1. Trang chủ
  2. » Tất cả

Engineering design and analysis of an ITER like first mirror test assembly on JET

4 7 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Engineering design and analysis of an ITER-like first mirror test assembly on JET
Tác giả Z. Vizvary, B. Bourdel, A. Garcia-Carrasco, N. Lam, F. Leipold, R. A. Pitts, R. Reichle, V. Riccardo, M. Rubel, G. De Temmerman, V. Thompson, A. Widdowson
Trường học Culham Centre for Fusion Energy
Chuyên ngành Engineering
Thể loại Journal article
Năm xuất bản 2017
Định dạng
Số trang 4
Dung lượng 0,9 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Engineering design and analysis of an ITER like first mirror test assembly on JET F E a Z V a b c d e h • • • • a A R A A K I J A R D 1 c s s t f m c e t h 0 ARTICLE IN PRESSG Model USION 8982; No of[.]

Trang 1

Fusion Engineering and Design xxx (2017) xxx–xxx

ContentslistsavailableatScienceDirect

j ou rn a l h o m epa g e : w w w e l s e v i e r c o m / l o c a t e / f u s e n g d e s

Engineering design and analysis of an ITER-like first mirror test

assembly on JET

Z Vizvarya,∗, B Bourdelb, A Garcia-Carrascoe, N Lama, F Leipoldc, R.A Pittsd, R Reichled,

a CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

b Ecole Polytechnique, Route de Saclay, 91120 Palaiseau, France

c Technical University of Denmark, Department of Physics, DK-2800 Kgs Lyngby, Denmark

d ITER Organization, Route de Vinon-sur-Verdon-CS 90 046, 13067 St Paul Lez Durance Cedex, France

e Fusion Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden

h i g h l i g h t s

•NewITERFirstMirrortestassemblyhasbeendesignedandinstalledintoJET

•Theassemblyhasbeenanalysedtocopewiththermalanddisruptionloads

•Themulti-coneapertureshavebeenproducedbyadditivemanufacturing

•MaterialqualificationprogramforInconel718producedbyselectivelayermelting

a r t i c l e i n f o

Article history:

Received 3 October 2016

Accepted 12 December 2016

Available online xxx

Keywords:

ITER-like first mirror

JET

Additive manufacturing

Remote handling

Disruption loads

a b s t r a c t

TheITERfirstmirrorsarethecomponentsofopticaldiagnosticsystemsclosesttotheplasma.Deposition maybuilduponthesurfacesofthemirroraffectingtheirabilitytofulfiltheirfunction.However,physics modellingofthislayergrowthisfraughtwithuncertainty.AnewexperimentisunderwayonJET,under contracttoITER,withprimaryobjectivetotestif,underrealisticplasmaandwallmaterialconditions andwithITER-likefirstmirroraperturegeometry,depositsdogrowonfirstmirrors.Thispaperdescribes theengineeringdesignandanalysisofthismirrortestassembly

Theassemblywasinstalledinthe2014–15shutdownandwillberemovedinthe2016–17shutdown

©2016PublishedbyElsevierB.V

Opticaldiagnosticsystemsrelyonfirstmirrorswhicharethe

componentsthatguide/directlighttothedetectorofthediagnostic

system.Assuchtheyareplasma-facingcomponents(PFCs)andare

subjecttodepositionand/orerosion.Theresultingmodificationsto

themirrorfrontsurfacescanhaveaprofoundimpactonthe

per-formanceoftheassociateddiagnostic.InadevicelikeITER,where

maintenance andcleaning of theseelementsisextremely

diffi-cult,itiscrucialtotryandpredicttheleveloferosion/deposition

expectedinadvanceofoperation.Unfortunately,physics

simula-tionsoftheseprocessesarefraughtwithuncertaintiesandsmall

∗ Corresponding author.

E-mail address: zsolt.vizvary@ukaea.uk (Z Vizvary).

adjustmentsininputparameterscanleadtopredictionsranging overordersofmagnitude.Inthiscase,theonlyoptionis“designby experiment”

First Mirror Testing (FMT) has been performed at JET for manyyears(seee.g.[1–3]),bothwithcarbonwalls(2004–2009) andintheITER-LikeWall(ILW)beryllium-tungstenenvironment (2011–present).Inthelattercase,mirrorsmountedontheoutboard mainchamberwallwereobserved,encouragingly,tobeveryclean afterexposuretoafullILWplasmacampaign[3].However,these mirrorsampleswherenotexposedunderITERrelevantgeometrical conditionsinthesensethatITERmirrorswillsitbehindapertures engineeredintotheneutronshieldingblocksofthediagnosticfirst wall.Anewexperimentwasthusproposedin2014bytheITER Organization(IO)toexposeanITER-likemirrorassemblyinJETto studywhetherunderexposuretorelevantplasmafluxes(eitherion fluxesduringglowdischargecleaningorcharge-exchangeneutral

http://dx.doi.org/10.1016/j.fusengdes.2016.12.016

0920-3796/© 2016 Published by Elsevier B.V.

Trang 2

2 Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx

Fig 1. Exploded view of ITER first mirror design.

fluxesduringplasmaoperation)wouldleadtoenhanceddeposition

asaresultoferosionofmaterialfromtheapertures.Thisworkwas

subsequentlyperformedunderIOContractandthispaperdescribes

theengineeringdesignofthisnew,ITER-likeFMT

The only available in-vessel support for this assembly is

a welded mounting bracket no longer used by other

deposi-tion/erosiondiagnostics.Testsonmock-upsandcalculationsdefine

themaximum loadforthis bracket Themirrors arevery close

totheplasma,resultinginconflictingelectromagneticand

ther-malrequirements.Thecomponentsneedtobesufficientlymassive

tocopewiththethermal loads(settinga minimumwall

thick-ness),butatthesametimeresistiveenoughtokeepthedisruption

loadswithinthoseallowedbythemountingbracket.Inaddition,

installationmust beperformedfully byRemote Handling only

Asaconsequence,thedesignevolvedintoafourpartstructure:

interface—support—housing—aperturecones(Fig.1).Wall

thick-nesseswereminimized,thehousingsurfacesareplasmasprayed

withalumina toinsulatethem and thesupportshape wasalso

designed minimizing theformation of current loops.The most

challengingcomponentstomanufacturewerethemulti-cone

aper-tures Thiswasnot suitable for conventional machining,hence

additivemanufacturingwasused

Theanalysiseffortwasfocusedonthestructuralintegrity of

thecomponentandespeciallyitsfixationtotheexistingunused

bracketintheJETvacuumvessel.Itisdrivenbythemassofthe

wholestructure and more importantly by the electromagnetic

loadswhichpeakduringdisruptions

Theeddycurrentloadsontheinitiallyproposeddesigncreated

momentsontherailwhichwerewellovertheallowablelimitsfor

thesupportbracket.Severaldesignchanges havebeenmadeto

reducetheseloads.Twoideasdrovethesechanges:

• Breakupcurrentloops:theresultingtorquesdependonthearea

enclosedbythecurrents

• Reducewallthicknessasmuchaspossiblethusincreasingthe

resistivityofthematerial

Thelatterismainlylimitedbythetemperaturein the

struc-tureduringplasmaoperation.Thestructuremusthavesufficient

thermalcapacitytoensurethatthepeaktemperaturestaysbelow

1200◦C(thelowerendofthemeltingtemperaturerangeofInconel

718),orevenlowerifthecomponenthasastructuralimportance

Electromagneticandthermal analyseshavebeencarried out

usingANSYStocheckthemechanicalloadsandthepeak

tempera-Table 1

Mechanical loads in toroidal, poloidal and normal directions.

tures.Theweldandboltstrengthwerethencheckedbyanalytical calculations

2.1 Transientthermalanalysis Transientthermalanalysishasbeenperformedinordertocheck themaximumtemperatureinthestructure.Theassumedheatload was300kW/m2,accordingtoJETdesigncriteriaformainchamber components.Theboundaryconditionsare200◦Catthebolt loca-tionsatthesupportbracketonthevacuumvesselwall;radiation

tothe200◦Cvacuumvesselwith0.5emissivityisalsoapplied.The heatloadisappliedfor20s.Althoughthissetupisquitesimplethe temperatureresultsshouldbeagoodindicationofwhetherthey areacceptable

Itwasfoundthatwallsoftheconescannotbereducedtoless than3mm,asthepeaktemperaturewiththiswallthicknessis alreadycloseto1000◦C.ThemeltingtemperatureofInconel718

isintherangeof1260–1336◦C,howevermechanicalproperties alreadybegindroppingovertherange650–700◦C.Sincethe aper-tureconeshavenootherstructuralrolethantosupporttheirown weight,thepeakcomputedtemperatureof∼1000◦Cisdeemed

acceptable

2.2 Electromagneticanalysis Thestructureisaffectedbyboththepoloidal(␪)andnormal (n)magneticfieldchangeduringdisruptions,thetoroidal()field variationisassumedtobezero.Theassumeddurationofdisruption

is10ms.Themagneticfieldandfieldvariationvaluesatthemirror locationare:

B=−3T,B=1.2T,Bn=0.4T

˙B=±120T/s, ˙Bn=±80T/s

Theeddycurrent analysishasbeencarried outusingANSYS [4].Tobeabletoobtainareasonablemeshthecadmodelofthe mirrorassembly had tobe simplified Since preliminary analy-sesshowed that there is a substantial contribution due tothe currentloopsfromboth thepoloidalandthenormal field vari-ation,itwasdecidedthatthesideplatesofthemirrorboxwill

beplasmasprayedandboltswillhavetophatstocuteddy cur-rentloopsandreducethetorquesactingonthemirrorbox.The absenceoftoroidalfieldvariationmeansthattheFEmodeldoes notevencontaintheseplates.Aseparateanalysisontheomitted platesshowedthattheelectromagnetictorquesareindeed negligi-ble(M=2.3·10−3Nm,M=7.8·10−3Nm,Mn=3.01·10−2Nm) AlthoughtheFEmodel isa muchsimplified versionof thereal structure,itisstillrepresentativefromtheelectromagneticpointof view.Evenwiththesimplificationsthegeometryiscomplicated;

itistherefore assumedthatthestructureis fullypenetratedby themagneticfield.Thiswillresultinanoverestimationandhence conservativeestimateoftheloads(Table1)

DuringtheFEanalysistheapertureconesandthebaseplate wereassumedtobestainlesssteel,followingtheoriginalmaterial choiceatthebeginningoftheproject.Subsequently,thedecision wastakentomanufacturetheminInconel718whichhasslightly higherresistivity.Asaresult,theinducededdycurrentsinduced willbeslightlylowerthanestimatedhere

Trang 3

Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx 3

Table 2

SLM Tensile Test Results (Batch no C1653D).

Testlog Sample ID E [GPa] 0.2% PS [MPa] UTS [MPa] Elon [%] R/A [%]

a Indicates if the specimen broke outside the middle 1/3 of the gauge length.

Thesupportbrackethasbeenweldedalongtwoedgestothe

ves-selwall.Theweldshavebeentestedbyaneccentricforce,whichis

usedasareferenceinouranalyticalcalculations.Thereservefactor

fortheweldwas1.4duetoelectromagneticloadforthefinaldesign

Thecalculatedstressfromthetestwasalsohigherthanthatofthe

combinedgravityandelectromagneticload.Thisgivesadditional

confidencethatthestrengthofthebracketweldsissufficient

Thesupportbrackethas4boltholesforM6bolts.Itwasdecided

thatall4willbeusedtowithstandtheelectromagneticloads

The aperture cones are made fromInconel 718using

addi-tivemanufacturingtechnology:selectivelayermelting(SLM).SLM

offerssignificantadvantages for JET in-vesselcomponents over

conventional machining including (a) more complex geometry

options,(b)rapidproductionofsmallbatchesand(c)littleorno

wastageofparentmaterial

AlthoughInconel718isawellknownmaterialinJET,duetothe

newmanufacturingtechnologyaqualificationprogramwasputin

place

Thequalificationprocesshasincluded:

• Mechanicaltests:

StatictensileatRT(RoomTemperature)andat450◦C

FatiguetestsatRT

• RGA(ResidualGasAnalysis)

• Porosityandchemicalanalysis

• MicrostructureusingSEM(ScanningElectronMicroscope)

• Mechanicalprooftestonaprototypeofadifferentcomponent(a

limiterassembly)

• Creeptesting(stillinprogress,theapertureconeswillnotoperate

inthecreepregime)

SLMpartsareproducedbylasermeltingapatternintoafine

layerofmetalpowderwhichislaidontoatable-mounted

base-plateinverythinlayers(about30␮mthick)whicharegradually

builtupintothefinishedcomponent.AnM270SLMmachinetable

(270mm×270mm)wasusedtoproducetestingsamplesandall

thepartsforthiswork

Thefirstbatchrequiredmorebuilds inordertodevelopthe

bestmethodforreducingdistortiononthefinishedparts,in

par-ticularforthemainbody.Eachbuildincludedfour10mmcubes

forchemical,porosityandmicrostructuretests,butthe

mechani-caltestpiecesweregeneratedinseparatebuildsasshown(Fig.2)

wherethepowderhadbeenremoved,priortoseparatingtheparts

fromthebase-plate

ThetensiletestresultsforthesamplesareinTable2.Thetable

includeswroughtInconel718propertiesforcomparison[5]

Fig 2.SLM Build C1653B.

WhilstnotstrictlynecessaryinordertoqualifytheSLMprocess forJET,itwasdecidedtoperformsomeadditionalmetallurgical examinationsinsupportoftheadoptionofSLMasasuitable man-ufacturingprocessforJETin-vesselcomponents

Theresultsofthesetestsallowthefollowingconclusionstobe drawn:

• AnearlybatchofSLMmaterialproducedpoorductilitybutthe reasonsfortheproblemwereunderstoodbythesupplieranda secondbatchwassuccessfullyproducedwithgoodductility

• TheuseofSA(SolutionAnnealed)ratherthanPH(Precipitation Hardened)materialisrecommendedasitoffersmechanical prop-erties(sufficientstrengthandductility)thataresuitableforthis application.Thisdoesnot,however,ruleouttheuseofPH mate-rialinSLMforotherapplications

• TestshavebeensuccessfullycompletedtoshowthattheSLM material haslow porosity and a sound micro-structure Out-gassingtestshavealsobeensuccessfullycompleted

• Aprototype(foradifferent,structurallyloaded,component)has successfullypassedmechanicalteststhatexceedtheexpected maximumoperationalloadsbyafactorof1.25:thisprototype wasmanufacturedusingSLMintheSAcondition

• AcostcomparisonhasshownthatSLMiscompetitivecompared withconventionalmachining

• ThisworkhasconfirmedthatSLMofferskeyadvantagesforJET in-vesselcomponents:

Flexibilitytomakepartswithcomplexgeometry

Rapidproductionofsmallbatches

Trang 4

4 Z Vizvary et al / Fusion Engineering and Design xxx (2017) xxx–xxx

Fig 3. Reflectivity of one of the mirror samples.

Fig 4. ITER First Mirror installed in JET.

Allmirrorswere pre-characterizedbeforeinstallationin the

ITER-likeholder.Themirrorsweremadeofpolycrystalline

molyb-denum.Totalanddiffusereflectivitiesweremeasuredinthevisible

andnearinfraredrange(400–1600nm).Themeasurementswere

performedusingatungstenhalogenlamp,aCCDspectrometerfor

thevisiblerange,anInGaAsphotodiodespectrometerforthenear

infraredrangeandanintegrating sphereof 80mmofdiameter

Fig.3showsthereflectivity tracesforone ofthemirrors.Total

reflectivityisabout55%inthevisiblerangeanditincreasesover

80%inthenearinfraredrange,whereasdiffusereflectivityis

main-tainedbelow4%acrossthestudiedspectralrange.Theothermirrors

presentedverysimilarresults,withadifferenceoflessthan2%

betweentraces

AnewITERFirstMirrortestassemblyhasbeendesigned,

ana-lysedandinstalledintotheJETvacuumvessel.Thestructurewas

installedremotelyonanexistingunusedbracketneartheoutboard

midplane, which imposed strong limitations on the combined weightandelectromagneticloadsinducedduringdisruptions.The mirrorsareveryclosetotheplasmaresultinginconflicting elec-tromagneticandthermalrequirements.Thecomponentsneeded

tobesufficientlymassivetocopewiththethermalloads(setting

aminimumwallthickness),butatthesametimeresistiveenough

tokeepthedisruptionloadswithinthoseallowedbythemounting brackets

Thefinaldesignincludedcomponentsthathavebeenproduced

byadditivemanufacturing,whosematerialqualificationprogramis alsopresented.Thisshowedthatthechosenmanufacturingprocess (selectivelayermelting)canbeadoptedasasuitablecandidatefor manufactureofcomponentsforuseintheJETvacuumvessel Theassemblywasinstalledinthe2014–15shutdown(Fig.4) andwillberemovedinthe2016–17shutdown

Acknowledgments

Thedesignandmanufactureofthemirrorassemblywasfunded

bytheITEROrganisationandtheinstallationwascarriedoutwithin theframeworkoftheContractfortheOperationoftheJET Facili-tiesandhasreceivedfundingfromtheEuropeanUnion’sHorizon

2020researchandinnovationprogramme.Theviewsandopinions expressedhereindonotnecessarilyreflectthoseoftheEuropean CommissionoroftheITEROrganisation.Toobtainfurther informa-tiononthedataandmodelsunderlyingthispaperpleasecontact publicationsmanager@ccfe.ac.uk

Theauthorsalsowouldliketoacknowledgethatthe success-ful completionof thisworkrelied onthededicatedinputfrom manypeopleincluding,inparticular,DanKirkfromCRDM(High Wycombe)andfromCCFE:RobLobel,JohnWilliams,NickPace, KevinCullandPaddyDoyle

References

[5] Special Metals Inconel 718 datasheet (Publication Number SMC-045) Table 19,

Ngày đăng: 24/11/2022, 17:56