Bài tập Những hằng đẳng thức đáng nhớ I Bài tập trắc nghiệm Bài 1 Điền vào chỗ trống A = (12x y )2 = 14x2 + y2 A 2xy B xy C 2xy D 12 xy Lời giải Áp dụng hằng đẳng thức (a b)2 = a2 2ab + b2 Khi đó ta c[.]
Trang 1Bài tập Những hằng đẳng thức đáng nhớ
I Bài tập trắc nghiệm
Bài 1: Điền vào chỗ trống: A = (12x - y )2 = 14x2 - + y2
A 2xy
B xy
C - 2xy
D 12 xy
Lời giải:
Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2
Khi đó ta có A = ( 12x - y )2 = 14x2 - 2.12x.y + y2 = 14x2 - xy + y2
Suy ra chỗ trống cần điền là xy
Chọn đáp án B
Bài 2: Điều vào chỗ trống: = ( 2x - 1 )( 4x2 + 2x + 1 )
A 1 - 8x3
B 1 - 4x3
C x3 - 8
D 8x3 - 1
Lời giải:
Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )
Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 )
= ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ]
= ( 2x )3 - 1 = 8x3 - 1
Suy ra chỗ trống cần điền là 8x3 - 1
Chọn đáp án D
Bài 3: Tính giá trị của biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1
Trang 2A 1
B 8
C 27
D -1
Lời giải:
Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3 Khi đó ta có:
A = 8x3 + 12x2y + 6xy2 + y3
= ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3
= ( 2x + y )3
Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27
Chọn đáp án C
Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102
A 252
B 152
C 452
D 202
Lời giải:
Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2
Khi đó A = ( 35 - 10 )2 = 252
Chọn đáp án A
Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?
A x = 1
B x = - 1
Trang 3C x = 2
D x = - 2
Lời giải:
Ta có 2x2 - 4x + 2 = 0
⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2
Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0
⇔ x - 1 = 0
⇔ x = 1
Chọn đáp án A
Bài 6:
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
Ta được:
Chọn đáp án A
Bài 7: Điền vào chỗ chấm:
Trang 4Lời giải:
Chọn đáp án C
Bài 8: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y) (x2 – 2xy + y2)
A 2x3
B -16y3
C 16y3
D –2x3
Lời giải:
Áp dụng hằng đẳng thức:
a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:
A = (x – 2y) (x2 + 2xy + y2) - (x + 2y) (x2 – 2xy + y2)
A = x3 – (2y)3 - [x3 + (2y)3]
A = x3 – 8y3 – x3 – 8y3 = -16y3
Chọn đáp án B
Bài 9: Tìm x biết x2 – 16 + x(x – 4) = 0
Trang 5A x = 2 hoặc x = - 4
B x = 2 hoặc x = 4
C x = -2 hoặc x = - 4
D x = -2 hoặc x = 4
Lời giải:
Ta có: x2 – 16 + x(x – 4) = 0
⇔ (x + 4) (x - 4) + x.(x – 4) = 0
⇔ (x + 4 + x).(x - 4) = 0
⇔ (2x + 4) (x - 4) = 0
⇔ 2x + 4 = 0 hoặc x – 4 = 0
* Nếu 2x + 4 = 0 thì x = -2
* Nếu x – 4 =0 thì x = 4
Vậy x = -2 hoặc x = 4
Chọn đáp án D
Bài 10: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
A 2x2 + 4xy
B – 8y2 + 4xy
C - 8y2
D – 6y2 + 2xy
Lời giải:
Ta có: A = (x + 2y ) (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
A = -8y2 + 4xy
Chọn đáp án B
Trang 6Bài 11: Chọn câu đúng
A (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Lời giải:
Ta có:
(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên
A sai
(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên
B sai
(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên
D sai
(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng
Đáp án cần chọn là: C
Bài 12: Chọn câu đúng
A 4 – (a + b)2 = (2 + a + b)(2 – a + b)
B 4 – (a + b)2 = (4 + a + b)(4 – a – b)
C 4 – (a + b)2 = (2 + a – b)(2 – a + b)
D 4 – (a + b)2 = (2 + a + b)(2 – a – b)
Lời giải
Ta có 4 – (a + b)2 = 22 – (a + b)2
= (2 + a + b)[2 – (a + b)]
= (2 + a + b)(2 – a – b)
Đáp án cần chọn là: D
Bài 13: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được
Trang 7A -15x + 1
B 1
C 15x + 1
D – 1
Lời giải: Ta có
A = (3x – 1)2 – 9x(x + 1)
= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)
= 9x2 – 6x + 1 – 9x2 – 9x
= -15x + 1
Đáp án cần chọn là: A
Bài 14: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được:
A 342
B 243
C 324
D -324
Lời giải
Ta có
A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)
= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)
= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)
= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144
= (5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)
= 324
Đáp án cần chọn là: C
Bài 15: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được
Trang 8A 0
B 1
C 19
D – 19
Lời giải
B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)
= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)
= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a
= - 19
Đáp án cần chọn là: D
Bài 16: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1) Chọn câu đúng.
A B < 12
B B > 13
C 12 < B< 14
D 11 < B < 13
Lời giải
B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1)
= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)
= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12
Đáp án cần chọn là: D
giữa C và D
A D = 14C + 1
B D = 14C
Trang 9C D = 14C – 1
D D = 14C – 2
Lời giải
Ta có:
Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)
Đáp án cần chọn là: A
Bài 18: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)
Tìm mối quan hệ giữa M và N
A 2N – M = 60
B 2M – N = 60
C M> 0, N < 0
D M > 0, N > 0
Trang 10Lời giải
Ta có
M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12
= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x
= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x
= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8
= 13
N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)
= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x
= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x
= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36
= -34
Suy ra M = 13, N = -34 ⇔ 2M – N = 60
Đáp án cần chọn là: B
Bài 19: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A 0
B 1
C 2
D 3
Lời giải
Trang 11Vậy có hai giá trị của x thỏa mãn yêu cầu
Đáp án cần chọn là: C
Bài 20: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A 0
B 1
C 2
D 3
Lời giải
Ta có:
Vậy có một giá trị của x thỏa mãn yêu cầu
Đáp án cần chọn là: B
II Bài tập tự luận
Trang 12Bài 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
Lời giải:
Bài 2: Tính giá trị của biểu thức:
Lời giải:
Trang 13Bài 3: Tính:
Lời giải:
Bài 4
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu: a) x2 + 2x + 1
b) 9x2 + y2 + 6xy;
c) 25a2 + 4b2 – 20ab;
d) x2 – x + 14
Đáp án và hướng dẫn giải:
Trang 14a) x2 + 2x + 1 = x2+ 2.x.1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2.3 x.y + y.2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2.5a.2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a + (5a)2 = (2b – 5a)2
d) x2 – x + 14
= x2 – 2.x.12+ (12)2
=(x - 12)2
Hoặc x2 – x + 14
= 14- x + x2 =(12)2 – 2.12 x + x2 = (12 - x)2
Bài 5
Chứng minh rằng:
(10a + 5)2 = 100a (a + 1) + 25
Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5
Áp dụng để tính: 252, 352, 652, 752
Đáp án và hướng dẫn giải:
Ta có: (10a + 5)2 = (10a)2 + 2.10a.5 + 52
= 100a(a + 1) + 25
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5
và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải
Trang 15Áp dụng;
Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625
Bài 6
Hãy tìm cách giúp bạn An khôi phục lại những hằng đẳng thức bị mực làm nhòe đi một số chỗ:
a) x2 + 6xy + … = (… + 3y)2;
Hãy nêu một số đề bài tương tự
Đáp án và hướng dẫn giải:
= x2 + 2x 3y + (3y)2 = (x + 3y)2
Vậy: x2 + 6xy +9y2 = (x + 3y)2
x2 – 2x 5y + (5y)2 = (x – 5y)2
Vậy: x2 – 10xy + 25y2 = (x – 5y)2
Bài 7:
Tính diện tích phần hình còn lại mà không cần đo
Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b) Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?
Đáp án và hướng dẫn giải bài:
Diện tích của miếng tôn phải cắt là (a – b)2
Trang 16Phần diện tích còn lại là (a + b)2 – (a – b)2.
Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt
Bài 8:
Nhận xét sự đúng, sai của kết quả sau:
x2 + 2xy + 4y2 = (x + 2y)2
Đáp án và hướng dẫn giải:
Nhận xét sự đúng, sai:
Ta có: (x + 2y)2 = x2 + 2 x 2y + 4y2
= x2 + 4xy + 4y2
Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai
Bài 9:
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu: a) 9x2 – 6x + 1;
b) (2x + 3y)2 + 2.(2x + 3y) + 1
Hãy nêu một đề bài tương tự
Đáp án và hướng dẫn giải:
a) 9x2 – 6x + 1 = (3x)2 – 2 3x 1 + 12 = (3x – 1)2
Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 (2x + 3y) 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự Chẳng hạn:
Trang 171 + 2(x + 2y) + (x + 2y)2
16x2 y4 – 8xy2 +1
Bài 10
Tính nhanh:
a) 1012; b) 1992; c) 47.53
Đáp án và hướng dẫn giải:
a) 1012 = (100 + 1)2 = 1002 + 2 100 + 1 = 10201
b) 1992= (200 – 1)2 = 2002 – 2 200 + 1 = 39601
c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491
III Bài tập vận dụng
Bài 1:
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab;
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12
b) Tính (a + b)2, biết a – b = 20 và a.b = 3
Bài 2:
a) x = 5;
b) x = 1/7
Bài 3:
Tính:
a) (a + b + c)2; b) (a + b – c)2;
Trang 18c) (a – b – c)2
Bài 4. Áp dụng hằng đẳng thức để tính nhanh
a) = b) 29,9 30,1 =
Bài 5. Điền vào ô trống để trở thành hằng đẳng thức:
Ví dụ : 36 + 24x + ……… =
Đáp án : 36 + 24x + 4 =
a) + 20x + …… =
b) 16 + 24x + …… =
c) – ……… + 49 =
d) …………- 42xy + 49 =
e) + ……… + 4 =
f) 4 +………… + 1 =
g) (2a +3b)( – + ) = 8 + 27
h) (5x – )( + 20xy + ) = 125 – 64
Bài 6. Viết mỗi biểu thức sau dưới dạng tổng của hai bình phương
Bài 7. Tìm giá trị lớn nhất của biểu thức:
a) C = 4x – + 3
Tìm giá trị nhỏ nhất của biểu thức:
Trang 19a) A = – 6x + 11
b) B = – 4x + – 8y + 6
Bài 8. Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến
D = – 8x +19
Chứng minh các biểu thức sau luôn âm với mọi giá trị của biến
E = – + 2x – 7
Bài 9. Khai triển hằng đẳng thức dạng và
+
Bài 10. Khai triển hằng đẳng thức dạng và