Tuyen tap Cdng trinh Hdi nghj Khoa hge Cff hge Thiiy khi Todn qudc, Phan Thiit, 2008 455 Nghien ciiu khai thac bo dieu khien la huong chieu may nen dong cô tua bin phan luc hang khong Nguyen Minh Xua[.]
Trang 1Tuyen tap Cdng trinh Hdi nghj Khoa hge
Cff hge Thiiy khi Todn qudc, Phan Thiit, 2008 455
Nghien ciiu khai thac bo dieu khien la huong chieu may nen
dong co^ tua bin phan luc hang khong Nguyen Minh Xuan', Pham Ngoc Canh^ Ta Van Nham^
Hoe viin Ky thudt Oiidn su
Hoc vien Phdng khdng - Khdng qudn Trudng Sy quan Khdng qudn
Tom tdt: Bdl viet dua ra nghien cim ve dieu khien vdng Id hudng chieu tren mdy nen
dgng ca tua bin phan luc hdng khdng Ddy la mgt trong nhirng phuang phdp bao dam
sir Idm viec dn dinh cho dgng ca tua bin khi a cdc che do lam viec Kit qua nghien
cuv cho phep ddnh gid cdc tham sd ky thudt vd tai xudt hien tren dgng ca trong dai
tdc dg-dg cao hogt dgng, bao dam an todn vd hieu qua su dung
1 D a t bai t o a n
/ / van de xoay Id mdy nen ddng cff tua bin khi
May nen dgc true nhieii tang cd nhieu uu the so vdi may nen mgt tang hoac may nen
ly tam Dd la ty sd nen cao, vdng quay it thay doi va ly sd nen thay ddi cdng cac tang nhanh
chdng
Tuy nhien de dat dugc uu the dd ngudi ta phai giai quyet bang loat cac van de ciia ly
thuyet dgng ca dat ra Neu may nen cd sd tang la Z, qua trinh nhiet khi dgng bien ddi theo
quy luat da bien n, quy luat bao toan khdi lugng cua ddng khi tir tang 1 den tang Z la
1
C
^^•Ul = const (1)
vdi: Cia, c^a - toe do dgc true cua ddng khi qua tang 1 va tang z; O ^- - tham sd tTnh cua mirc
nen iing vdi mgt sy bien ddi ciia tham sd muc nen ciia ddng bam ;T^- Ta khao sat mgt so
trudng hgp:
- Khi vdng quay khdng ddi: Kbi luu lugng khdng khi G , ^^ (giam) sg lam
n ^ - t ( t a n g ) Theo bilu thuc (I) thi — ^ i Tire la Cza^^^^ (giam nhieu) va
C l a
C i a i (giam it) Theo dac tinh cac ting may nen thi d eac ting cudi gdc tan ddng
khi tiln nhap mang giam nhanh ban so vdi sy giam gdc tan tang 1
- Khi n ;i const : N I U n i lam giam luu lugng khong khi ( G ^ ) dan tdi 7t^^ i
va n ^ i T h e o bilu thuc (I) thi — ^ T Tire la Cza^ (giam it) va C^A^ (g'am
C\a
Trang 2456
Nghien cuu khai thdc bd dieu khien Id hu&ng chieu mdy nen dcmg cajugbin phdn luc bans khdns
nhilu).Nlu tang vdng quay ( n T ) lam tang luu lugng khdng khi ( G 2 ^ ) dan tdi
C Tc'i^ t va n^- t Theo bilu thuc (I) thi - ~ i Tue la Cy.ii (giam nhilu) va
C l a Cla ^ (giam it)
Hinh 1: Tam gidc tdc do a tdng Z tru&c vd Hinh 2: Tam gidc ldc do a tdng 1
sau khi giam C) G^^ 'nr&c vd sau khi giam C) G ^
- Khi thay doi che do bay, n= const: (ha do cao hoac tang tdc do bay): Nhiet do ham trude may nen 7, tang len: vdi cdng may nen khdng ddi thi mirc nen giam di
(^^^ i vaU^ iy.CzA (giam it) v a C a i i (giam nhilu) Bao dam ddng chay d
che do tinh toan (hoac gan tinh loan) cua may nen trong cac chl do lam viec khdng tinh toan cua may nen (qua trinh tang giam vdng quay, tdc do bay):
- Khi khdng xoay la ( « , = const), n=const: khi giam luu lugng khdng khi, G ^ i
^^K^ '^'^K^n'' ^^" ^°' ^^ ^°"§ ^'•^" "^^t lung la, gdc tiln nhap vec ta tdc do
tuong ddi VV, ddng khi vao mang la quay giam (^, i) khi tang luu lugng khdng khi, G^2 " ^*^\-2 >G^,2 ^^) dan tdi din ddng tren mat bung la, gdc tiln nhap vec
ta tdc do tuong ddi w, ddng khi vao mang la quay tang ( /?, T )
Do vay xuat hien nhu ciu gid /?, = const Mudn vay cin thay ddi hudng tdc do tuyet
ddi c, bang each xoay la hudng chilu ( a, = var) mgt goc 0
J i e c xoay la hudng chilu mgt gdc 0 bao dam ddng chay d chl dg tinh toan
^K' ^Kfn ^° ^^^ say ra ddng chay khdng tinh toan a ting tilp theo (tham chi chi hinh
thanh che do tinh toan d nhirng thilt dien nhit djnh), song xoay la lam giam ca ban can thuy dgng va tang hieu suat ,; va muc nen ;,; cua may nen Thdng thudng ngudi ta xoay mgt vai tang la tang dau va ting cudi
u,,c,, w,: tdc do quay, tdc do tuyet ddi va tdc dd tuang ddi ddng khi tiln nhap
^^K\n ^ ''^° "'^"^ '^ ^tator d che do tinh toan Cac gia trj dd thay ddi, cd diu ('), khi
^^2^^y^2„-^^'^°'^^^(")'^hic >G y
Trang 3N^iiyen Minh Xudn Pham Nsoe Cdnh Ta Vdn Nhdm 457
U|,C|, w,: tde do quay, toe do tuyet doi va tie do tuong ddi ddng khi tiln nhap
^^K^ u ^ ^^° "^^"S la stator d chl do tinh toan Cac gia trj dd thay ddi, cd diu ('), khi
<^.,2<G 2 V a c d d i u ( " ) k h i G , > C ,
A k ,11 f ; l K' ^^ I,
Mang la
huang chieu
ban dau
« ! = const; /J[ =var
Hinh 3: Tam gid tdc do tru&c khi xoay Id
Mang la hwang chieu
xoay goc u
0\X
= c o n s t ; <2i = var
Hinh 4: Tam gid tdc do khi xoay Id
2 Xay dyng bai toan
- De xac dinh dugc dieu kien lam viec ciia bg xoay la hudng chieu may nen can xac djnh cac tham sd nhiet khi dgng ciia dpng ca va tinh toan dac tinh tdc dg-dg cao cua dgng
ca va cac tham sd ket cau cua dgng co Day la mot bai loan kha phuc tap Trong trudng hgp
cu the nay, dac tinh tdc dg-dg cao xac dinh theo phuang pbap Fedorov cai tien Dd la phuang phap ban thirc nghiem sir dung cac dd thj thdng ke chuan va cac tham sd cu the ciia dgng ca de tinh toan dac tinh tdc dg-dp cao cua dong co Sau dd phan tich tai tac ddng len
ca cau dieu khien (true, vdng ddng bg xoay la)
- Sau khi cd tai tac dgng ta tien hanh kiem ben cho chi tiet quan trgng la true xoayla Gia tri tai dug xac djnh phai cd gia tri Idn nhat trong dai gdc xoay cac la budng chieu
3 Giai quyet cua bai toan
3.1 Tinh todn nhiet khi dimg ddng ca
Tren co sa nguyen tic tinh nhiet khi dgng cua dong co tua bin phan lyc 2 ludng ta xac dinh dugc cac tham sd nhiet khi dong cua dgng co khao sat A l Z (hinh 5)
H
, 1 X 2
5
H 1 X
Hinh 5: Sa dd ddng ca tuabin phdn luc 2 ludng khdo sdt
3.2 Tinh todn dgc tinh tdc dg-dgcao dgng cff tuabin phdn lire 2 ludng
Phuang pbap Nhetraev-Fedorov cai tiln dugc tien banh theo cac budc sau:
Trang 4Nghien ciru khai thdc bd diiu khiin Id hu&ng
458 chieu mdy nen ddns ca tuabin phan hrc hdns khdng
a Xay dyng cac dudng lam viec tren dac tinh cua may nen va tua bin khi bilt chuang trinh dieu khien Tu dd xac dinh quy luat thay ddi cac thdng sd dgng ca theo vdno
quay quy chuan n Dd la:
^'KIA = / , ( " , , C );^Ir.^ = / ' : ( " 2 , J ; 7 l 7 = /3 ( " : , ) ; 7 Ir,4 = A ( « : , )
b d moi chl do bay cho trude (M,, va H) theo T*,, va chuang trinh dilu khiln n xac djnh gia tri n^, (hoac n^^^.) Dya vao quy luat thay doi cac thdng s6 chinh ciia dgng eg theo ri^^ tim cac gia tri n^, q(?L,), J]^, ii\, ll/X ••• taong irng vdi cac diem
lam viec phdi hgp cua may nen va tua bin trong cac dilu kien bay cho trude
c Gia tri he sd bao loan ap suit a thilt bi vao ajBv xac dinh tir dac tinh cua thilt bi vao phu thugc vao sd Mach MH va mat do ddng cua vao dgng co q(/'i )
d Xac dinb cac thdng sd cua dong kbi tai tit ca cac thilt dien dac trung cua dgng ca theo cac dai lugng da tim dugc, tir dd tinh toan P va C, Khi tinh loan cac dac tinh hieu dung cua dgng co cin phai tinh din cac lyc can ngoai cua thilt bi dgng lyc cu thi Trong dieu kien khong du tai lieu vl dac tinh may nen, dac tinh cac phin tu cua dgng
eg de tinh toan cac thdng so thay ddi theo vdng quay qui chuin ta tinh thong qua cac thong
sd tuong doi bieu dien sy phu thugc cac dai lugng tuong ddi TI* ,q(XB)*,r|* theo
"np'^k.o (gd' 'a cac qua he Nhetraev-Fedorov, hinh 6) Ta chgn dudng dac tinh cd ti sd nen 71^ Q bang ti sd nen d chl do tinh toan cua dgng ca cin xay dung dac tinh sau do xac djnh cac gia tri ty le:
TIKTA
^KTA - - ; - ' 3 ( n m c ' ^ K T A , o )
'IKTA,O
MKCA.O q ( > - i ) o
Tir dd ta tim duoc:
^KTA ^ K T A ^ T T , , , , ; r i * , , , = nKTA.O-^KTA ^ ^ K C A = ^ K C A , 0 - ^ K C A
• • *
^ K C A = 'nKCA,0''nKCA • •
Trang 5A''
1.2
1.1
1
0.9
O.S
0.7
0.6
0.5
0.4
0.3
0.2
7T A /•
4
6
i
• —2
y
vW IJ
\///,
y///
V^\
' 1
1
1
1
i
1
qi^-)
0.6 0.7 0.8 0.9 LO 1,1
r]\
i
0.9
0.6 0.7 O.S 0.9 1.0
KKTI^
A
6
S
10
P
7 ^
y//
y//^
/ / f
' / /
/ /
r
r^^
1
1
1
P ^ 1 ! i
X 1 \
V 1
^ 1
1
i i
1 1
1
i
1
1
\
/./ n
0.6 0.7 O.S 0.9 1.0 I.I n
1
1
1 1
^ 1
1 1
1 1
— r r
-~ r T
1 1
1 1 1
1 1 1
• | - r "T ~
1 1 1
1 K l
1 1 1 1 1 1 X
1 1 1 1 1 1 i \
1
1
1 1
J L
1 1
1 i _
I I I !
1 L^ _L
1 1 1
1 J L
1 1 1 1 1 1 1
1
1
~ 1
1
~V~
1
1
1
k 1
t \
1 \
1
Hinh 6: Cdc dd thi Nhetraev-Fedorov
irng vdi tirng chl do bay (vi ^ ^ y^^^^ ^ ^ ^ ^^ ) sau do tiep tue tinh
T,,{\V~VM^-)
cac budc b, c, d nhu trinh biy d tren Luu dd thuat loan xac dinh dac tinh tdc dd-dd cao the
hien tren binh 7
3.3 Xdc dmh do bin phdn tii- kit cdu chiu tdi theo chi do Idm viec cua dgng cff
a Xdc dinh dp lire khi ddng tde dung lin vdng la hu&ng chieu (hinh 8)
- D^ tinh ap lyc khi dgng tac dung len vdng la hudng chieu tang dau may nen cao ap
ta coi vdng la hudng chilu nhu vat the dat trong ddng khi va gia thiet rang gia trj tham so ddng khi chi d bl mat kilm tra vi vay khdng cin di sau vao ban chat cua cac qua trinh xay
ra bin trong thi tich kbi, cua bl mat kilm tra Khdng cin bilt cac dang vat the chay boc khi
cd sy cung c i p (hay thu) nhiet va nang lugng co hoc va nhirng dac tinh khac cua qua Uinh ben trong thi tich khi ap dung phuang trinh dgng lugng Euler ta cd:
P = G.c, -G.c,
rong dd: P- ap lyc khi ddng tac dung len vdng la; G- Luu lugng chat kbi trong I giay qu; ong la; c,, c.- Van tdc chuyin dgng cua chit kbi trude va sau tbilt dien vdng la
Tron
vdn
Trang 6460
Nghiin ciru khai thdc bd diiu khiin Id huang chieu mdy nin ddng ca tuabin phdn luc hdns khdng
N l I A l ' \n I I I I
[ i > l t r s h i o < K l u n r i j ; I X " C h L l > t < > N I j
( ' N l )
t l i n h * ^ I I II U> 1)111.11 I o r , y,TV l i m , ; i l i ^ ' l i n h I r t f i l ^ - l O i
Hinh 7: Liru do thiidl todn xdc dinh ddc tinh tdc dd-dd cao
Chieu phuang trinh Euler theo phuang dgc true dgng ca ta dugc lyc khi dgng thanh
phan dgc true do bien doi dgng lugng gay ra:
P = G.c, - G c
V^^
x >
N
1 F
Hinh 8 Thiet lap phuong trinh Euler
Vdi: Pa- Lyc khi dgng thanh phin dpc true; c,a, c^a- tdc dg dgc true
Luc tTnh do chenh ap cua khi trude va sau la:
Trang 7Nguyen Minh Xudn, Pham Ngoc Canh, Ta Vdn Nhdm 461
Pa =2.7i.r„.h.(p, - p , )
Vdi: Pg - Lyc tTnh do chenh ap p; r,b- ban kinh trung binh ciia la;
b- Chieu cao la; pi, p;- ap suat tTnh trude va sau la:
Luc khi dgng tdng hgp tac dung len vdng ddng bg xoay la budng chieu la:
P = P +P'
a a
Trong qua trinh tinh toan ta cho do cao bay H thay ddi tir 0 km den 12 km, tdc do bay
M thay ddi tir 0 din 0.8, gdc xoay la cp tii' 0*^ din -15'' Toe do ddng kbi c, chinh la tdc do ddng khi cua ra may nen thip ap nhu da tinh loan trong phan tinh nhiet khi ddng va dac tinh tdc dd-do cao Tdc dd c^ xac dinh theo cong thuc:
(m + l).0.0404.P,.F,.sin(90' +(p)
Tra bang bam khi dgng dugc X2
b Xdc dinh irng sudt xodn trin true dieu khiin vdng Id xoay chiiu mdy nen
Md hinh tai the hien tren hinh 9
Sau khi tinh dugc ap lyc khi dong ta tinh md men xoin tac dung len vdng ddng bd xoay la:
M =P.L tavdon
X p
M, t
M,
Hinh 9: Sa do tinh tai tde ddng len vdng diiu khUn la hirdng chieu mdy nen
Vdi Ltaydon la chilu dai tay ddn ndi la hudng chilu vdi vdng ddng bd
Ung suit xoin do M^ gay ra doi vdi true la: T^
-w
w^- la mo men chdng xoan
He so du ben xoan: k =
w = 0 , 2 D ^ , ( 1 - a > 0 , 2 1 0 , 5 \ l - 0 8 > 136,7 mm^ Vdi a = D,,/Dng=8,5/10,5-0.8 Luu dd thuat toan hinh 10
Trang 8462
Nghien eiru khai thdc bd diiu khien Id hu&ng chiiu mdv nen ddng ea tuabin phdn lue hdns khdng
y
^ i B o n r y
XXa.- I I ' t T t I B C T
y
; : L i - o :; ^ B - ' L.^—'J
Hinh 10: Luu dd thudt todn kiem bin chi Hit bd diiu khien Id hu&ng chieu mdy nin
4 Ket qua
Dya theo cac luan diem neu tren, cac budc tinh toan ap dung cho mgt dgng co cu the
la dong ca tuabin phan lyc 2 ludng AL-Z da cho cac kit qua tinh sau day:
4.1 Cdc tham sd nhiet khi ddng ddng cff tua bin phdn lire 2 ludng AI-Z
P ( P a )
T ( K )
L u o n g
1.2 Ddc tinh tdc do dg cao ddng cff tua bin phdn lire 2 ludng
Trang 9I!![^iiyen Minh Xudn Pham Nsoe Canh, Ta Vdn Nhdm 463
0,6 M 0 1
4.3 Tdi tdc ddng len vdng la hu&ng chieu thay ddi theo dgc tinh tdc dg-dg cao
0 0 1 0 2 0 3 0 4 0.5 0 8 0.7 0 8
0 0.1 0 2 0.3 0,4 0.5 0.9 0,7 0.8
500
-Dd thi dp lire tde dung lin vdng la hu&ng chieu
4.4 Kiim bin true diiu khiin xoay Id hu&ng chiiu mdy nen
> I
31
3 J
i ^""^^^i—-^^ _
1 "f '
1 "- -10 n>(i»> -'•'
Biin ddi irng sudt cdt true diiu khiin vd hi sd du bin theo gdc xoay Id mdy nin
Trang 10Nghiin ciru khai thdc bd diiu khiin Id hu&ng
454 chieu mdy nen ddns eo' tuabin phan lue hdns khdng
5 Ket luan
Kit qua 1 va 2 cho cac dudng bieu dien hgp quy luat Sai so so vdi thuyet minh ky
thuat dudi 6% Cac sai so nay do mgt s6 do dac kich thudc, mgt sd tham sd lya chgn va tra
dd thj chuan,
Qua do thj kll qua 3 ta thiy khi do cao cang tang, ap lyc tac dung len vdng la xoay chilu cang giam, ap lyc Idn nhit a do cao H=0 Km Tren do cao H=0 nay, tdc dp M cang tang thi ap lyc cang tang, ap lyc Idn nhat tai M=0.8 Khi cp cang tang (theo chieu am) ap lyc cang tang, Idn nhit taicp = -15" Vay ap lyc kbi dpng Idn nhal tac dung len vdng la BHA khi
\^=Q^ M=0.8, cp = -15" Khi dd mo men xoan M^ va img suat xoan tren true se Idn nhat
Qua kit qua 4: ta thiy a moi do cao va tdc do bay nhat dinh khi gdc xoay la cang tang theo hudng ddng cua vao may nen cao ap thi he sd du ben cua true dieu khien ca cau xoay
la cang giam Vdi each linh loan luang ty ta cung cd the ket luan he so du ben cua cac bg phan khac trong be co hoc nay cung giam
Vdi cac phin tu kll ciu hang khdng he sd du ben k > 1.65 nen ket qua thu dugc la hgp ly Theo thuylt minh ky thuat dgng ca Al-Z ap suat nhien lieu cua xi lanh thuy lyc dieu khiln la p > 10 kg/cm"," dudng kinh trong cua xi lanh Dir= 36,6 mm; dudng kinh ong pitton
D = 26 mm Lyc dieu khien cua xi lanh la:
Pd > 7 ( D ? - D ^ ) p = 5 2 0 N
4 nen neu lay lyc Pji nay de kiem ben ciing thu dugc ket qua nhu tren
Cdng trinh nghien ciiu mgt lan nua cho thay che do lam viec cua may bay anh hudng trye tiep den tai xuat hien tren cac phan tu ket cau ddng ca tuabin kbi hang khdng Day ciing la mgt ly do de cac nha khai thac lya chgn che do lam viec cho phii hgp
Lo'i cam on
Cdng trinh ndy duoc thirc hiin vdi su hd tro' cua Chuang Irinh nghiin ciru ca ban
Tai lieu tham khao
[1] Le Quang Minh, "Sire ben vdt lieu " NXB Dai hoc va giao due chu\cn nghicp nam 1998,
[2] Ngu>'en Minh Xuan Lc Van Mot, "Iv thuyet dgng ca tua bin khi hdng khdng" NXB Trudng
trung cao khdng quan nam 199.3 (tai ban 2007)
[3] Le Van Mot \a cong su "Ket cdu vd do bin dgng ca tua bin khi hdng khdng" NXB Hpc vien
khong quan nam 1998,
[4] Nguyen Minh Xuan ''Vdt lieu hdng khdng" Hoc vicn Phong khong- Khong Quan nam 2004 [5] Nguyen Minh Xuan va cong su, "Khai thdc vd td chirc bao dam ky thudt hdng khdng ngdnh mdy
bay-ddngca" NXB Hoc vicn PK-KQ nam 1999
[6] n,K, KA3Allil>KAH U.J\ THXOHOB, B.T.UiyjIEKHH- "TEOPUU AHBAHHOHHhlX MBIIPATEJIEH" MOKBA TPAHCHOPT - 2000,
[7] B,H JIOKAH MKMAKCyTOBA, B A CTPVHKHH: "TASOBblE TYEIIHbl MBIirATE.nEH nETATUlbHhlXAnnAP.4T0B" MOCKBA MAIIIHHOCTPEHHE - 1999