1. Trang chủ
  2. » Tất cả

Giải toán 10 bài 10 (kết nối tri thức) vectơ trong mặt phẳng tọa độ

18 23 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giải toán 10 bài 10 (kết nối tri thức) vectơ trong mặt phẳng tọa độ
Trường học Trường Đại học Toán học Hà Nội
Chuyên ngành Toán học
Thể loại Giải bài tập
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 18
Dung lượng 468,62 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài 10 Vectơ trong mặt phẳng tọa độ Mở rộng trang 60 SGK Toán 10 tập 1 Một bản tin dự báo thời tiết thể hiện đường đi trong 12 giờ của một cơn bão trên một mặt phẳng tọa độ Trong thời gian đó, tâm bão[.]

Trang 1

Bài 10 Vectơ trong mặt phẳng tọa độ

Mở rộng trang 60 SGK Toán 10 tập 1: Một bản tin dự báo thời tiết thể hiện đường

đi trong 12 giờ của một cơn bão trên một mặt phẳng tọa độ Trong thời gian đó, tâm bão di chuyển thẳng đều từ vị trí có tọa độ (13,8; 108,3) đến vị trí tọa độ (14,1; 106,3) Dựa vào thông tin trên, liệu ta có thể dự đoán được vị trí của tâm bão tại thời điểm bất kì trong khoảng thời gian 12 giờ đó hay không?

Lời giải

Sau bài học này ta có thể trả lời câu hỏi trên như sau:

Gọi M(x; y) là vị trí của tâm bão tại thời điểm bất kì t giờ trong khoảng thời gian 12 giờ

Do bão di chuyển thẳng đều từ A(13,8; 108,3) tới vị trí có tọa độ B(14,1; 106,3) nên điểm M thuộc đoạn thẳng AB

Trang 2

Theo dự báo, tại thời điểm t giờ thì tâm bão đã đi được một khoảng AM là: AM t

AB =12

Hay AM t AB

12

Vectơ AM cùng hướng với vectơ AB và AM t AB

12

12

Ta có: A(13,8; 108,3); B(14,1; 106,3); M(x; y)

Suy ra AM =(x 13,8; y 108,3 , AB− − ) =(0,3; 2− )

Ta có: AM t AB

12

=

( )

t

40

M 13,8; 108,3

Vậy ở thời điểm t giờ tâm bão là điểm M ở vị trí M t 13,8; t 108,3

Hoạt động 1 trang 60 SGK Toán 10 tập 1: Trên trục số Ox, gọi A là điểm biểu

diễn số 1 và đặt OA=i (H.4.32a) Gọi M là điểm biểu diễn số 4, N là điểm biểu

diễn số 3

2

− Hãy biểu thị mỗi vectơ OM,ON theo vectơ đơn vị i

Trang 3

Lời giải

Trên hình vẽ ta thấy:

+) Vectơ OM cùng hướng với vectơ OA và OM = 4 = 4.1 = 4OA

Nên OM=4OA =4i

+) Vectơ ON ngược hướng với vectơ OA và ON = 3 3.1 3

2 = 2 = OA 2

Nên ON 3OA 3i

= − = −

Vậy OM=4i và ON 3i

2

= −

Hoạt động 2 trang 61 SGK Toán 10 tập 1: Trong Hình 4.33:

a) Hãy biểu thị mỗi vectơ OM,ON theo các vectơ i, j

b) Hãy biểu thị vectơ MN theo các vectơ OM,ON từ đó biểu thị vectơ MN theo

các vectơ i, j

Trang 4

Lời giải

Giả sử các điểm A, B, C, D được biểu diễn như hình vẽ trên

Khi đó OA=3i;OB=5 j; OC 2i;OD 5j

2

a) OAMB là hình bình hành suy ra OM=OA+OB (quy tắc hình bình hành)

Do đó OM= +3i 5 j

OCND là hình bình hành suy ra ON= OC+OD (quy tắc hình bình hành)

Trang 5

Do đó ON 2i 5j

2

= − +

b) Ta có: MN=ON−OM (quy tắc ba điểm)

MN 2i j 3i 5j 2i j 3i 5j 2i 3i j 5j 5i j

= − + − + = − + − − = − − + − = − −

Vậy MN ON OM 5i 5j

2

Luyện tập 1 trang 61 SGK Toán 10 tập 1: Tìm tọa độ của 0

Lời giải

Ta có: 0=0.i+0.j =0 ( )0;0

Vậy vectơ 0 có toạ độ là (0; 0)

Hoạt động 3 trang 61 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho

u= 2; 3 , v− = 4;1 ,a= 8; 12 −

a) Hãy biểu thị mỗi vectơ u, v,a theo các vectơ i, j

b) Tìm tọa độ của các vectơ u+v, 4u

c) Tìm mối liên hệ giữa hai vectơ u,a

Lời giải

a) Ta có:

u= 2; 3−  = −u 2i 3j;

( )

v= 4;1  = + v 4i j;

Trang 6

( )

a = 8; 12−  = −a 8i 12 j

b) Ta có:

u+ =v 2i−3j + 4i+ = − + + = −j 2i 3j 4i j 6i 2 j + =u v 6; 2−

4u=4 2i−3j = −8i 12 j4u = 8; 12 −

Vậy toạ độ của vectơ u+ v là (6; ‒2) và toạ độ của vectơ 4u là (8; ‒12)

c) Ta có a =(8; 12− ) và 4u =(8; 12 − )

Suy ra a = 4u

Vậy a = 4u

Hoạt động 4 trang 62 SGK Toán 10 tập 1: Trong mặt phẳng toạ độ Oxy, cho điểm

M(x0;y0)

Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung

Oy (H.4.35)

a) Trên trục Ox, điểm P biểu diễn số nào? Biểu thị OP theo i và tính độ dài của OP

theo x0

b) Trên trục Oy, điểm Q biểu diễn số nào? Biểu thị OQ theo jvà tính độ dài của

OQ theo y0

c) Dựa vào hình chữ nhật OPMQ, tính độ dài của OM theo x0, y0

d) Biểu thị OM theo các vectơ i, j

Trang 7

Lời giải

a) Trên trục Ox, điểm P biểu diễn cho số x0 nên OP = |x0| = x0

Ta có vectơ OP cùng hướng với vectơ i và OP = OP = x0 nên OP=x i.0

Vậy OP=x i.0

b) Trên trục Oy, điểm Q biểu diễn cho số y0 nên OQ = |y0| = y0

Ta có vectơ OQ cùng hướng với vectơ jvà OQ = OQ = y0 nên OQ=y j.0

Vậy OQ=y j.0

c) Xét tam giác OPM vuông tại P, theo định lí Pythagore ta có: OM2 = OP2 + MP2

0 0

0 0

OM =OM= x +y

0 0

OM = x +y

d) Ta có OM=OP+OQ=x i0 +y j0

Vậy OM=x i0 +y j.0

Trang 8

Hoạt động 5 trang 62 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho các

điểm M(x; y) và N(x'; y')

a) Tìm tọa độ của các vectơ OM,ON

b) Biểu thị vectơ MN theo các vectơ OM,ON và tìm tọa độ của MN

c) Tìm độ dài của vectơ MN

Lời giải

a) Ta có M(x; y) nên vectơ OM có toạ độ (x; y)

N(x'; y') nên vectơ ON có toạ độ (x'; y')

b) Ta có: MN=ON−OM (quy tắc ba điểm)

Mà tọa độ của vectơ ON−OMlà (x' – x; y' – y)

Vậy MN=(x ' x; y ' y − − )

c) Độ dài của vectơ MN là ( ) (2 )2

MN = x ' x− + y ' y −

Luyện tập 2 trang 63 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho hai

điểm A(2; 1), B(3; 3)

a) Các điểm O, A, B có thẳng hàng hay không?

b) Tìm điểm M(x;y) để OABM là một hình bình hành

Lời giải

a) Ta có: A(2; 1) suy ra OA =( )2;1

B(3; 3) suy ra OB=( )3;3

Trang 9

Hai vectơ OA =( )2;1 , OB=( )3;3 không cùng phương (vì 2 1

3  ) 3

Do đó các điểm O, A, B không cùng nằm trên một đường thẳng

Vậy ba điểm O, A, B không thẳng hàng

b) Các điểm O, A, B không thẳng hàng nên tứ giác OABM là hình bình hành khi và chỉ khi OA =MB

Ta có: OA=( )2;1 , MB= −(3 x;3−y) nên

OA =MB 2 3 x x 1 M 1; 2 ( )

Vậy điểm cần tìm là M(1;2)

Vận dụng trang 64 SGK Toán 10 tập 1: Từ thông tin dự báo bão được đưa ra ở

đầu bài học, hãy xác định tọa độ vị trí M của tâm bão tại thời điểm 9 giờ trong khoảng thời gian 12 giờ dự báo

Trang 10

Trong 12 giờ, tâm bão được dự báo di chuyển thẳng đều từ A(13,8; 108,3) tới vị trí

có tọa độ B(14,1; 106,3) Gọi tọa độ của M là (x;y) Bạn hãy tìm mối liên hệ giữa hai vectơ AM và AB rồi thể hiện mối quan hệ đó theo tọa độ để tìm x; y

Lời giải

Do bão di chuyển thẳng đều từ A(13,8; 108,3) tới vị trí có tọa độ B(14,1; 106,3) nên điểm M thuộc đoạn thẳng AB

Theo dự báo, tại thời điểm 9 giờ thì tâm bão đã đi được một khoảng AM là:

AB =12 = 4

Hay AM 3AB

4

Vectơ AM cùng hướng với vectơ AB và AM 3AB

4

= nên AM 3AB

4

Trang 11

Ta có: A(13,8; 108,3); B(14,1; 106,3); M(x; y)

Suy ra AM =(x 13,8; y 108,3 , AB− − ) =(0,3; 2− )

Ta có: AM 3AB

4

=

( )

x 13,8 0,3 x 0,3 13,8

x 14, 025

M 14, 025;106,8

y 106,8

=

Vậy ở thời điểm 9 giờ tâm bão là điểm M ở vị trí M(14,025; 106,8)

Bài 4.16 trang 65 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho các điểm

M(1;3), N(4;2)

a) Tính độ dài của các đoạn thẳng OM, ON, MN

b) Chứng minh rằng tam giác OMN vuông cân

Lời giải

a) Ta có:

OM 1;3 OM 1 3 10

ON 4; 2 ON 4 2 20 2 5

+) M(1;3) và N(4;2) nên MN=(3; 1− ) 2 ( )2

Vậy OM= 10;ON=2 5 và MN = 10

Trang 12

b) Xét tam giác OMN, có: OM =MN(= 10) suy ra tam giác OMN cân tại M.

(1)

ON = 2 5 =20;OM +MN = 10 + 10 =20

Theo định lí Pythagore đảo suy ra tam giác OMN vuông tại M (2)

Từ (1) và (2) suy ra tam giác OMN vuông cân tại M

Vậy tam giác OMN vuông cân tại M

Bài 4.17 trang 65 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho các vectơ

a = −3i 2 j;b=(4; 1− và các điểm M(‒3;6), N(3;‒3) )

a) Tìm mối liên hệ giữa các vectơ MN và 2a−b

b) Các điểm O, M, N có thẳng hàng hay không?

c) Tìm điểm P(x;y) để OMNP là hình bình hành

Lời giải

a) Ta có:

Trang 13

+) a= −3i 2 j nên a =(3; 2− )

2a 6; 4

Có: 2a =(6; 4− và ) b=(4; 1− )

2a b 6 4; 4 1

 − = − − +

2a b 2; 3

 − = −

2a b 2i 3j

+) Có: M(‒3;6) và N(3;‒3) MN=(6; 9− )

MN= −6i 9 j =3 2i( −3j) (=3 2a−b)

Vậy MN=3 2a( −b)

b) Ta có:

+) M(‒3;6) OM= −( 3;6)

+) N(3;‒3) ON =(3; 3− )

Hai vectơ OM= −( 3;6 , ON) =(3; 3− không cùng phương (vì 3) 6

− 

− )

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng

Vậy ba điểm O, M, N không thẳng hàng

c)

Trang 14

Các điểm O, M, N không thẳng hàng, tứ giác OMNP là hình bình hành khi và chỉ khi OM=PN

Ta có: M(‒3;6); N(3;‒3) và P(x; y)

OM 3;6 , PN 3 x; 3 y

Do đó OM= PN

P 6; 9

Vậy điểm cần tìm là P(6;‒9)

Bài 4.18 trang 65 SGK Toán 10 tập 1: Trong mặt phẳng tọa độ Oxy, cho các điểm

A(1;3), B(2;4), C(‒3;2)

a) Chứng minh rằng ABC là ba đỉnh của một tam giác

b) Tìm tọa độ trung điểm M của đoạn thẳng AB

c) Tìm tọa độ trọng tâm G của tam giác ABC

d) Tìm điểm D(x; y) để O(0;0) là trọng tâm tam giác ABD

Lời giải

Trang 15

a) Ta có: A(1;3), B(2;4), C(‒3;2)

Suy ra: AB=( )1;1 , BC= − − ( 5; 2)

Hai vectơ AB=( )1;1 , BC= − − không cùng phương (vì 1( 5; 2) 1

5  2

− − )

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng

Vậy ba điểm A, B, C là ba đỉnh của một tam giác

b) Gọi M(x1;y1) là trung điểm của đoạn thẳng AB với A(1;3) và B(2;4)

Khi đó ta có:

3 7

+

 

Vậy M 3 7;

2 2

 

 

  là trung điểm của đoạn thẳng AB

c) Gọi G(x2;y2) là trọng tâm của tam giác ABC với A(1;3), B(2;4) và C(‒3;2) Khi đó ta có:

( )

( )

2

2 2 2

1 2 3

y 3

3 4 2

y

3

+ + −

=

 =



Vậy G(0;3) là trọng tâm của tam giác ABC

d) Để O(0;0) là tọa độ trọng tâm tam giác ABD với A(1;3), B(2;4) và D(x,y) thì:

Trang 16

( )

1 2 x

0

3

D 3; 7

0

3

+ +

 =

 =



Vậy D(‒3;‒7) thì O(0;0) là trọng tâm tam giác ABD

Bài 4.19 trang 65 SGK Toán 10 tập 1: Sự chuyển động của một tàu thủy được thể

hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(1;2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ v=( )3;4 Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ

Lời giải

Gọi B(x; y) là vị trí của tàu thủy trên mặt phẳng toạ độ sau khi khởi hành 1,5 giờ Tàu khởi hành từ vị trí A chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ v=( )3; 4 , sau 1,5 giờ thì tàu thuỷ đến B nên AB 1,5v=

Mà A(1;2); B(x; y) nên AB=(x 1; y− − 2)

Khi đó: AB 1,5v=

x 1 1,5.3 x 1,5.3 1 x 5,5

B 5,5;8

y 2 1,5.4 y 1,5.4 2 y 8

Vậy sau khi khởi hành 1,5 giờ thì tàu thủy đến được vị trí B(5,5; 8)

Bài 4.20 trang 65 SGK Toán 10 tập 1: Trong Hình 4.38, quân mã đang vị trí có

tọa độ (1;2) Hỏi sau một nước đi, quân mã có thể đến những vị trí nào?

Trang 17

Lời giải

Cách di chuyển của quân mã là đi theo hình chữ L, mỗi nước đi gồm tồng cộng 3 ô (tiến 1 ô rồi quẹo trái/ phải 2 ô và ngược lại hoặc tiến 2 ô rồi quẹo trái/ phải 1 ô và ngược lại) nên quân mã có thể đi đến các vị trí A, B, C, D, E và O trên bàn cờ như hình dưới đây:

Tọa độ của các vị trí đó là: O(0;0), A(0;4), B(2;4), C(3;3), D(3;1), E(2;0)

Trang 18

Vậy sau một nước đi, quân mã có thể đến các vị trí O(0;0), A(0;4), B(2;4), C(3;3), D(3;1), E(2;0)

Ngày đăng: 25/11/2022, 22:07

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm