Design and fabrication of a Permeator Against Vacuum prototype for small scale testing at Lead Lithium facility F D s B J a b h • • • • • a A R R A A K D P M P 1 c ( a t t A t h 0 0 ARTICLE IN PRESSG[.]
Trang 1Contents lists available atScienceDirect
j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / f u s e n g d e s
Design and fabrication of a Permeator Against Vacuum prototype for
small scale testing at Lead-Lithium facility
Belit Garcinu ˜ noa,∗, David Rapisardaa, Iván Fernández-Bercerueloa, David Jiménez-Reya,
a CIEMAT-LNF, Av Complutense 40, 28040 Madrid, Spain
b UNED, Dept of Energy Engineering, C/Juan del Rosal 12, 28040 Madrid, Spain
•ThemanufacturingdesignofaPermeatorAgainstVacuumprototypeispresented
•ThePAVwillbeimplementedinaPbLilooptodemonstratethetechnique
•Operationalinputs(massflow,temperature)areevaluatedforafixedgeometry
•Twoapproachesarecomparedintermsofefficiency,assemblyandendurance
•APAVbasedonvanadiummembranesandsteelsupportingstructureisproposed
Article history:
Received 3 October 2016
Received in revised form 15 February 2017
Accepted 15 February 2017
Available online xxx
Keywords:
DEMO
Permeation against vacuum
Membrane
Prototype
TritiumrecoveryisoneofthemajorissuesofafutureDEMOreactor,inordertocomplywiththe require-mentsoftritiumself-sufficiency.WithintheEUROfusionProgrammethepermeationagainstvacuum (PAV)techniquehasbeenconsideredasbaselineforthoseblanketswhichusePbLiasbreeder
A conceptual design of a rectangular multi-channel PAV for its implementation in an exper-imental PbLi loop, under construction at CIEMAT, has been produced A comparison between vanadium/niobium/tantalumand␣-Femembraneshasbeenperformedintermsofcosts,machining, mechanicalresistanceandefficiencyresultinginadesignbasedonvanadiummembranesandastainless steelstructure
Structuralcalculationsarealsopresented,payingspecialattentiontotheinterfacebetweenthe mem-branesandthemainstructureinordertoavoidleakages.Otherimportantaspectssuchaskeepingan adequatevacuumlevelhavealsobeenconsidered
©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
TheDualCoolantLithiumLead(DCLL)isoneoftheblanket
con-ceptswhicharebeingconsideredforEU-DEMO.Itusesliquidmetal
(eutecticPbLi)asprimarycoolant,tritiumbreeder,tritiumcarrier
andneutronmultiplier[1]
Oneofthemostimportantfunctionsoftheblanketistoachieve
tritiumself-sufficiency[2];consequentlythedevelopmentof
tri-tiumrecoverysystemsfromthebreederismandatory.Permeation
AgainstVacuum(PAV)hasbeenselectedasfirstcandidatefor
tri-tiumextractionfromPbLiintheDCLL[3].Itsworkingprincipleis
∗ Corresponding author.
E-mail address: belit.garcinuno@ciemat.es (B Garcinu ˜ no).
basedontritiumdiffusionthroughapermeablemembranein con-tactwiththeflowingliquidmetal.Then,thetritiumisextractedby
avacuumpumpwhichdrivesittothetritiumplant.However,this techniquehasnotbeenexperimentallyvalidated,andsomeefforts arebeingperformedinEuropewiththepurposeofdemonstrating itscapabilities
ThepresentworkprovidesthedesignofasmallscalePAV proto-typebasedontheconceptualdesignpresentedin[4].Adescription
of thePbLi loopdriving thePAV design ispresented inSection
2;geometricalcharacteristicsofthedeviceareshowninSection
3;structuralcalculationsandmainissuesconcerningits fabrica-tionarepresentedinSection4andthePAVauxiliarysystemsare describedinSection5.Finally,conclusionsaredrawninSection6
http://dx.doi.org/10.1016/j.fusengdes.2017.02.060
0920-3796/© 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4 0/ ).
Trang 2Parameter Value
PbLi max velocity in PAV-DCLL 1 m/s
2 Facility for tritium extraction from PbLi at high velocity
WithintheEUROfusionR&Dprogrammedifferent
experimen-talactivitiesrelatedtoadvancedtritiumextractiontechniquesare
beingperformed[3].Thus,PAVhasbeenconsideredasthemost
promisingtechniqueforextractingtritiumfromflowingPbLi.Its
operationalconditionsdependontheblanket conceptwhich is
beingconsidered;inthecaseofaDCLLtheseconditionscanbe
foundin[5].TheconstructionofaPbLiloopfordemonstratingthe
PAVtechniqueathighPbLiflowsisbeingimplementedatCIEMAT
Thisloopwillmanageonlya1.5%ofthemassflowrateexpectedfor
oneoftheDCLLloops[4],butworkingatDCLLconditionsinterms
ofPbLitemperatureandvelocityinsidethePAVchannels.Themain
objectivesofthisPbLiloopwillbeto:
-Testhydrogen/deuterium permeationin flowing PbLi atDCLL
conditionsoftemperature,velocityandtritiumpartialpressure
-Testdifferentpermeatorconceptsorconfigurationsforefficiency
assessment
-TestdifferentmaterialstobeusedasmembraneofthePAV
Thetarget efficiency of theTritium Extraction System(TES)
hasnotbeenfullyassessed.Differentworkshaveproposed
tar-getvaluesashighas90%[6]or80%[7].Thereforeitiscommonly
agreedthat tritiumrecovery efficiencyshall beas highas
rea-sonablyachievable[8],andaconservativevalueof80%hasbeen
consideredtobeenoughforaproperoperationoftheplant[4].For
thisPbLiloopandPAVprototypeanefficiencytargethasnotbeen
fixedasanobjectivesinceoncethefeasibilityofthetechniqueis
demonstrated,theefficiencycanbeincreasedbyachangeinthe
PAVgeometry.Furthermore,itwillgiveanimportantbenchmark
withthemodelstoextrapolatetheresultstotheDCLLTES
Theloopwillbedividedintotwosectionswithdifferent
tem-peratures:acoldleg workingat300◦C whichis equippedwith
anelectromagneticpumpandaflowmeterwithloweroperational
requirementsintermsoftemperature;ahotleg(550◦C)wherethe
testsectionisinstalled.Table1summarizesthemainparameters
oftheloop
3 PAV design optimization
Accordingtothecalculationmethodpresentedin[4],asmall
scaleprototypeofPAV,TRITON(TRITiumpermeatiON),hasbeen
developed.ItsdesignisconditionedbythePbLiloopparameters
presentedinSection2.AlthoughtestswillbedoneatdifferentPbLi
velocities,thetargetvalue,relevantforaDCLLDEMO,is1m/s[4]
Forthisreason,thestudyoftheinfluenceofeach parameterto
optimizethedesignhasbeenperformedbyfixingthatvelocity
Takingintoaccounttheavailablespaceforthepermeator
imple-mentation,namely1.5mintheexperimentalroom,themembrane
hasto be limited to 1mlength (L) Thus, the main parameter
affectingTRITONdesignisthePbLimassflowrate(m)whichwill
determinethenumber of channels(N) and theirwidth(a) [4]
Anotherimportantparameteristhechannelheight(h).Lowh
val-uesleadtohighpressuredrops,andregardingtherangeofmass
flowrate,theheighthasbeenmaintainedat5·10−3m.Itiseasy
Fig 1.Efficiency dependence with mass flow rate (h = 5·10 −3 m;
z = 1·10 −3 m; a = 0.085 m; N = 7; T = 823 K; Fe = 1.75·10 −10 mol/m/s/Pa 0.5 ;
V = 1.52·10 −7 mol/m/s/Pa 0.5 ).
tofollowthatadecreaseinthemembranethickness(z)resultsin
animprovementofefficiencydue totheincrease ofthe perme-ationflux.Regardless,themechanicalresistanceofthemembrane shouldbetaken into account; thereforez isset to1·10−3m. A
slightincreaseoftheefficiencywithgrowingvaluesofahasbeen observed.Consideringtherangeofmassflowrateachievablein theloop(Table1 thechannelwidthisfixedto0.085mandthe numberofPbLiflowingchannelto7(therefore8vacuumchannel) Hence,thePbLiisabletoreach1m/sinsidethePAVandthereis alsocertainflexibilityonitsoperation
ThebestmaterialsforthePAVmembrane arevanadium(V), niobium(Nb)andtantalum(Ta)duetotheirgoodpermeability(˚) [10]andcompatibilitywithPbLiinstaticconditions[11].Forthis firstprototypeareducedpricewouldbedesirableinorderto miti-gaterisksintheoverallbudgetoftheProject.Thus,inordertosave costsand consideringtheavailabilityofmaterials,itwas estab-lishedtouse␣-Femembranesforthefirstprototype.Inspiteofits lowpermeability[12],thismaterialcanleadtoenoughextraction capabilityinordertodemonstratethepermeationtechnique
Itisimportanttonotethatthereissomedispersionin mea-suredhydrogensolubilityinPbLi.Dependingonthemethodology followedforitsachievingandtheeutecticgradeofthealloyitcan changeuptotwoordersofmagnitude[13].Forthisreason,Sievert’s constantsfromReiter[14]andAiello[15]havebeenusedforthe studyasthemostoptimisticandpessimisticcases,respectively Figs.1and2showthedifferencebetweenPAVefficienciesfor bothVandFemembranes.Fig.1showsthedependenceofthe effi-ciencywiththePbLimassflowintheloop,accordingtoEq.(2)from [4],usingthetwovaluesofhydrogensolubility[14,15].Asexpected,
anincreaseonthemassflowrate,withthesubsequentincreaseon velocity,impliesadecreaseontheefficiencyfollowingthe expo-nentialrelationshowedin[4].InthecaseofVmembranes(higher permeability)thepermeationfluxisdrivenbymasstransport(i.e tritiumtransportinthePbLi).Hence,achangeinthesolubilityis lessaccentuated.Onthecontrary,whenusingFethepermeationis limitedbymembraneprocesses,causinghigherimpactonthePAV efficiency
Aninterestingsituationarises whenthetemperatureis var-ied(Fig.2)atafixedmassflow(28.4kg/scorrespondingto1m/s
inthePAVchannels)followingEq.(2)from[4].Although
Trang 3hydro-Fig 2.Efficiency dependence with temperature (m = 28.4 kg/s; h = 5·10 −3 m;
z = 1·10 −3 m; a = 0.085 m; N = 7; T = 823 K; Fe = 1.77·10 −8 exp(-31600/R/T)
mol/m/s/Pa 0.5 ; V = 4·10 −9 exp(24900/R/T) mol/m/s/Pa 0.5 ).
Table 2
TRITON main parameters.
Channel height 0.005 m
Membrane thickness 0.001 m
Number of channels 7 (15)
Membrane area 1.26 m 2
Table 3
PAV efficiency.
Mass flow Material Reiter Aiello
gensolubilityinPbLiincreaseswithtemperature(fasterforAiello;
disfavoringtheextractionprocess),theincreaseofthediffusivity
inthealloyisfasterandhencetheefficiencyisenhanced
How-ever,hydrogenpermeabilitythroughVdecreaseswithtemperature
(contrarytowhathappensinFe)andfortemperatureshigherthan
652◦CthehugesolubilitygivenbyAiellodiminishestheefficiency
Accordingtoallthesedatathemainparametersresultingfor
thepermeatorprototypedesignaresummarizedinTable2
4 Manufacturing
Regardingthemanufacturing process,structural calculations
andassemblypossibilitieshavebeenperformedwhen
consider-ingtwodifferentapproaches (FeorV).Therangeofefficiencies
achievedwiththesematerialsisalsopresentedasafunctionofthe
massflowrateandthehydrogensolubilityinPbLi
4.1 ˛-Femembrane
Accordingtothemassflowratelimits(Table1 theproposed
designshows anefficiencyfor␣-Femembranesrangingfrom4
to28%,consideringReiter’ssolubility.WhenAiello’ssolubilityis
applied,theefficiencyrangesfrom0.1%to2%,Table3
Fig 3.a) ␣-Fe von Mises stress (MPa); b) ␣-Fe total deformation (mm); c) Steel structure von Mises stress (MPa); d) V sheets von Mises stress (MPa) (For interpre-tation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Forthepermeatorconstructionthemostfeasibleoptionseems
tobethestackingofplatesinalateralstructure,alsomadeofFe,
todefinethechannels.Stiffeningelementslocatedinsidevacuum channelsareneededinordertoavoid membranedeformations Fig.3ashowspreliminaryelasticanalysesperformedinorderto finda suitable arrangementof thestiffeners The resultingvon Misesequivalentstressesareunderthereferenceyieldstrength foriron(150MPa).However,therearesomeissuesrelatedtothe useofthismaterial.Theferriticstructureof␣-Fewithlow con-tentoncarboncomplicatesthemechanizationduetoitssoftness andmagneticproperties.Therefore,thepossibilityofusingother membranes,inspiteofthepriceoravailability,hasbeenexplored 4.2 V,Nb,Tamembrane
Asstated,V,NbandTahavegreatpermeabilityproperties.The efficiencyachievedwiththesethree materialsispractically the same,rangingfrom38-39%to21-26%dependingonthehydrogen solubilityinPbLi,seeTable3.ThehugedifferencebetweenFeand V/Nb/Tapermeabilitiesleadstoadifferentrelationbetweenthe coefficientofsolubilityusedandtheefficiencyprovidedbyeach material,asitwasexplainedinSection3
Thepriceofthesematerialsisratherhigh.Accordingto[16]it
isabout4timeshigherthanFe.Inordertoreducethetotalamount material,achangeontheassemblydesignhasbeenintroduced: onlythemembranesaremadeofV/Nb/Tawhilethesupporting structureisfabricatedwithstainlesssteelAISI410.Duetothehuge meltingtemperatureofNbandTa(higherthan2500◦C)the weld-ingwithstainlesssteelisnotstraightforward,henceitisneeded
aninterface.ThiscomplicationisavoidedwiththeuseofV mem-braneswhichhaveameltingtemperatureof1900◦C,neartothat
ofthesteel,1530◦C.Therefore,TIGweldingcanbeusedforthe fabricationofthePAV.Itmustbeunderlinedthattheemployof twomaterialswithdifferentaveragecoefficientsofthermal expan-sion (∼16m/m/◦C and 8.3m/m/◦C at room temperature for
austeniticsteelsandV,respectively)cancauseintolerablethermal stresseswhenthePAVisheatedupto550◦C.Theselectionofthe structuralmaterialisintherangeofmartensiticsteels,whichhave averagecoefficientsofthermalexpansionofabout10m/m/◦Cat
roomtemperature.Resultsfortheelasticanalysisunderthemost
Trang 4Fig 4. a) TRITON design based on vanadium sheets (red) embedded on a stainless
steel structure (grey); b) PAV general view with vacuum devices and circuit
connec-tion (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
unfavorableconditionsthatthepermeatorcanwithstand(500◦C
andPbLi velocity of1m/s) showthat themaximumvon Mises
equivalentstressforthesteelstructureisbelowtheyieldstrength
ofAISI410,Fig.3c.InthecaseofVsheets,Fig.3d,themaximum
vonMisesequivalentstressisaroundthehighestvalueindicated
bythesupplier(rangebetween124and172MPa).Themaximum
deformationalongthehorizontalaxisis7mmandwillnotaffect
thePbLiflow
5 PAV final design
Fromthetwo manufacturingdesigns presented,theV-based
PAVhasbeenselectedsinceitsolvesissuesrelatedtomachining
andstructuralresistance
TRITONfinaldesignisshowninFig.4a.Asupportingstructureof
stainlesssteelwithsplinestoallocatethe1mmthickand1mlong
Vmembranewasdesigned.14sheetsof90mmwidthareneeded
toform7PbLiflowingductsand8vacuumchannels.Thestructure
hassomelateralholesforvacuumextraction
Toclosethestructureandintegratethevacuumsystemabox
containingthe flange and feedthroughs for the vacuumpump,
thermocouples,pressuresensorsandheatingelementshasbeen
designed (Fig 4b) The connection to the PbLi circuitis made
througharoundtosquarediffusertodistributetheflowoverthe
PbLiducts
WithalltheseintegrationsthefinaldimensionsofTRITONare:
1.4mlength,28.4cmwidth(includingthevacuumflange
connec-tion)and20cmheight
DifferentauxiliarysystemsmustbeimplementedinthePAV
toproceedwiththeexperimentalphaseandareexplainedinthe
following
Sincetritiumpermeationfluxisdrivenbythepressuregradient generatedbetweenthetwosidesofthemembrane,itisneededto achieveagoodvacuuminordertoaccomplishwithahigh extrac-tionrate.ThevacuumvolumeinTRITONisabout16liters.Ahigh vacuumlevelisaccomplishedbytheuseofaturbomolecularpump TheHiPace500®,fromPfeifferVacuumGmbH,givesapumping speedupto445l/sforH2,enoughforthisapplication
5.2 Heatingsystem Sincetheexperimentsshouldbeperformedathigh tempera-ture,theintegrationof aheating systemis essential.A mineral insulated electrical resistance, from Thermocoax, will be used for that purpose It is made of an Inconel alloy sheath with a nickel/chromiumcoreaptforworkinginahighvacuum environ-mentandupto1000◦C.Itwillbeinstalledinthelateralfaceofthe PAVstructure,whereazig-zagslotwillhostthecable
5.3 Instrumentation Additionalinstrumentationisneededtocontrolthefluid tem-peratureandvacuumpressure:
• Type N- Nicrobell D sheath thermocouples, from TCDirect, installedintovacuumchannelstomeasuretheinternal temper-atureofthepermeatoralongitslength
• Pirani/cold cathodefull range gauge,from Pfeiffer-Vacuum,to controlthevacuumlevelanddisposedintheoppositefaceof thepumpconnection
6 Conclusions
Asmall-scaleprototypeofPAV,TRITON,hasbeendesignedto validateexperimentallythepermeationagainstvacuumtechnique
inflowingPbLiathighvelocity
Specificrequirementsformanufacturing,assemblyandtesting havedrivensomedesignchanges.Initially,theuse␣-Femembrane wasenvisioned.However,duetostructuralandmachiningissues
arearrangementwasintroducedinordertosimplifyandimprove thedesignwiththeuseofmoreadequatematerials.Thefinaldesign consistsonvanadiummembranesintoastainlesssteelstructure ThetargetefficiencyoftheDCLL-TEShasnotbeenfullyassessed; though a conservativevalue of 80% hasbeen established for a properoperationof the powerplant Since it wasnot a target drivingtheprototypedesign,theevaluationofoperational con-ditions(temperatureandmassflow rate)resultedina rangeof efficienciesbetween5and39%forVmembranesconsideringtwo valuesofSieverts’constant.AtrelevantDCLLconditionsan effi-ciencybetween24and27%isexpected
Theimplementationofauxiliarysystemshasalsobeenincluded
inordertokeepanadequatevacuumlevelandtherequired tem-peraturebothcontrolledwiththecorrespondingsensors
Acknowledgments
This work has been carried out within the framework of theEUROfusionConsortium and hasreceivedfundingfromthe Euratomresearchandtrainingprogramme2014–2018undergrant agreementNo633053.Theviewsandopinionsexpressedherein
donotnecessarilyreflectthoseoftheEuropeanCommission.This workhasbeenpartiallyfunded by theMINECOMinistryunder projectENE2013-43650-R.B.Garcinu ˜noacknowledgesapre-PhD contractoftheSpanishMINECO
Trang 5[1] D Rapisarda, et al., Conceptual design of the EU-DEMO dual coolant lithium
lead equatorial module, IEEE Trans Plasma Sci 44 (2016) 1603–1612.
[2] I Palermo, et al., Tritium production assessment for the DCLL EUROfusion
DEMO, Nucl Fusion 56 (2016) 104001.
[3] D Demange, et al., Tritium extraction technologies and DEMO requirements,
Fusion Eng Des 109-111 (2016) 912–916.
[4] B Garcinu ˜ no, et al., Design of a permeator against vacuum for tritium
extraction from eutectic lithium-lead in a DCLL DEMO, Fusion Eng Des.
(2016), http://dx.doi.org/10.1016/j.fusengdes.2016.06.036 (in press).
[5] D Rapisarda, et al., DCLL Blanket 2014 Design Description Document,
EFDA D 2MKUUT v1.0, (2015).
[6] B.J Merrill, et al., Normal operation and maintenance safety lessons from the
ITER US PbLi test blanket module program for a US FNSF and DEMO, Fusion
Eng Des 89 (2014) 1989–1994.
[7] O Gastaldi, et al., Tritium transfers and main operating parameters impact for
demo lithium lead breeding blanket (HCLL), Fusion Eng Des 83 (2008)
1340–1347.
[8] D Demange, et al., Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study, Fusion Eng Des.
89 (2014) 1219–1222.
[9] D Rapisarda, et al., Conceptual design of a new experimental PbLi loop and PAV, EFDA D 2D33SQ v 1.2 (2015).
[10] A Basile, Handbook of Membrane Reactors, Woodhead Publishing Series in Energy, 2013.
[11] H Feuerstein, et al., Compatibility of refractory metals and beryllium with molten Pb-17Li, J Nucl Mater 233–237 (1996) 1383.
[12] A Tahara, et al., Measurements of permeation of hydrogen isotopes through
␣-iron by pressure modulation and ion bombarding, Trans Jap Inst 26 (1985) 869.
[13] A Pozio, et al., Behaviour of hydrogenated lead-lithium alloy, Int J Hydr Energy 42 (2017) 1053–1062.
[14] F Reiter, Solubility and diffusivity of hydrogen isotopes in liquid Pb-17Li, Fusion Eng Des 14 (1991) 207–211.
[15] A Aiello, et al., Determination of hydrogen solubility in lead lithium using sole device, Fusion Eng Des 81 (2006) 639–644.
[16] Chemicool Periodic Table Chemicool.com 18 Oct 2012 Web 12/1/2016.