tháng thứ hai: (1 + a%)x.a%

Tổng số tiền lãi sau hai tháng bằng: a%.x + (1 + a%).x.a% (đồng) (1)

b) Vì sau hai tháng bà An lãi 48288 đồng với lãi suất 1,2% (tức là a = 1,2) nên thay vào (1) ta có phương trình:

1,2%.x + (1 + 1,2%).x.1,2% = 48288

⇔ 0,012x + 1,012.x.0,012 = 48288

⇔ 0,012x + 0,012144x = 48288

⇔ 0,024144.x = 48288

⇔ x = 2 000 000 (đồng)

Vậy bà An đã gửi tiết kiệm 2 000 000 đồng

Bài 48 trang 32 SGK Toán lớp 8 tập 2: Năm ngoái, tổng số dân của hai tỉnh A

và B là 4 triệu Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2% Tuy vậy số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là

807200 người Tính số dân năm ngoái của mỗi tỉnh

* Phân tích:

Tỉnh A x x + x.1,1% = 1,011.x

Tỉnh B 4 – x (4 – x) + (4 – x).1,2% = (4 – x).1,012

Trang 16

Dân số tỉnh A năm nay nhiều hơn dân số tỉnh B là 807200 người = 0,8072 (triệu người) nên ta có phương trình:

1,011.x - 1,012.(4 – x) = 0,8072

Lời giải:

Gọi x là số dân năm ngoái của tỉnh A (0 < x < 4) (triệu người)

Số dân năm ngoái của tỉnh B: 4 – x (triệu người)

Năm nay dân số của tỉnh A tăng 1,1 % nên số dân của tỉnh A năm nay:

x + 1,1% x = 1,011.x

Năm nay dân số của tỉnh B tăng 1,2 % nên số dân của tỉnh B năm nay:

(4 – x) + 1,2% (4 – x) = 1,012(4 – x)

Vì số dân tỉnh A năm nay hơn tỉnh B là 807200 người = 0,8072 triệu người nên ta

có phương trình:

1,011.x - 1,012(4 – x) = 0,8072

⇔ 1,011x – 4,048 + 1,012x = 0,8072

1,011x 1,012x 0,8072 4,048

⇔ 2,023 x = 4,8552

⇔ x = 2,4 (thỏa mãn)

Vậy dân số của tỉnh A năm ngoái là 2,4 triệu người, dân số tỉnh B năm ngoái là

4 – 2,4 = 1,6 triệu người

Bài 49 trang 32 SGK Toán lớp 8 tập 2: Đố: Lan có một miếng bìa hình tam giác

ABC vuông tại A, cạnh AB = 3cm Lan tính rằng nếu cắt từ miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình 5 thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu Tính độ dài cạnh AC của tam giác ABC

Trang 17

Lời giải:

Gọi x (cm) là độ dài cạnh AC (x > 2)

Gọi hình chữ nhật là MNPA như hình vẽ

Ta có: MC = AC – AM = x – 2 (cm)

Vì MN // AB nên theo định lý Talet ta có :

MN MC AB MC 3(x 2)

MN

Diện tích hình chữ nhật MNPA là:

AM MN = 2.3(x 2) 6(x 2)

Diện tích tam giác ABC là: 1AB.AC 1.3.x 3x

Vì diện tích tam giác ABC gấp đôi diện tích hình chữ nhật MNPA nên ta có phương trình:

3 6(x 2)

x 2

=

3

x.x 12 x 2

2

2

3

x 12x 24

2

2

3x 24x 48

2

x 8x 16

Trang 18

x 8x 16 0

x 4 0

x 4 0

 − =

x 4

 =

Vậy độ dài đoạn thẳng AC là 4cm

Ngày đăng: 27/11/2022, 15:41

🧩 Sản phẩm bạn có thể quan tâm

w