Bài tập Hình chóp đều Toán 8 I Bài tập trắc nghiệm Bài 1 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh bằng 3cm, chiều cao của hình chóp là h = 2cm Thể tích của hình chóp đã cho là? A 6 (cm3) B[.]
Trang 1Bài tập Hình chóp đều - Toán 8
I Bài tập trắc nghiệm
Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 3cm, chiều
cao của hình chóp là h = 2cm Thể tích của hình chóp đã cho là?
Bài 2: Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AB = 4cm,BC =
5cm Biết thể tích của hình chóp S.ABCD bằng 36( cm3 ) Tính độ dài đường cao của hình chóp?
Trang 2Áp dụng công thức thể tích của hình chóp ta có:
Chọn đáp án C
Bài 3: Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng 4cm,
các mặt bên là tam giác cân có độ dài cạnh bên là 6cm Diện tích xung quanh của hình chóp đã cho là?
Lời giải:
Chu vi của đáy ABCD là 2( 4 + 4 ) = 16( cm )
Gọi d là độ dài trung đoạn của hình chóp
Áp dụng công thức diên tích xung quanh của hình chóp: Sxq = p.d
Chọn đáp án B
Trang 3Bài 4: Cho hình chóp tam giác đều có độ dài cạnh đáy là 4cm, chiều cao của hình
chóp là 6cm Tính thể tích của hình chóp là?
Lời giải:
Chọn đáp án B
Bài 5: Cho hình chóp tam giác đều cạnh 5cm và độ dài trung đoạn là 6cm Tính diện
tích xung quanh của hình chóp?
Trang 4Chọn đáp án C
Bài 6: Cho hình chóp tứ giác đều có các mặt bên là tam giác đều cạnh 4cm Tính
diện tích toàn phần của hình chóp?
Lời giải:
Do mặt bên của hình chóp là tam giác đều cạnh 4cm nên đáy là hình vuông cạnh 4cm
Nửa chu vi đáy là
Các mặt bên là tam giác đều cạnh 4cm nên độ dài trung đoạn là
Diện tích xung quanh là:
Trang 5Chọn đáp án A
Bài 7: Một hình chóp tứ giác đều S.ABCD có độ dài cạnh bên là 13cm và đáy là
hình vuông cạnh 10cm Tính diện tích xung quanh của hình chóp?
Nửa chu vi đáy là:
Gọi M là trung điểm của AB, suy ra:
Áp dụng định lí Pytago vào tam giác vuông SAM có:
SM2 = SA2 – AM2 = 132 – 52 = 144 nên SM = 12cm
Trang 6Diện tích xung quanh của hình chóp là:
Sxq = p SM = 20.12 = 240cm2
Chọn đáp án D
Bài 8: Một hình chóp tứ giác đều S.ABCD có cạnh bên SA = 13cm và độ dài cạnh
đáy là Tính thể tích của hình chóp tứ giác đều
Gọi O là giao điểm của AC và BD
Áp dụng định lí Pytago vào tam giác vuông ABC có:
Áp dụng định lí Pytago vào tam giác vuông SAO có:
SO2 = SA2 - AO2 = 132 - 52 = 144 nên SO = 12cm
Trang 7Gọi độ dài cạnh đáy là a
Do đáy là tam giác đều nên diện tích đáy là:
Chọn đáp án D
Bài 10: Cho hình chóp tứ giác đều có thể tích là 125cm3, chiều cao của hình chóp là 15cm Tính chu vi đáy?
Trang 8II Bài tập tự luận có lời giải
Bài 1: Tính diện tích xung quanh của hình chóp cụt tứ giác đều có các cạnh đáy bằng
10cm và 15cm, chiều cao của mặt bên bằng 12cm
Lời giải
Trang 9Mặt bên hình chóp cụt tứ giác đều là hình thang cân nên diện tích một mặt bên
bằng:
Hình chóp cụt tứ giác đều có 4 mặt bên bằng nhau nên diện tích xung quanh bằng 150.4 = 600 (cm2)
Bài 2 Cho hình chóp tam giác đều S.ABC có các mặt là các tam giác đều Gọi SH là
đường cao của hình chóp,
Lời giải
Trang 10Gọi M là giao điểm của CH và AB ta có CM AB và AM = BM
Vì H là trọng tâm ΔABC nên:
Đặt AB = BC = x, ta có BC2 - MB2 = CM2 (định lý Pytago cho ΔMBC) nên
Suy ra x = 6 Vậy BA = 6cm
Bài 3 Cho hình chóp tam giác đều S.ABC có các mặt là các tam giác đều Gọi SH là
đường cao của hình chóp,
Lời giải
Gọi M là giao điểm của CH và AB ta có CM ⊥ AB và AM = BM Vì H là trọng tâm
ΔABC nên
Trang 11Đặt AB = BC = x, ta có BC2 - MB2 = CM2 (định lý Pytago cho ΔMBC) nên
Vậy các cạnh của hình chóp có độ dài là 9cm
Đáp án cần chọn là: A
2 Tính diện tích xung quanh hình chóp (làm tròn đến một chữ số thập phân)
Lời giải
Xét tam giác SAB và CAB là hai tam giác đều có cạnh bằng nhau nên SM = CM
Bài 4 Tính thể tích của hình chóp tam giác đều có tất cả các cạnh đều bằng 6cm (làm
tròn đến chữ số thập phân thứ hai)
Lời giải
Trang 12Chóp tam giác đều S.ABC có SH ⊥ (ABC) nên H là trọng tâm tam giác ABC và D
là trung điểm BC
Áp dụng định lý Pytago cho tam giác ABD vuông tại D ta có
Vì H là trọng tâm tam giác ABC ⇒
Áp dụng định lý Pytago cho tam giác ASH vuông tại H ta được
Trang 13Bài 5: Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng 6cm Thể tích hình
chóp gần nhất với số nào dưới đây?
Lời giải
Diện tích đáy: SABCD = 62 = 36(cm2)
Xét tam giác ABC có: AC2 = AB2 + BC2 = 62 + 62 = 72
⇒ AC ≈ 8,5 ⇒ AO = AC = 4,25
Tam giác SOA vuông tại O có: SA2 = SO2 + OA2
⇔ 62 = SO2 + 4,252 ⇔ SO = 4,25
Trang 14Thể tích hình chóp:
Bài 6: Thực hiện các bước vẽ hình chóp đều theo chiều mũi tên đã chỉ ra trên hình
128
Lời giải
Bài 7 Hình 129 là một cái lều ở trại hè của học sinh kèm theo các kích thước
a) Thể tích không khí bên trong lều là bao nhiêu?
b) Xác định số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp, biết
Trang 16Lời giải:
Trang 17Bài 9 S.MNOPQR là một hình chóp lục giác đều (h.132) Bán kính đường tròn ngoại
tiếp đáy (đường tròn tâm H, đi qua sáu đỉnh của đáy) HM = 12cm (h.133), chiều cao
SH = 35cm Hãy tính:
a) Diện tích đáy và thể tích của hình chóp
Lời giải:
a) Tam giác HMN là tam giác đều Đường cao là :
Diện tích đáy của hình chóp lục giác đều chính là 6 lần diện tích của tam giác đều HMN Nên:
Thể tích của hình chóp:
Trang 18b) Trong tam giác vuông SMH có:
Đường cao của mỗi mặt bên là:
Diện tích xung quanh của hình chóp là:
Diện tích toàn phần:
III Bài tập vận dụng
Bài 1 Trong các miếng bìa ở hình 134, miếng nào khi gấp và dán lại thì được một hình chóp đều?
Trang 19Bài 2 Tính thể tích của hình chóp đều, hình chóp cụt đều sau đây (h.147 và h.148)
Bài 3 Tính diện tích toàn phần của:
Bài 4 Tính diện tích xung quanh của các hình chóp tứ giác đều sau đây (h.135):
Trang 20a) Tính thể tích của hình chóp đều (h.136)
b) Tính diện tích xung quanh của hình chóp cụt đều (h.137)
(Hướng dẫn: Diện tích cần tính bằng tổng diện tích các mặt xung quanh Các mặt
xung quanh là những hình thang cân với cùng chiều cao, các cạnh đáy tương ứng
bằng nhau, các cạnh bên bằng nhau)
Bài 5 Hình 129 là một cái lều ở trại hè của học sinh kèm theo các kích thước
a) Thể tích không khí bên trong lều là bao nhiêu?
b) Xác định số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp,
biết
Trang 21Bài 6 Tính thể tích của mỗi hình chóp đều dưới đây (h.130, h.131)
Bài 7 S.MNOPQR là một hình chóp lục giác đều (h.132) Bán kính đường tròn ngoại
tiếp đáy (đường tròn tâm H, đi qua sáu đỉnh của đáy) HM = 12cm (h.133), chiều cao
SH = 35cm Hãy tính:
Trang 22Bài 8 Tính diện tích xung quanh của các hình chóp tứ giác đều sau đây (h.135)
a) Tính thể tích của hình chóp đều (h.136)
b) Tính diện tích xung quanh của hình chóp cụt đều (h.137)
(Hướng dẫn: Diện tích cần tính bằng tổng diện tích các mặt xung quanh Các mặt
xung quanh là những hình thang cân với cùng chiều cao, các cạnh đáy tương ứng bằng nhau, các cạnh bên bằng nhau)
Trang 23Bài 9: Hình 129 là một cái lều ở trại hè của học sinh kèm theo các kích thước
a) Thể tích không khí bên trong lều là bao nhiêu?
b) Xác định số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp, biết
Bài 10 Tính thể tích của mỗi hình chóp đều dưới đây (h.130, h.131)