Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis I O E n i a YQ1 R a A R R 1 A A K C P A A I P h 2[.]
Trang 1Available online at www.sciencedirect.com
jo u rn al h o m e p a g e :w w w i m r - j o u r n a l c o m
Evaluation of cytotoxic activity of platinum
nanoparticles against normal and cancer cells and
its anticancer potential through induction of
apoptosis
Yogesh Bendale∗, Vineeta Bendale, Saili Paul
Q1
Research and Development Section, Rasayani Biologics Private Limited, Pune 411030, India
Article history:
Received25March2016
Receivedinrevisedform
10January2017
Accepted12January2017
Availableonlinexxx
Keywords:
Cytotoxicity
Platinumnanoparticles
Anti-cancerpotential
Apoptosis
In vitro
Background:Plantmediatedgreensynthesisofnanoparticlesisaneco-friendlyand effica-ciousapproachwhichfindsimmenseapplicationinthefieldofmedicine.Thisstudyaimed
toevaluatethecytotoxicityofplatinumnanoparticles(ptNPs)synthesizedthroughgreen technologyagainstnormalanddifferentcancercelllines
Methods:Platinumnanoparticlesweresynthesizedbygreentechnologyandcharacterized earlier.Inthisstudyweexaminedthecytotoxiceffectofplatinumnanoparticles(ptNPs)
onhumanlungadenocarcinoma(A549),ovarianteratocarcinoma(PA-1),pancreaticcancer (Mia-Pa-Ca-2)cellsandnormalperipheralbloodmononucleocyte(PBMC)cellsand evalu-ateanticancerpotentialthroughinductionofapoptosisonPA-1cellsifany.Cytotoxicity wasevaluatedusingMTTassay,trypanbluedyeexclusionassayandanticancerpotential assessedthroughclonogenicassay,apoptosisassay,cellcycleanalysis
Results:WefoundthatptNPsexertedcytotoxiceffectoncancercelllines,whereasno cyto-toxiceffectwasobservedathighestdoseonnormalcells.TheresultsshowedthatptNPs hadpotentanticanceractivitiesagainstPA-1celllineviainductionofapoptosisandcell cyclearrest
Conclusion:Overall,thesefindingshaveprovedthatbiosynthesizedptNPscouldbepotent anti-ovariancancerdrugs.Furtherstudiesarerequiredtoelucidatethemolecular mecha-nismofptNPsinducedanti-tumoreffectin vivo.
©2017KoreaInstituteofOrientalMedicine.PublishedbyElsevier.Thisisanopenaccess
articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗ Corresponding author.ResearchandDevelopmentSection,CellandMolecularBiologyLaboratory,RasayaniBiologicsPrivateLimited, Pune411030,India.Fax:+912024530995
E-mailaddresses:dr.bendale@gmail.com(Y.Bendale),vineeta.bendale@gmail.com(V.Bendale),sailipaul@rediffmail.com(S.Paul) http://dx.doi.org/10.1016/j.imr.2017.01.006
2213-4220/©2017KoreaInstituteofOrientalMedicine.PublishedbyElsevier.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Trang 2Introduction
Inrecentyears,theinterestinthesynthesisandproperties
ofmetalnanoparticleshasbeenincreasingbecauseoftheir
uniquepropertiesandpromisingapplicationsascatalysts,
fer-rofluids,andsemiconductors.1,2Nanotechnologyisthemost
promisingfieldforgeneratingnewapplicationsinmedicine
However,onlyfewnano-productsarecurrentlyinusefor
med-icalpurposes.3
Formanyyears,platinum-basedmoleculeshavereceived
considerable attention because of their electro-catalytic
properties.4,5Forinstance,platinum-basedtherapeuticdrugs,
notably cisplatin and carboplatin, have been exploited in
chemotherapy to kill cancer cells.5 However, these drugs
are notselectivefor cancercells,because normalcells are
alsoaffected,leadingtosubstantialdose-limitingacuteand
chronictoxicities.Sincetoxicsideeffects(particularly
nephro-toxicity and gastrointestinal) and frequentdevelopment of
drugresistancerepresentthemajorchallenges inthe
clini-caloutcomeofthesepatients,itwasconceivabletosearchfor
cisplatinanalogsorothermetalcomplexesabletoofferamore
acceptableleveloftoxicityandimprovedantitumoractivity.6,7
Nanoparticlesaremakingsignificantcontributionstothe
developmentofnewapproachesofdrugdeliveryincancerand
canprovideaplatformforcombinedtherapeuticswith
subse-quentmonitoringofresponse.8Increasingevidencesuggests
thatthe specialphysicochemicalpropertiesof
nanomateri-als pose potential risks to human health.9 Therefore it is
necessarytounderstandhowcells respondto
nanomateri-alsand through what mechanisms Green nanotechnology
is generating attention of researchers toward eco-friendly
biosynthesisofnanoparticles.Withaviewtoward
develop-ingnano-therapeutics,wehaveperformedexperimentsusing
eco-friendlyplatinumnanoparticles.Platinumnanoparticles
weresynthesizedbygreentechnology,characterizeditszeta
potentialandsizebydynamiclightscattering(DLS)aswellas
scanningelectronmicroscopy(SEM)earlier.10
Thepresentstudyisthecontinuationoftheearlierwork
andiscarriedouttoassessthecytotoxicityofptNPson
nor-malandthreedifferenttypesofcancercells.Basedonhighest
cytotoxicityresults,anticanceractivitiesofplatinum
nanopar-ticlesagainstovarianterotocarcinomacellswereevaluated
Methods
Cell culturemedium reagents were purchased from
Hime-dia laboratories Fetal bovine serum (FBS) was purchased
from Invitrogen (US) An Annexin V-FITC apoptosis
detec-tion kit was purchased from BD-Bioscience (Catalogue no
556547).Cisplatin,usedasapositivecontrolwaspurchased
fromCipla(India).Platinumnanoparticlesweresynthesized
throughgreentechnologyandcharacterizedbyparticlesize,
zetapotentialandsurfacemorphology.10TherecoveredptNP
samplewasusedforcytotoxicityandanticancerstudies
Cell culture and exposure of drug
Ahumancancercells,A549,PA-1,Mia-Pa-Ca-2wereobtained
from National CenterforCell Science(NCCS), sub-cultured
and thenusedtodeterminecell cytotoxicityafterexposure
tothe drug Thecellswere culturedin minimumessential medium(MEM),Dulbecco’sModifiedEagle’smedium(DMEM) supplemented with 10% FBS at 5% CO2 and 37◦C.At 85% confluence,thecellswereharvestedusing0.25%trypsinand seededin25cm2flasks,96wellplates,6-wellplates,according
totheexperimentbeingperformed.Thecellswereallowedto 70%attachtothesurfacepriortotreatment.Astocksolutionof ptNPs10mg/mlwasmadeinvehicleanddilutedto appropri-ateconcentrationsfortreatment.Suspensionswerevortexes and aspirated10timesbeforetreatment.Cellstreatedwith vehiclecontrolweretakenascontrol
MTT cell proliferation assay
(3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay measures the cell proliferationrateandconversely,thereductionincell viabil-itywhenmetaboliceventsleadtoapoptosisornecrosis.The yellow compound MTT is reduced by mitochondrial dehy-drogenasestothewaterinsolubleblueformazancompound, dependingontheviabilityofthecells.11
A549,PA-1,Mia-Pa-Ca-2cells(2×104cells/ml)wereseeded
in96-wellplatesandexposedtodifferentconcentrations(50,
100 and200g/ml)ofptNPsand 10g/mlofcisplatinfora periodof48hours.Afterthetreatmentperiod,thecellswere allowedtoreactwithMTTforaperiodof3–4hoursindark
at 37◦C At the end of the incubation period, dark purple formazancrystalswereformed.Thesecrystalswere solubi-lizedwithanorganicsolvent(e.g.isopropanol)andabsorbance
at595nmwasmeasuredspectrophotometrically.The experi-mentwasrepeatedatleastthreetimes.Cisplatinwasusedas positivecontrolforthisexperiment.Todeterminethecell via-bility,wecalculatedpercentviabilityas%viability=[(Optical density{OD}oftreatedcell−ODofblank)/(ODofvehicle con-trol−ODofblank)×100]
Preparation of PBMC and assessment of cytotoxicity using trypan blue assay
Peripheralbloodmononuclearcells(PBMC)wereisolatedfrom healthy humanvolunteerbyFicoll-Paque(Histopaque1077, Himedialaboratories)densitygradientcentrifugationasper standardprocedure.12PBMC(2×105cells/well)werecultured
incomplete RPMI-1640mediaas usualand incubatedwith ptNPs(200g/ml),cisplatin(10g/ml)toevaluatecytotoxicity for48hoursusingtrypanblueexclusionassay.Thismethods yieldsapproximatelymorethan95%viablePBMC
Clonogenic survival assay
Clonogenicassayorcolonyformationassayisanin vitrocell survivalassaybasedontheabilityofasinglecelltogrowintoa colony.Thecolonyisdefinedtoconsistofatleast50cells.The assayessentiallytestseverycellinthepopulationforits abil-itytoundergo“unlimited”division.13Clonogenicassayisthe methodofchoicetodeterminecellreproductivedeathafter treatmentwithptNPs.Afterharvestingwith0.05%trypsin,200 (dependingonthetreatment)cellswereplated24hoursbefore treatmentinMEMat37◦C.Culturedcellsweretreatedwith
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78 79 80 81 82 83 84 85 86 87 88 89
90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113
114 115 116 117 118 119 120 121
122
123 124 125 126 127 128 129 130 131
Trang 3thetreatment,cellswereincubatedin5%CO2atmosphereat
37◦Cfor14daystoallowcolonyformation.Colonieswerefixed
withmethanolandstainedwith1%crystalviolet.Coloniesof
morethan50cellscountedandtheplatingefficiency(PE)was
calculated
Observation of morphological changes with Acridine
orange/Ethidium bromide (AO/EB) staining
Cellswereseededataconcentrationof2×105cell/mlin6-well
tissuecultureplates.Followingincubation,themediumwas
removedandreplacedwithphosphate-buffersaline(PBS)and
supplementedwithptNPs(100and200g/ml).Afterthe
treat-mentperiod,monolayercellswerestainedwithAO/EBstain
(1mg/ml).14Afterstaining,thecellswerevisualized
immedi-atelyunderthefluorescencemicroscope(Axiovert,CarlZeiss)
at20×magnification
Annexin V and propidium iodide (PI) staining for
apoptosis assay
Apoptosiswasassessedviaflowcytometricanalysisofcontrol
andptNPstreatedcellsthatwerestainedwithFITC-Annexin
Vand PIusingthe Annexin V-FITCapoptosis detection kit
according to the manufacturer’s protocol (BD Bioscience)
PA-1 cells were seeded onto 6 well plates and allowed to
adhere.Aftercellsbecome70%ofconfluent,cellweretreated
with200g/ml ofptNPsfor 48hours at37◦C and 5%CO2
Subsequently,the cells were collected,washed in PBS and
resuspendedin500lof1XAnnexin-bindingbuffer.Cellswere
thenincubatedatroomtemperaturewithAnnexinV-FITCand
PIstainintheabsenceoflight.Followingthe10minute
incuba-tion,sampleswereimmediatelyanalyzedviaflowcytometry
AnnexinVstainingwasdetectedasgreenfluorescenceandPI
asredfluorescence
Cell-cycle analysis
Cellcycleperturbationswereassessedusingflowcytometryto
measuretheproportionofcellsindifferentphases.Cellcycle
perturbationsinducedbyptNPswereanalyzedusing
propid-ium iodideDNA staining.14 Approximately 2×105 cells per
wellwereplatedinsix-wellplatesandallowedtoattach.After
cellsbecomes70%confluent,treatedwith100and200g/ml
ptNPsfor48hoursandthencollectedandfixedinice-cold70%
ethanolfor4hoursandstoredat4◦CuntilPIstaining
Ethanol-suspendedcellswerethencentrifugedat1000rpmfor5min
andwashedtwiceinPBStoremoveresidualethanol.Pellets
weresuspendedin1mlofPI/RNaseAreagentandincubated
at37◦C for30min Cell cycle profiles were obtainedusing
aBDFACScan Cell flowCytometer(BectonDickinsonUSA)
Debrisandaggregatesweregatedoutduringdataacquisition
and5000-10,000eventswerecollectedfromeachsample.Data
wereanalyzedwiththeCellQuestProsoftware
0 20 40 60 80 100 120
VC ptNPs 50 ptNPs 100 ptNPs 200 Cisplatin 10
Dose (µg/ml)
567A5 PA-1 Mia-Pa-Ca-2
***
***
*
**
Fig 1 – Effect of ptNPs on viability of lung adenocarcinoma (A549), ovarian teratocarcinoma (PA-1), pancreatic cancer (Mia-Pa-Ca-2) cells A Cells were treated with vehicle, different concentrations of ptNPs and positive control (10 g/ml cisplatin) for 48 hours Cell viability was analyzed using the MTT assay Data represented as mean ± SE of three independent experiments made in three replicates.
*P < 0.05, **P < 0.01, ***P < 0.001 versus vehicle control (VC) group.
Statistical analysis
Statistical comparisons were made using Student’s t-test Resultswereexpressedasmeans±standarderrors(SEs) P-valuesoflessthan0.05wereconsideredsignificant
Results
Cytotoxicity of ptNPs on cancer cells
Differentcancercelllineswereusedtoscreenforthein vitro
cytotoxicactivityofptNPs.A549,PA-1,Mia-Pa-Ca-2cellswere incubatedwithdifferentconcentrationofptNPsfor48hours CellviabilitywasdeterminedbyMTTassay.Weobservedthat ptNPssuppressedgrowth ofcancercells(Fig.1)andgrowth inhibitionwere28.52-34.85%inA549cells,33.16-46.06%in
PA-1cellsand11.12-41.18%inMia-Pa-Ca-2cellsaftertreatmentof ptNPs(50–200g/ml).TheresultsshowninFig.1indicatedthat ptNPs(200g/ml)causedasignificantdecreaseincell viabil-ityofA549(**P<0.01),PA-1(***P<0.001),Mia-Pa-Ca-2(*P<0.05) respectivelyascomparedtocontrol.PtNPsshowedthehighest growthinhibitoryeffectsonPA-1cells.AspresentedinFig.1, somecytotoxiceffectwasalreadyobservedat50g/mldose
ofptNPswhereasmaximaleffectwasobtainedata concen-trationof200g/mlinPA-1.Basedonthesedata,thepresent studyfocusedonPA-1cellsforsubsequenttests
Cytotoxicity of ptNPs on normal cells
ToexaminethecytotoxiceffectoftheptNPsagainstnormal PBMCcells,trypanbluedyeexclusionassaywasperformed PBMC cells were treated with highest dose (200g/ml) of the ptNPsfor 48hours No significant cytotoxic effect was observedinthe normalPBMCatthehighestconcentration (200g/ml) (Fig 2) of ptNPs that significantly affected the
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182 183 184
185
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
202
203 204 205 206 207 208
Trang 40
20
40
60
80
100
120
Control ptNPs (200µg/ml) Cisplatin (10µg/ml)
**
Fig 2 – Cytotoxic effect of ptNPs (200 g/ml) and cisplatin (10 g/ml) on normal PBMC cells Data represented as mean ± SE
of three independent experiments **P < 0.01 versus control group.
cancercellsFig.1,suggestingthattheeffectoftheptNPswas
selectiveforcancercells
Clonogenic survival assay
The clonogenic assay showed the effect of ptNPs on the
colony-formingcapacityofexponentiallygrowingPA-1cells
Weperformedaclonogenicassayforconfirmingthegrowth
inhibitionresultsofptNPs.Platinumnanoparticlestreatment
enhancescelldeathandalsoinhibitscolonyformation
capa-bilityinthePA-1cellpopulationinaconcentrationdependent
manner.Aftertreatmentswithdifferentconcentrations(50,
100,200g/ml),theplatingefficiencyofPA-1cellsdeclines,as
evidencedbythereductioninthenumberofcoloniesformed
(Fig.3B-D).ExposureofptNPs(50,100and200g/ml)showsa
declineincolonysurvivalandplatingefficiencywasfoundto
be36,31and11respectively(Fig.3F).Thisresultindicatesthat ptNPsat200g/mlsignificantly(p<0.05)inhibit thecolony formationcapabilitiesofPA-1cells
Morphological changes using AO/EB staining
Apoptosiswasalsoconfirmedbyexaminingthenuclear mor-phology by AO/EB staining As shown in Fig 4A, control PA-1cellswerestainedwithuniformgreenfluorescenceand
no apoptotic features were observed Following treatment
of PA-1 cells withptNPsfor 48hours, obvious morphologi-calchangesandapoptoticcellswithchromatincondensation were observed (Fig 4B-C) The results suggest that ptNPs induced PA-1 cell apoptosis Cells stained green represent
Fig 3 – Effect of platinum nanoparticles on colony forming capacity or clonogenic survival of exponentially growing PA-1
cells studied by a clonogenic assay PA-1 cells were treated with ptNPs (50, 100, 200 g/ml) and cisplatin (10 g/ml), allowed
to form colonies in fresh medium for 14 days A = Control; B = ptNPs (50 g/ml); C = ptNPs (100 g/ml); D = ptNPs (200 g/ml);
E = Cisplatin (10 g/ml) F: Representative histogram showing percentage of platting efficiency in PA-1 cells Data are
expressed as mean ± SE (n = 3) *P < 0.05, ***P < 0.001 versus control group.
209
210
211
212
213
214
215
216
217
218
219
220
221
222 223 224 225
226
227 228 229 230 231 232 233 234
Trang 5Fig 4 – PA-1 cells were stained by AO/EB and observed under fluorescence microscope PA-1 cells were treated with (A)
vehicle control, (B) 100 g/ml and (C) 200 g/ml of ptNPs for 48 hours L indicates live cells, EA indicates early apoptotic cells and LA indicates late apoptotic cells.
viablecells,whereasyellowstainingrepresentsearly
apop-totic cells and reddish or orange staining represents late
apoptoticcells
Effect of ptNPs on apoptosis in PA-1
Apoptosis, autophagy and necrosis are the major types of
celldeath.15 To determinethepercentageofapoptotic and
necrotic cells, the cells were treatedwith 200g/ml ptNPs
for48hoursandstained withAnnexinVandPIusingflow
cytometry.Here,wefoundthatthatptNPsiscapableof induc-ingapoptosisinPA-1cells.Theflowcytometryanalysisresults showedthattherateofapoptosiswas8%inthecellstreated with200g/mlofptNPsafter48hours(Fig.5
Cell-cycle analysis
Cell flow cytometry was used to determine the effect of ptNPs on the cell cycle progression.A significant increase
inthe percentageofcells insub-G1phasewasfoundafter
Fig 5 – Apoptosis induced by ptNPs in PA-1 cells PA-1 cells were treated with (A) vehicle control and (B) 200 g/ml of ptNPs for 48 hours Then cells were stained with FITC-conjugated Annexin V and PI for flow cytometric analysis The flow
cytometry profile represents Annexin V-FITC staining inxaxis and PI inyaxis (C) Results showing the percentage of early apoptotic cells, late apoptotic cells and necrotic cells Data are expressed as Mean ± SE (n = 3) **P < 0.01 versus control group.
235
236
237
238
239
240
241
242
243 244 245 246
247
248 249 250
Trang 6Fig 6 – Flow cytometry analysis of cell cycle phase distribution in PA-1 cells Histogram representing propidium iodide
staining of control (A) and ptNPs (100 and 200 g/ml) (B-C) treated PA-1 cells for 48 hours D: Bar diagram showing the cell
distribution in the subG1, G0/G1, S and G2/M phases for PA-1 cells treated with vehicle control and ptNPs (100 and
200 g/ml) Data are expressed as mean ±SE (n = 3) *P < 0.05 versus control group.
treatmentwithptNPs,comparedwithcontrolcells(Fig.6 As
showninFig.6,whencellswereexposedtoptNPs(200g/ml)
for48hours,thepercentageofsub-G1populationshoweda
markedincreaseof42%(p<0.05)comparedwiththecontrol
(12%).G0/G1phaseweredecreasealongwiththeincreaseof
sub-G1phasecomparedwiththatofcontrolcells.Allthese
dataindicatethatinhibitionofcellgrowthcausesincreased
cellsenteringinsub-G1phase,subsequentlyinducescell
apo-ptosis
Discussion
Dependenceofhumanlifeonnanotechnologyemerged
nat-urally from ayurveda, a 5000-year-old system of Indian
medicine.Thoughthemodernsciencehasstartedexploring
the term “Nano” in 21stcentury, ayurvedicmedicinal
sys-tems used noble metals such as gold, silver etc., in nano
formas bhasmasfor various medicalapplications.16 Since
nanoparticles(NPs)aremorebiocompatiblethanthe
conven-tionaltherapeutics,theyplayanimportantroleinimproving
theirbioavailability aswell ascompatibilityfor
therapeuti-calapplicationsindiseaseslikecancer.17Thereisagrowing
list of reports indicating that NPs might be medically and environmentallytoxic,astheirhighsurface-to-volumeratio makestheparticlesofsomemetalsveryreactiveorcatalytic.18 There is also evidence that NPs pass through cell mem-branes andinteractwithcellularstructures,and thushave
a direct impact on cell functioning and consequently on cell viability Therefore, in this study,we have determined the cytotoxicity of ptNPs using cancer cell lines and nor-mal humanperipheralblood mononucluocyte (PBMC) cells forunderstandingtoxicityunderin vitroconditions.We car-riedoutscreeningofptNPsindifferentcancercellsoflung, ovarian,pancreatic,breast,colon,renal,leukemiatypes Inter-estingly, the cytotoxicityofptNPstowardmammalian cells depends on thecell type.Our in vitrostudies showed that ptNPsinducedcelldeathinovarian,lungandpancreatic can-cercelllines(dataofbreast,colon,renal,leukemiacancercell lines were notshown).In contrast,nosignificant cytotoxic effectwasobservedinthenormalhumanPBMCcells(Fig.2)
atthehighestconcentration(200g/ml)ofthenanoparticles that significantlyaffected the lung, ovarianand pancreatic cancer cells (Fig 1 suggestingthat the effect ofthe plat-inumnanoparticleswascytotoxicfortheselectedcancercell lines.AsptNPsexhibitinggreatercytotoxicityonPA-1cells,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
Trang 7PA-1 cell line was selected to find out mode of action of
platinumnanoparticlesandevaluateditsanticancer
poten-tial
Thepresentstudyrevealedthatpotentialcytotoxiceffect
ofptNPsinPA-1cellsaftershort(48hours)andlongterm(14
days)exposure.Clonogenicassay,usedtoevaluatetheeffects
inducedafterprolongedexposure(14days).Ourfindingshows
thatptNPsdosedependentlyinhibitedthePA-1colony
forma-tionascomparedtothecontrolcells(Fig.3 Thisindicates
thatptNPsdecreasesthepotentialofindividualcellstoform
acolonyandtherebyactsasananti-cancerdrug.Thisfinding
wellcorroboratedwithourcellproliferationstudies
Themajordrawbacksofmanyeffectivecancer
chemother-apeutic agentsare systemic toxicityand drug resistance.19
Cisplatinisthefirstapprovedplatinumdrugthathasbeen
usedformorethanthreedecadesinstandardchemotherapy
regimens.However,theuseofcisplatinisrestrictedbecauseof
itsseveresideeffects,includingnephrotoxicity,neurotoxicity,
ototoxicityandmyelo-suppression,aswellastheintrinsicand
acquiredresistancedevelopedbyvariouscancers.Thus,the
newtherapeuticagentsshouldbemoreactivewhileproducing
fewerside effects Theyalso shouldact through a
mecha-nismdifferentfromthatofcytotoxicagentsalreadyused.A
varietyofnanomaterialsarebeingevaluatedinclinicaltrials
asdrugcarrierandforimagingofspecifictargets,withaim
ofincreasingtheefficiencyofdrugbioavailability, reducing
sideeffectsand preventiondamagetoother tissues.20,21 At
presenttherehasbeenaconsiderableinterestinthe
biologi-calsynthesisofnanoparticlesbecauseofitssimple,safeand
eco-friendlyprinciplesanditdoesnotrequireelaborate
pro-cess.Thebiosafetyandbiocompatibilityofanybiomaterialare
vitalconcernsthatshouldbeaddressedbeforesuchmaterials
areappliedtobiologicalsystems.Weinvestigatedtheacute
toxiceffect ofptNPsindifferent dosesand no toxiceffect
wasfoundupto5000mg/kgbwafteroraladministrationto
mice(datanotpublished).Nocytotoxicitywasalsofoundafter
treatmentofdifferentdosesofptNPs(25-100g/ml)against
normalPBMC.10OurpresentPBMCresultsalsoshowedthat
nocytotoxicitywasobservedathighest200g/mldose.The
activityofbiosynthesizedptNPsinhumancancercellsin vitro
and in vivoprovides the rationale for clinical use oforally
administeredagentinpatientswithsolidtumorasmostof
thechemotherapeuticdruglikecisplatinadministered
intra-venouslyandhavesideeffects.Inthisregard,platinumnano
particles synthesized by green technology with anticancer
activityandnotoxicitytonormaltissueshasbeensuggested
aspossiblecandidatesfortheircapabilitytoimprovethe
effi-cacyofanticancerdrugs
In conclusion, biosynthesized ptNPs exhibited cytotoxic
activity against ovarian, lung and pancreatic cancer cells
without showing toxicity against normal peripheral blood
mononucleocytecells.ResultsalsodemonstratedthatptNPs
induce apoptosis and cell cycle arrest in PA-1 Based on
our observation, we suggest that ptNPs may represent an
emergingnoveltherapeuticagentforthetreatmentofhuman
ovariancancerwithoutshowingcytotoxicitytowardsnormal
cells.Furtherstudiesarerequiredtosupportourobservations
oftheanti-tumorpotentialoftheseplatinumnanoparticles
in vivo.
Conflict of Interest
Theauthorsdeclarethattherearenoconflictofinterest
Acknowledgments
This study was supported by grants from Department Q2
(BT/BIPP0446/13/11) We also would like to acknowledge
Dr.UlhasWaghfortechnicaladviceduringtheexperiments
WethankDr.PadmaShastri oftheNationalCentreforCell Science(NCCS)forrevisingthemanuscript
1 HengleinA.Small-particleresearch:physicochemical propertiesofextremelysmallcolloidalmetaland semiconductorparticles.Chem Rev1989;89:1861
2 OggawaS,HayashiY,KobayashiN,TokizakiandT,Nakamura
A.Novelpreparationmethodofmetalparticlesdispersedin polymerfilmsandtheirthird-orderopticalnonlinearities
Jpn J Appl Phys1994;33:331
3 ChenX,SchluesenerHJ.Nanosilver:ananoproductin medicalapplication.Toxicol Lett2008;4:176
4 StephensIEL,BondarenkoAS,GrønbjergU,RossmeislJ, ChorkendorffI.Understandingtheelectrocatalysisof oxygenreductiononplatinumanditsalloys.Energy Environ Sci2012;5:6744–62
5 KostovaI.Platinumcomplexesasanticanceragents.Recent Pat Anti-Cancer Drug Discov2006;1:1–22
6 RespondekJ,EngelJ.Organometallicsinmedicine.Drugs Future1996;21:391–408
7 CagnoliM,AlamaA,BarbieriF,NovelliF,BruzzoC,Sparatore
F.Synthesisandbiologicalactivityofgoldandtin compoundsinovariancancercells.Anticancer Drugs
1998;9:603–10
8 LiongM,LuJ,KovochichM,XiaT,RuehmSG,NelAE
Multifunctionalinorganicnanoparticlesforimaging, targeting,anddrugdelivery.ACS Nano2008;2:889–96
9 NelA,XiaT,MadlerL,LiN.Toxicpotentialofmaterialsat thenanolevel.Science2006;311:622–7
10 BendaleY,BendaleV,PaulS,BhattacharyyaSS.Green synthesis,characterizationandanticancerpotentialof platinumnonoparticles.Zhong Xi Yi Jie He Xue Bao
2012;10:681–9
11 MosmannT.Rapidcolorimetricassayforcellulargrowth andsurvival:applicationtoproliferationandcytotoxicity assays.J Immunol Methods1983;65:55–63
12 SharmaMD,GhoshR,PatraA,HazraB.Synthesisand antiproliferativeactivityofsomenovelderivativesof diospyrin,aplant-derivednaphthoquinonoid.Bioorg Med Chem2007;15:3672–7
13 KaushikNK,KimHS,ChaeYJ,LeeYN,KwonGC,ChoiEH
SynthesisandAnticancerActivityofDi(3-thienyl)methanol andDi(3-thienyl)methane.Molecules2012;17:11456–68
14 SrivastavaD,JoshiG,SomasundaramK,MulherkarR.Mode
ofcelldeathassociatedwithadenovirus-mediatedsuicide genetherapyinHNSCCtumormodel.Anticancer Res
2011;31:3851–7
15 LeistM,JaattelaM.Fourdeathsandafuneral:From caspasestoalternativemechanisms.Nat Rev Mol Cell Biol
2001;2:589–98
16 SarkarPK,ChaudharyAK.Ayurvedicbhasma:mostancient applicationofnanomedicine.J Sci Ind Res2010;69:901–5
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353 354 355 356 357 358 359
360
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
Trang 817 KimJS,KukE,YuKN,KimJH,ParkSJ,LeeHJ.Antimicrobial
effectsofsilvernanoparticles.Nanomedicine2007;3:95–101
18 OberdorsterG,OberdorsterE,OberdorsterJ.Nanotoxicology:
anemergingdisciplineevolvingfromstudiesofultrafine
particles.Environ Health Perspect2005;113:823–39
19 KelloffGJ.Perspectivesoncancerchemopreventionresearch
anddrugdevelopment.Adv Cancer Res2000;78:199–334
20 JeeJ,NaJH,LeeS,KimSH,ChoiK,YeoY.Cancertargeting
strategiesinnanomedicine:designandapplicationof
chitosannanoparticles.Current Opin Solid State Mater Sci
2012;16:333–42
21 RosenholmJM,SahlgrenC,LindenM.Towards multifunctional,targeteddrugdeliverysystemusing mesoporoussilicananoparticles-opportunitiesand challenges.Nanoscale2010;2:1870–83
409
410
411
412
413
414
415
416
417 418 419 420 421 422