Engineering design and analysis of an ITER like first mirror test assembly on JET F E a Z V a b c d e h • • • • a A R A A K I J A R D 1 c s s t f m c e t h 0 ARTICLE IN PRESSG Model USION 8982; No of[.]
Trang 1Fusion Engineering and Design xxx (2017) xxx–xxx
ContentslistsavailableatScienceDirect
j ou rn a l h o m epa g e : w w w e l s e v i e r c o m / l o c a t e / f u s e n g d e s
Engineering design and analysis of an ITER-like first mirror test
assembly on JET
Z Vizvarya,∗, B Bourdelb, A Garcia-Carrascoe, N Lama, F Leipoldc, R.A Pittsd, R Reichled,
a CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK
b Ecole Polytechnique, Route de Saclay, 91120 Palaiseau, France
c Technical University of Denmark, Department of Physics, DK-2800 Kgs Lyngby, Denmark
d ITER Organization, Route de Vinon-sur-Verdon-CS 90 046, 13067 St Paul Lez Durance Cedex, France
e Fusion Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
h i g h l i g h t s
•NewITERFirstMirrortestassemblyhasbeendesignedandinstalledintoJET
•Theassemblyhasbeenanalysedtocopewiththermalanddisruptionloads
•Themulti-coneapertureshavebeenproducedbyadditivemanufacturing
•MaterialqualificationprogramforInconel718producedbyselectivelayermelting
a r t i c l e i n f o
Article history:
Received 3 October 2016
Accepted 12 December 2016
Available online xxx
Keywords:
ITER-like first mirror
JET
Additive manufacturing
Remote handling
Disruption loads
a b s t r a c t
TheITERfirstmirrorsarethecomponentsofopticaldiagnosticsystemsclosesttotheplasma.Deposition maybuilduponthesurfacesofthemirroraffectingtheirabilitytofulfiltheirfunction.However,physics modellingofthislayergrowthisfraughtwithuncertainty.AnewexperimentisunderwayonJET,under contracttoITER,withprimaryobjectivetotestif,underrealisticplasmaandwallmaterialconditions andwithITER-likefirstmirroraperturegeometry,depositsdogrowonfirstmirrors.Thispaperdescribes theengineeringdesignandanalysisofthismirrortestassembly
Theassemblywasinstalledinthe2014–15shutdownandwillberemovedinthe2016–17shutdown
©2016PublishedbyElsevierB.V
Opticaldiagnosticsystemsrelyonfirstmirrorswhicharethe
componentsthatguide/directlighttothedetectorofthediagnostic
system.Assuchtheyareplasma-facingcomponents(PFCs)andare
subjecttodepositionand/orerosion.Theresultingmodificationsto
themirrorfrontsurfacescanhaveaprofoundimpactonthe
per-formanceoftheassociateddiagnostic.InadevicelikeITER,where
maintenance andcleaning of theseelementsisextremely
diffi-cult,itiscrucialtotryandpredicttheleveloferosion/deposition
expectedinadvanceofoperation.Unfortunately,physics
simula-tionsoftheseprocessesarefraughtwithuncertaintiesandsmall
∗ Corresponding author.
E-mail address: zsolt.vizvary@ukaea.uk (Z Vizvary).
adjustmentsininputparameterscanleadtopredictionsranging overordersofmagnitude.Inthiscase,theonlyoptionis“designby experiment”
First Mirror Testing (FMT) has been performed at JET for manyyears(seee.g.[1–3]),bothwithcarbonwalls(2004–2009) andintheITER-LikeWall(ILW)beryllium-tungstenenvironment (2011–present).Inthelattercase,mirrorsmountedontheoutboard mainchamberwallwereobserved,encouragingly,tobeveryclean afterexposuretoafullILWplasmacampaign[3].However,these mirrorsampleswherenotexposedunderITERrelevantgeometrical conditionsinthesensethatITERmirrorswillsitbehindapertures engineeredintotheneutronshieldingblocksofthediagnosticfirst wall.Anewexperimentwasthusproposedin2014bytheITER Organization(IO)toexposeanITER-likemirrorassemblyinJETto studywhetherunderexposuretorelevantplasmafluxes(eitherion fluxesduringglowdischargecleaningorcharge-exchangeneutral
http://dx.doi.org/10.1016/j.fusengdes.2016.12.016
0920-3796/© 2016 Published by Elsevier B.V.
Trang 22 Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx
Fig 1. Exploded view of ITER first mirror design.
fluxesduringplasmaoperation)wouldleadtoenhanceddeposition
asaresultoferosionofmaterialfromtheapertures.Thisworkwas
subsequentlyperformedunderIOContractandthispaperdescribes
theengineeringdesignofthisnew,ITER-likeFMT
The only available in-vessel support for this assembly is
a welded mounting bracket no longer used by other
deposi-tion/erosiondiagnostics.Testsonmock-upsandcalculationsdefine
themaximum loadforthis bracket Themirrors arevery close
totheplasma,resultinginconflictingelectromagneticand
ther-malrequirements.Thecomponentsneedtobesufficientlymassive
tocopewiththethermal loads(settinga minimumwall
thick-ness),butatthesametimeresistiveenoughtokeepthedisruption
loadswithinthoseallowedbythemountingbracket.Inaddition,
installationmust beperformedfully byRemote Handling only
Asaconsequence,thedesignevolvedintoafourpartstructure:
interface—support—housing—aperturecones(Fig.1).Wall
thick-nesseswereminimized,thehousingsurfacesareplasmasprayed
withalumina toinsulatethem and thesupportshape wasalso
designed minimizing theformation of current loops.The most
challengingcomponentstomanufacturewerethemulti-cone
aper-tures Thiswasnot suitable for conventional machining,hence
additivemanufacturingwasused
Theanalysiseffortwasfocusedonthestructuralintegrity of
thecomponentandespeciallyitsfixationtotheexistingunused
bracketintheJETvacuumvessel.Itisdrivenbythemassofthe
wholestructure and more importantly by the electromagnetic
loadswhichpeakduringdisruptions
Theeddycurrentloadsontheinitiallyproposeddesigncreated
momentsontherailwhichwerewellovertheallowablelimitsfor
thesupportbracket.Severaldesignchanges havebeenmadeto
reducetheseloads.Twoideasdrovethesechanges:
• Breakupcurrentloops:theresultingtorquesdependonthearea
enclosedbythecurrents
• Reducewallthicknessasmuchaspossiblethusincreasingthe
resistivityofthematerial
Thelatterismainlylimitedbythetemperaturein the
struc-tureduringplasmaoperation.Thestructuremusthavesufficient
thermalcapacitytoensurethatthepeaktemperaturestaysbelow
1200◦C(thelowerendofthemeltingtemperaturerangeofInconel
718),orevenlowerifthecomponenthasastructuralimportance
Electromagneticandthermal analyseshavebeencarried out
usingANSYStocheckthemechanicalloadsandthepeak
tempera-Table 1
Mechanical loads in toroidal, poloidal and normal directions.
tures.Theweldandboltstrengthwerethencheckedbyanalytical calculations
2.1 Transientthermalanalysis Transientthermalanalysishasbeenperformedinordertocheck themaximumtemperatureinthestructure.Theassumedheatload was300kW/m2,accordingtoJETdesigncriteriaformainchamber components.Theboundaryconditionsare200◦Catthebolt loca-tionsatthesupportbracketonthevacuumvesselwall;radiation
tothe200◦Cvacuumvesselwith0.5emissivityisalsoapplied.The heatloadisappliedfor20s.Althoughthissetupisquitesimplethe temperatureresultsshouldbeagoodindicationofwhetherthey areacceptable
Itwasfoundthatwallsoftheconescannotbereducedtoless than3mm,asthepeaktemperaturewiththiswallthicknessis alreadycloseto1000◦C.ThemeltingtemperatureofInconel718
isintherangeof1260–1336◦C,howevermechanicalproperties alreadybegindroppingovertherange650–700◦C.Sincethe aper-tureconeshavenootherstructuralrolethantosupporttheirown weight,thepeakcomputedtemperatureof∼1000◦Cisdeemed
acceptable
2.2 Electromagneticanalysis Thestructureisaffectedbyboththepoloidal()andnormal (n)magneticfieldchangeduringdisruptions,thetoroidal()field variationisassumedtobezero.Theassumeddurationofdisruption
is10ms.Themagneticfieldandfieldvariationvaluesatthemirror locationare:
B=−3T,B=1.2T,Bn=0.4T
˙B=±120T/s, ˙Bn=±80T/s
Theeddycurrent analysishasbeencarried outusingANSYS [4].Tobeabletoobtainareasonablemeshthecadmodelofthe mirrorassembly had tobe simplified Since preliminary analy-sesshowed that there is a substantial contribution due tothe currentloopsfromboth thepoloidalandthenormal field vari-ation,itwasdecidedthatthesideplatesofthemirrorboxwill
beplasmasprayedandboltswillhavetophatstocuteddy cur-rentloopsandreducethetorquesactingonthemirrorbox.The absenceoftoroidalfieldvariationmeansthattheFEmodeldoes notevencontaintheseplates.Aseparateanalysisontheomitted platesshowedthattheelectromagnetictorquesareindeed negligi-ble(M=2.3·10−3Nm,M=7.8·10−3Nm,Mn=3.01·10−2Nm) AlthoughtheFEmodel isa muchsimplified versionof thereal structure,itisstillrepresentativefromtheelectromagneticpointof view.Evenwiththesimplificationsthegeometryiscomplicated;
itistherefore assumedthatthestructureis fullypenetratedby themagneticfield.Thiswillresultinanoverestimationandhence conservativeestimateoftheloads(Table1)
DuringtheFEanalysistheapertureconesandthebaseplate wereassumedtobestainlesssteel,followingtheoriginalmaterial choiceatthebeginningoftheproject.Subsequently,thedecision wastakentomanufacturetheminInconel718whichhasslightly higherresistivity.Asaresult,theinducededdycurrentsinduced willbeslightlylowerthanestimatedhere
Trang 3Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx 3
Table 2
SLM Tensile Test Results (Batch no C1653D).
Testlog Sample ID E [GPa] 0.2% PS [MPa] UTS [MPa] Elon [%] R/A [%]
a Indicates if the specimen broke outside the middle 1/3 of the gauge length.
Thesupportbrackethasbeenweldedalongtwoedgestothe
ves-selwall.Theweldshavebeentestedbyaneccentricforce,whichis
usedasareferenceinouranalyticalcalculations.Thereservefactor
fortheweldwas1.4duetoelectromagneticloadforthefinaldesign
Thecalculatedstressfromthetestwasalsohigherthanthatofthe
combinedgravityandelectromagneticload.Thisgivesadditional
confidencethatthestrengthofthebracketweldsissufficient
Thesupportbrackethas4boltholesforM6bolts.Itwasdecided
thatall4willbeusedtowithstandtheelectromagneticloads
The aperture cones are made fromInconel 718using
addi-tivemanufacturingtechnology:selectivelayermelting(SLM).SLM
offerssignificantadvantages for JET in-vesselcomponents over
conventional machining including (a) more complex geometry
options,(b)rapidproductionofsmallbatchesand(c)littleorno
wastageofparentmaterial
AlthoughInconel718isawellknownmaterialinJET,duetothe
newmanufacturingtechnologyaqualificationprogramwasputin
place
Thequalificationprocesshasincluded:
• Mechanicaltests:
StatictensileatRT(RoomTemperature)andat450◦C
FatiguetestsatRT
• RGA(ResidualGasAnalysis)
• Porosityandchemicalanalysis
• MicrostructureusingSEM(ScanningElectronMicroscope)
• Mechanicalprooftestonaprototypeofadifferentcomponent(a
limiterassembly)
• Creeptesting(stillinprogress,theapertureconeswillnotoperate
inthecreepregime)
SLMpartsareproducedbylasermeltingapatternintoafine
layerofmetalpowderwhichislaidontoatable-mounted
base-plateinverythinlayers(about30mthick)whicharegradually
builtupintothefinishedcomponent.AnM270SLMmachinetable
(270mm×270mm)wasusedtoproducetestingsamplesandall
thepartsforthiswork
Thefirstbatchrequiredmorebuilds inordertodevelopthe
bestmethodforreducingdistortiononthefinishedparts,in
par-ticularforthemainbody.Eachbuildincludedfour10mmcubes
forchemical,porosityandmicrostructuretests,butthe
mechani-caltestpiecesweregeneratedinseparatebuildsasshown(Fig.2)
wherethepowderhadbeenremoved,priortoseparatingtheparts
fromthebase-plate
ThetensiletestresultsforthesamplesareinTable2.Thetable
includeswroughtInconel718propertiesforcomparison[5]
Fig 2.SLM Build C1653B.
WhilstnotstrictlynecessaryinordertoqualifytheSLMprocess forJET,itwasdecidedtoperformsomeadditionalmetallurgical examinationsinsupportoftheadoptionofSLMasasuitable man-ufacturingprocessforJETin-vesselcomponents
Theresultsofthesetestsallowthefollowingconclusionstobe drawn:
• AnearlybatchofSLMmaterialproducedpoorductilitybutthe reasonsfortheproblemwereunderstoodbythesupplieranda secondbatchwassuccessfullyproducedwithgoodductility
• TheuseofSA(SolutionAnnealed)ratherthanPH(Precipitation Hardened)materialisrecommendedasitoffersmechanical prop-erties(sufficientstrengthandductility)thataresuitableforthis application.Thisdoesnot,however,ruleouttheuseofPH mate-rialinSLMforotherapplications
• TestshavebeensuccessfullycompletedtoshowthattheSLM material haslow porosity and a sound micro-structure Out-gassingtestshavealsobeensuccessfullycompleted
• Aprototype(foradifferent,structurallyloaded,component)has successfullypassedmechanicalteststhatexceedtheexpected maximumoperationalloadsbyafactorof1.25:thisprototype wasmanufacturedusingSLMintheSAcondition
• AcostcomparisonhasshownthatSLMiscompetitivecompared withconventionalmachining
• ThisworkhasconfirmedthatSLMofferskeyadvantagesforJET in-vesselcomponents:
Flexibilitytomakepartswithcomplexgeometry
Rapidproductionofsmallbatches
Trang 44 Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx
Fig 3. Reflectivity of one of the mirror samples.
Fig 4. ITER First Mirror installed in JET.
Allmirrorswere pre-characterizedbeforeinstallationin the
ITER-likeholder.Themirrorsweremadeofpolycrystalline
molyb-denum.Totalanddiffusereflectivitiesweremeasuredinthevisible
andnearinfraredrange(400–1600nm).Themeasurementswere
performedusingatungstenhalogenlamp,aCCDspectrometerfor
thevisiblerange,anInGaAsphotodiodespectrometerforthenear
infraredrangeandanintegrating sphereof 80mmofdiameter
Fig.3showsthereflectivity tracesforone ofthemirrors.Total
reflectivityisabout55%inthevisiblerangeanditincreasesover
80%inthenearinfraredrange,whereasdiffusereflectivityis
main-tainedbelow4%acrossthestudiedspectralrange.Theothermirrors
presentedverysimilarresults,withadifferenceoflessthan2%
betweentraces
AnewITERFirstMirrortestassemblyhasbeendesigned,
ana-lysedandinstalledintotheJETvacuumvessel.Thestructurewas
installedremotelyonanexistingunusedbracketneartheoutboard
midplane, which imposed strong limitations on the combined weightandelectromagneticloadsinducedduringdisruptions.The mirrorsareveryclosetotheplasmaresultinginconflicting elec-tromagneticandthermalrequirements.Thecomponentsneeded
tobesufficientlymassivetocopewiththethermalloads(setting
aminimumwallthickness),butatthesametimeresistiveenough
tokeepthedisruptionloadswithinthoseallowedbythemounting brackets
Thefinaldesignincludedcomponentsthathavebeenproduced
byadditivemanufacturing,whosematerialqualificationprogramis alsopresented.Thisshowedthatthechosenmanufacturingprocess (selectivelayermelting)canbeadoptedasasuitablecandidatefor manufactureofcomponentsforuseintheJETvacuumvessel Theassemblywasinstalledinthe2014–15shutdown(Fig.4) andwillberemovedinthe2016–17shutdown
Acknowledgments
Thedesignandmanufactureofthemirrorassemblywasfunded
bytheITEROrganisationandtheinstallationwascarriedoutwithin theframeworkoftheContractfortheOperationoftheJET Facili-tiesandhasreceivedfundingfromtheEuropeanUnion’sHorizon
2020researchandinnovationprogramme.Theviewsandopinions expressedhereindonotnecessarilyreflectthoseoftheEuropean CommissionoroftheITEROrganisation.Toobtainfurther informa-tiononthedataandmodelsunderlyingthispaperpleasecontact publicationsmanager@ccfe.ac.uk
Theauthorsalsowouldliketoacknowledgethatthe success-ful completionof thisworkrelied onthededicatedinputfrom manypeopleincluding,inparticular,DanKirkfromCRDM(High Wycombe)andfromCCFE:RobLobel,JohnWilliams,NickPace, KevinCullandPaddyDoyle
References
[5] Special Metals Inconel 718 datasheet (Publication Number SMC-045) Table 19,