Diagnosis and quantification of fibrosis, steatosis, and hepatic siderosis through multiparametric magnetic resonance imaging ARTICLE IN PRESS+Model Revista de Gastroenterología de México 2017;xxx(xx)[.]
Trang 1´
REVIEW ARTICLE
M Stoopen-Romettia , ∗, E.R Encinas-Escobarb, C.R Ramirez-Carmonaa,
E Wolpert-Barrazac, E Kimura-Hayamaa, L.A Sosa-Lozanod, R Favilae,
Y Kimura-Fujikamid, J.A Saavedra-Abrila, A Loaeza-del Castilloc
aDepartamento de Imagen, C.T Scanner Lomas Altas, Mexico City, Mexico
bCurso Universitario de Radiología, C.T Scanner, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional
Autónoma de México, Mexico City, Mexico
cUnidad de Gastroenterología y Hepatología, Clínica Lomas Altas, Mexico City, Mexico
dDepartamento de Imagen, C.T Scanner de México, Mexico City, Mexico
eGeneral Electric Healthcare, Durango, Mexico
Received21December2015;accepted16June2016
KEYWORDS
Fibrosis;
Magneticresonance
elastography;
Viralhepatitis;
Steatosis;
Hepaticsteatosis;
Hepaticsiderosis
Abstract
Background: The presenceofliverfibrosis isthecommondenominatorinnumerous chronic liverdiseasesthatcanprogresstofibrosisandhepatocellularcarcinoma.Mostimportant,with respecttofrequency,areviralhepatitisandnon-alcoholicfattyliverdisease,theprevalence
ofwhichisincreasinginepidemicproportions.Liverbiopsy,albeitimperfect,continuestobe thecriterionstandard,butinmanyclinicalsituationstendstobereplacedwithnoninvasive imagingmethods
Objectives: Theaimofthepresentarticlewastodescribeourimagingdepartmentexperience withmagneticresonanceelastographyandtoanalyzeanddiscussrecentlypublishedresultsin gastroenterology,hepatology,andradiologyfromotherauthorsintheliterature,complemented withaPubMedsearchcoveringthelast10years
Results and conclusions:Magnetic resonance elastography is an efficacious, noninvasive method with results that are concordant with liver biopsy It is superior to ultrasound
夽 Pleasecitethisarticleas:Stoopen-RomettiM,Encinas-EscobarER,Ramirez-CarmonaCR,Wolpert-BarrazaE,Kimura-HayamaE, Sosa-Lozano LA, et al Diagnóstico y cuantificación de fibrosis, esteatosis y hepatosiderosis por medio de resonancia magnética multiparamétrica Revista de Gastroenterología de México 2016 http://dx.doi.org/10.1016/j.rgmx.2016.06.001
∗Correspondingauthor.DepartamentodeImagen,C.T.ScannerLomasAltas,PaseodelaReforma2608,DelegaciónMiguelHidalgo,11950 Mexico City, Mexico Phone: +52 (55) 6378 0222; fax: +52 (55) 6378 0218.
2255-534X/© 2016 Asociaci´ on Mexicana de Gastroenterolog´ıa Published by Masson Doyma M´ exico S.A This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
RGMXEN-344; No of Pages 14
Trang 2elastographybecauseitevaluatesamuchgreatervolumeofhepatictissueandshowstheoften heterogeneouslesiondistribution.Thegreatestadvantageofthemagneticresonanceprotocol describedisthefactthatitquantifiesfibrosis,fatcontent,andironcontentinthesame25min examinationspecificallydirectedforthatpurpose,resultinginafavorablecost-benefitratio forthepatientand/orinstitution
©2016Asociaci´onMexicanadeGastroenterolog´ıa.PublishedbyMassonDoymaM´exicoS.A.This
isanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/)
PALABRAS CLAVE
Fibrosis;
Elastografíapor
resonancia-magnética;
Hepatitisvirales;
Esteatosis;
Esteatohepatitis;
Hepatosiderosis
Diagnóstico y cuantificación de fibrosis, esteatosis y hepatosiderosis por medio
de resonancia magnética multiparamétrica Resumen
Antecedentes: Lapresenciadefibrosishepáticaeseldenominadorcomúndenumerosas enfer-medadescrónicasdelhígadoquepuedenevolucionarafibrosisyahepatocarcinoma.Lasmás importantesporsufrecuenciasonlashepatitisviralesy elhígado grasonoalcohólico, cuya prevalenciaaumentaenproporcionesepidémicas.Labiopsiahepática,auncuandoimperfecta, continúasiendoelestándardeoroquetiendeaserreemplazadoenmuchassituacionesclínicas pormétodosdeimagennoinvasivos
Objetivos: Describirlaexperienciaobtenidaennuestrodepartamentodeimagenconla téc-nicadeelastografíaporresonanciamagnética,analizarycomentarlosresultadospublicados porotrosautoresenlaliteraturarecienteengastroenterología,hepatologíayradiología, com-plementadaconunabúsquedaenPubMeddelosúltimos10a˜nos
Resultados y conclusiones: Laelastografíaporresonanciamagnéticaesunmétodonoinvasivo
yeficaz,cuyosresultadostienenconcordanciaconlabiopsiahepática,presentasuperioridad sobrelosmétodosdeelastografíaporultrasonidodebidoaqueevalúaunvolumenmuchomayor
detejidohepático ymuestraladistribucióndelaslesionesque,amenudo,esheterogénea
Lamayorventajadelprotocoloderesonanciamagnéticadescritoestribaencuantificarenla mismasesión,ademásdelafibrosis,elcontenidodegrasaydehierro,locualserealizaenuna exploracióndirigidaespecíficamenteaestefin,enuntiempode25minyauncosto-beneficio favorableparaelpacienteylainstitución
©2016Asociaci´onMexicanadeGastroenterolog´ıa.PublicadoporMassonDoymaM´exicoS.A Esteesunart´ıculoOpenAccessbajola licenciaCCBY-NC-ND(http://creativecommons.org/ licenses/by-nc-nd/4.0/)
Introduction
Liverfibrosis isthe cicatrizationresponsethatis a
conse-quence ofacuteor chronic liver damagedue toavariety
ofcauses.Itisadynamicandpotentiallyreversiblerepair
processthatisassociatedwithhepatocellularregeneration
The activation of stellar cells causes fibroblast
prolifer-ation and excessive extracellular matrix deposit Fibrous
bandsare produced, distorting the structure of the liver,
formingscarsandregenerationnodules.Consequently,liver
function is altered and there is increased hepatic
resis-tancetothebloodflow,causingchronicliverdisease(CLD),
manifested by cirrhosis and complications such as: liver
failure,portalhypertension,andhepatocellularcarcinoma
(HCC).1,2
The main causes of cirrhosis in the industrialized
countriesincludechronichepatitisCandBvirusinfections,
immoderatealcoholingestion,andnonalcoholicfattyliver
(NAFL) that can progress to nonalcoholic steatohepatitis
(NASH)andcirrhosis
The prevalence of viral infections and alcoholism as causesofCLDremainedstablebetween1998and2008.In contrast, the prevalence of NAFL as a cause of CLD has increasedfrom46.8to75.1%withinthesametimeframe.3 NAFL has become the most frequent cause of CLD in the United StatesandEurope,associatedwiththeprevalence
ofobesityandmetabolicsyndrome.Thecontinuingincrease
inNAFLprevalenceisestimatedtosubstantiallycontribute
totheincreaseinCLDandwillrepresentanepidemiologic burdeninnumerouscountries,includingMexico.4 -6 Thediagnosisoffibrosishasrecentlygainedimportance duetothefactthatitsvariouscausescanbepreventedor treated,makingit potentiallyreversibleifthecausal fac-toriseliminated.2,5Clinicalmanagementofthesepatients requires knowing the stage of fibrosis and the frequently coexistingfatandironcontents,andtheirincreaseor reduc-tionduringthecourseoftreatment
Liver biopsy, traditionally considered the ‘‘criterion standard’’ for diagnosis hasseveral limitations: itis inva-sive,costly,subjecttocomplications,andallowsonlyavery
Trang 3smallportionof the organ(approximately 1/50,000 of its
volume)tobeexamined.Histologicanalysishasgreatintra
andinterobservervariability,withlowefficacyintheinitial
stagesoffibrosis(F1andF2),anditdoesnotprovide
infor-mationaboutthedistributionoffibrosisintheparenchyma,
whichcanbeheterogeneous.7 -9
Some imaging methods such as ultrasound (US),
com-puted tomography (CT), magnetic resonance (MR), and
ultrasoundelastography(USE)overcomesomeorseveralof
theselimitationsandhavebeenincreasinglyusedinrecent
years,providinganewnoninvasivediagnosticoption
A more recently acquired technique is magnetic
reso-nanceelastography(MRE),developedbyresearchersatthe
MayoClinicinRochester, NewYork,toobtain quantitative
andqualitativeinformationaboutliverfibrosis.10
This technique has continuedto be perfected and has
recently been made more attractive because during the
samesession,itcanbecombinedwithotherMRsequences
thatareuseful forquantifyingtheparenchymal infiltrates
duetofatand/oriron,whichenablesa‘‘multiparametric’’
examinationprotocoltobeestablished
The aim of this article wasto describe the technique
and clinical applications of the multiparametric liver MR
protocolusedinourdepartmentforthediagnosisand
quan-tificationoffibrosis,steatosis,andhepaticsiderosis,during
a25-minspecificexaminationthatisclinicallyand
econom-icallyviableforboththepatientandthehospitalcenter
The present review is supported by the experience
obtainedwithinthelast18monthsatourimaging
depart-mentandbyanamplereviewofarticlespublishedbetween
2006and2016injournalsofhepatology,gastroenterology,
andradiology,inEnglishandFrench,found inthePubMed
databasewiththeKeywords
fibrosis,liverfibrosis,elastography,USelastography,and
MRelastography
Fibrosis
Elasticity and stiffness
Themechanicalbehaviorofthetissuesofthehumanbody
is similar to that of viscoelastic materials Liver
elastic-ity is inversely proportional to parenchymal stiffness and
the quantity of fibrous tissue As the fibrosis increases,
parenchymalstiffnessincreasesanditselasticitydecreases
Thisphysicalphenomenoncanbemeasuredthrough
elastog-raphytechniques
General principles of elastography
The purposeofliverelastography istoobtain noninvasive
andinvivoinformationaboutthemechanicalpropertiesof
theparenchymaaftersubmittingittoatypeofstressthat
deformsit Elastographycan be performed through
ultra-sound(USE)ormagneticresonance(MRE)
ThreebasicstagesarerequiredtocarryoutMREofthe
liver:a)excitation,whichconsistsoftransmittingstressto
the organ by means of a source of movement that sends
wavelengthsthatdeformtheparenchyma;b)data
acquisi-tion,whichconsistsofregisteringthedeformationproduced
inthetissueasaconsequenceoftheappliedstress;andc)
theanalysisandquantificationofthedatathatthe equip-mentpresentsintheformofimages.11,12
Magnetic resonance elastography
ThephysicalprinciplesofMREhavebeenexplainedinmany specializedpublications andso only ageneral description will be provided herein.10,11,13 -15 They are based on the transmissionoflow-frequency longitudinal wavelengths of approximately65Hzby means ofan instrumentplaced at theribcageclosetotheliver.Thelongitudinalwavelengths thatpenetratetheorganaretransformedintotransversal wavelengths, called cutsor shears, whichare propagated
bytheliverparenchymaandcalculatedthroughtheshear modulus.Themeasurementsobtainedarequantifiedin kilo-pascals(kPa)
Equipment
Inourdepartment,MRE(alsocalledFibro-RM)isperformed with1.5Tesla(Optima450w,GeneralElectric,Milwaukee, Wisconsin,USA)RMequipment.Theresonatorhasadditional hardwarethat produces mechanical wavelengths that are sentintotheliverandaspecificsoftwareprogramfor ana-lyzingtheinformationobtained
The hardware is made up of 4 mechanical elements (Figure 1): 1) a pulse or vibration generator that acts as
an ‘‘active driver’’, which is located in the neighboring machineroom,2)aflexibletube thattransmitsthepulses
orvibrationsproducedbythedriver,conductingthemto3)
aplasticplate,10cmindiameter,thatisplacedontheskin
ofthe ribcage at the patient’s liver,called the ‘‘passive driver’’,and4)an elasticband thatattachestheplate to thebodyofthepatient
Result presentation
The information generated by the wavelengths that pass throughtheparenchymaisprocessedbyelastography soft-warethatdisplaysthedataonaworkingstationscreenin theformofimagesin4differentpresentations(Table1): Thefirst,isalow-resolutiongray-scalereferenceimage whose only function is to select the areas of the liver parenchymathat aretobe measured, notincluding inad-equatezonessuchastheportalvessels, largefissures,the gallbladder,etc.(Figure2a)
The second image corresponds to a map of the wave-lengthsincolorandmotionthatshowstheadvanceofthe wavelengthsintothelivertissue(Figure2b)
Thethirdimage,calledanelastographicmap,isacolor map of the stiffness of the liver A colorimetric scale is attachedtoeachelastographicmap(Figure2c)
Table 1 MRelastography
Presentationoftheresults a)Referenceimage b)Wavelengthmap c)Elastographicmap(colormap) d)Confidenceimage
Trang 4Machine room
Examination room
Passive driver Active driver
Figure 1 Diagramofthecomponentsofthemagneticresonanceelastographyequipment.Theactivedriverthatgeneratesthe pulsesisinthemachineroom.Thepulsesaretransmittedintheformofwavelengthsthroughaplastictubethatconnectsthat devicewiththeplate.Theplateisapassivedriver,10cmindiameter,thatisplacedattheliverandittransmitsthewavelengths
totheorgan.Theplateissecuredtothebodywithanelasticband
Theelastographysoftwarecreatesafourthimagecalled
the‘‘confidencemap’’thatoutlinesthezonesoftheliver
thatcanbereliablymeasured(Figure2d)
Image analysis and liver stiffness measurement
Wavelength map. Wavelengthanalysiscanbedone
stati-callyinafixedimageorinavideoshowingthewavelength
motion It verifies that the wavelengths sent by the
pas-sivedriverpenetratedthelivertissueandwereadequately
distributed.Wavelengthsarethinandparallelinthenormal
liver(Figure3a).Asthegradeoffibrosisincreases,the
wave-lengthsbecomethickerandfaster(figures3c,3e,and3g)
Elastographic map. This color map makes it possible to
makearapidvisualevaluationofnormalityorabnormality
ofliverparenchymalstiffness.Tomakethisassessment,the
colorsoftheliverarecomparedwiththecolorimetricscale
accompanyingeachimage.Thisaffordsafirstappreciation
ofthegradeof fibrosisasabsent,incipient,moderate, or
intense(figures3b,d,f,andh)
Inourequipment,blueandpurpletonesarelocatedat
thelowerendofthescaleandcorrespondtominimum
stiff-ness.Red is atthe upperend ofthe scaleand represents
maximumstiffness, whereasyellowandorangetones
cor-respond to intermediate stiffness values The color map
providesa visual appreciationof whetherthe fibrosis dis-tributionishomogeneousorheterogeneous.16
The radiologist carries out the stiffness measurements
bymanuallyplacingtheelectroniccursorsonthereference image(takingcaretoavoidtheportalvesselsand gallblad-der)orontheelastographicmapinthezonesoftheso-called
‘‘confidencearea’’
Automatic quantification programs have recently been developedthatneednohumanintervention.Giventhatthe elastographicmapcovers the entire circumferenceof the abdomen, it also makes it possible to recognize whether thereis anincrease in spleenstiffnessin thesame image (Figure3h)
Normal liver hardness values in magnetic resonance elastography
The normal liver is softand elasticwitha mean stiffness
of2.05to2.44kPaandarangeof1.54to2.87kPa.15,16The cutoffpointfordetectingfibrosiswithMREvariesbetween 2.4and2.9kPawith98%sensitivityand99%specificityfor thevalueof2.93kPa.13,16,17
Huart et al have correlated the kPa values with the METAVIR scalefromF0toF4.13 Thisscale wasmodified by Asbachetal.,whoformulatedthetablethatweuseinour practicetoreporttheresultsofthestudy(Figure4).14
Figure 2 Magneticresonanceelastographyimages:a)referenceimage,b)wavelengthmap,c)elastographicmap,d)elastographic mapwithanoverlyinggridthatmarksthelimitsofthesafetyareaforcarryingoutthemeasurements
Trang 5Figure 3 Informationanalysis.Thewavelengthmapin4patientswithdifferentgradesofstiffnessisintheupperrow.Thelower rowcorrespondstotheelastographicorcolormapofeachofthem.Figuresa,c,e,andgshowtheincreaseinthicknessandthe irregularityofthewavelengthsasthegradesoffibrosisincrease.Theelastographicmapsshowthechangesincoloroftheliverand theirrespectivestiffnessmeasurements:b)purplesfor2.1kPa=F1;d)greensandbluesfor2.6kPa=F2;f)greensandyellowsfor 4.4kPa=F3;andh)redfor9.2kPa=F4.Comparethecolorsoftheliverwiththecolorbarontheleftside
It is important to know that the kPa scale in MR is
different from the one used in US This is due to the
factthatinUS, thevaluesareprocessedwiththeYoung’s
modulus,whichevaluates thelongitudinalwavelengths on
ascalefrom2.5to75kPa.Incontrast,inMRE,thevalues
areprocessedwiththetransversemodulusofelasticity,or
shearmodulus,whichmeasuresthetransversewavelengths
thataredistributedintheparenchyma,alsoinkPa,buton
ascalefrom0to8kPa
Clinical follow-up of fibrosis utilizing magnetic
resonance elastography
DifferentstudieshaveshownthatMREcandetectliver
stiff-nessmodificationsoverthecourseoftime.Itisarepeatable
andreproduciblestudythatisnotveryoperator-dependent
andthusisauseful,noninvasivemarkerformonitoringthe
kPa
8.0
7.0
6.0
5.0
4.0
3.0
2.0
Figure 4 Diagramshowingthelow,medium,andhigh
quar-tilesoftheshearmodulusforfibrosisstagesF1-F4,compared
withvolunteers
(Reproducedwithpermission).Source:Asbachetal.14
increaseorpossibledecreaseofliverfibrosisduringclinical follow-up.15 -17
Spleen stiffness measurement
The techniques of elastography employed for measuring liverstiffness have alsobeen used toexplore thespleen, underthe hypothesisthat theincreasein splenicstiffness canberelatedtothe developmentof portalhypertension andcanbeusefulforclassifyingcirrhosis
Measuring with ultrasound. Spleenstiffnesscanbe mea-suredwith USE or MREin a manner similar tothat when measuringstiffnessoftheliver.ThefirstUSEstudieswere performed usingtransitoryelastography equipment How-ever, recent studies report onthe use of equipmentthat utilizesacousticradiation forceimpulses(ARFIs)to gener-ateshear waveimages This equipmentmakesit possible
tomeasurethespleenundergray-scaleandrealtime ultra-soundimageguidance,withoutmeasuringthesplenichilum vesselsthatcanbeprominentwhenthereisportal hyper-tension,thusobtainingamoreprecisemeasurement.18 -23
Measuring with magnetic resonance. Agrowingnumberof publicationsreportontheusefulnessofMREformeasuring thestiffnessofthespleenwithfavorableresults,compared withthoseofUSE.24 -30
ItispossibletostudythespleenduringMREoftheliver, duetothefactthattheelastographicmapcoverstheentire circumferenceoftheabdomen,whichincludesbothorgans The spleen can also be explored in the study area by placingthepulse-emittingplatedirectlyonthesplenicarea Normal stiffnessof thespleenmeasured by MREvaries from2.35to5.6kPa,withameasurementof3.6kPain nor-mal volunteers.27 Ongoing studies should provide greater knowledgeonthissubjectmatter
Advantages of magnetic resonance elastography
MRE obtains information from the vectors of the wave-lengthsthatarepropagatedin2or3dimensionsintheliver
Trang 6Table 2 Tissue volume quantified by the USE and MRE
methods22
Elastography
method
Manufacturer Volume
1.Transitory
elastography
(Fibroscan®)
Echosens,FR 4cm3
2.USARFIpSWE Siemens,Philips 0.5-1.0cm3
3.USARFI2DSWE Supersonics,Toshiba,
GeneralElectric(GE)
20cm3
4.RMelastography GeneralElectric(GE),
Siemens,Philips
250cm3
parenchyma The liver tissue volume analyzed in 2D MRE
iscalculatedtobeapproximately250cm3,comparedwith
thevolumeevaluated throughultrasoundmethods, which
variesfrom0.5cm3to20cm3(Table2).Therefore,the
vol-umeoftissueanalyzedinMREismuchmorerepresentative
ofparenchymalinfiltration andreduceserrorsdue to
pos-siblefibrosis heterogeneity.2 The MREstudyis notlimited
bythepresenceofascitesorclosedintercostalspaces.RM
equipmentutilization timeand the cost of the study are
considerablyreducedwhenaspecificelastographystudyis
carriedout
Limitations of magnetic resonance elastography
Themostimportantlimitationisthepresenceofexcessive
irondepositionintheparenchymaduetohemosiderosisor
hemochromatosisthatcancoexistwithfibrosis inpatients
with CLD When there is iron overload, the wavelengths
are transmitted into the parenchyma well, but the
sig-nal emitted into the liver is too low (especially in 3T
equipment) and measurement can be imprecise
Exces-siveobesity,bileductobstruction,claustrophobia,andthe
inabilitytoholdone’sbreatharecausesthatcanlimitthe
examination
Steatosis
MRoffersvarioustechniquesfor detectingandquantifying
fatcontentintheliverparenchyma(Table3).Theyarebased
onthedifferentprecession frequencies-resonance-ofthe
hydrogenprotons(1H+)inwaterandfat.31 -33
Chemical shift imaging technique
Thesimplesttechniqueisthevisualanalysisoftheimageof
theliverobtainedin thedualechoT1-weightedsequence
Table 3 MRtechniquesforquantifyingsteatosis
Chemicalshiftimage
Magneticresonancespectroscopy
Dualortripleechoacquisition(Dixon,IDEAL)
Multi-echoacquisition(IDEAL-LQ)
Parametricimage(cartographyofthesteatosis)
Others
Figure 5 Imageoftheliverinthein-phase(leftcolumn)and out-of-phase(rightcolumn)T1sequencein3differentpatients
Inanormalpatient,thesignalissimilarinthea)in-phaseandb) out-of-phasesequences.Theimagesinthecenterarethoseofa patientwithsteatosisinwhomtheintensityoftheparenchymal signalisnormalinthe‘‘in-phase’’sequence(c)anditmarkedly decays inthe‘‘out-of-phase’’ sequence,where itacquiresa toneofblackduetothegreaterfat content(d).Thebottom rowcorrespondstoapatientwithhemochromatosis.Thesignal decaysinthe‘‘in-phase’’sequence(e),duetotheincreasein ironsaturation, comparedwiththe‘‘out-of-phase’’sequence (f)
thatmakesuppartofallMRliverprotocols.Itprovidesapair
ofgoodqualityanatomicimagesoftheliver,‘‘weightedto T1’’andin2distinctacquisitionphases:one‘‘in-phase’’(IP) andtheother ‘‘out-of-phase’’ (OP)that enablethe visual andqualitativedetectionoffat.Inthenormalpatient,the liverparenchymahasthesamesignalinboththein-phase andout-of-phaseimages(Figure5aand5b).Inpatientswith steatosis,signaldecayinthe‘‘out-of-phase’’imagesis pro-duced,makingtheimageoftheliverturndarker,thegreater the quantity of triglycerides (Figure 5c and d), enabling the fat fraction to be calculated, as described further ahead
Spectroscopy
The most precise quantitative technique today for quan-tifying fat is MR spectroscopy (1H-RM) It separates the watercurvespectrum fromthoseofthe lipidcurves, pro-vidingan exactquantification.In thespectralcurve,each metaboliteisdetectedaccordingtoitsresonancefrequency, measuredinpartspermillion(ppm).Thewaterpeakcanbe distinguishedfromvariouspeaksproducedbytriglycerides and occasionally by other metabolites (Figure 6a and b) Spectroscopy is the noninvasive reference technique for
Trang 710 ×10 5
8×10 5
6 ×10 5
4×10 5
2 ×10 5
0
6×10 5
4 ×10 5
2×10 5
0
5 4 3 2
Frequency (ppm) Frequency (ppm)
Real Real
1 0 –1 5 4 3 2 1 0 –1
Figure 6 Spectroscopyoflipids.Graphsaandbshow2mainpeaks:ontheleft,anelevatedpeakthatcorrespondstowaterand
ontheright,alowerpeakthatcorrespondstotriglycerideconcentration.Notethatthetriglyceridepeakishigherinimagebina patientwithagreaterlipidconcentration
diagnosing steatosis.32,34,35 Nevertheless, it is the most
complex, slow, and costly It requires specialized
soft-wareandthereforeisusedonlyin academicandresearch
studies
Fat quantification in chemical shift sequences
The most widely used technique is the one described
by Dixon36 that measures the chemical shift between fat
and water protons It utilizes the dual echoT1-weighted
sequence: theIP sequencecontains thesum ofthe water
andlipidprotonsandtheOPsequencecontainstheabsolute
valueofthedifferenceofwaterminuslipids(IP-OP)
The fat content is calculated with the following
equation:35
FSF = SFat
SWater+SFat = SIP−SOP
2SIP Where:FSFisthefatsignalfraction;SFatisthefatsignal;
SWateristhewatersignal;SIP=isthe‘‘in-phase’’signal,and
SOP=isthe‘‘out-of-phase’’signal
Thecurrent recommendationis tousethemorerecent techniques from the same family, suchas the multi-echo 3D proton density sequences that provide the most pre-cisefat fractioncalculation, separatingitfromwaterand withagoodhistologiccorrelation.Thesearemoreprecise, especiallywhensteatosiscoexistswithirondepositsinthe parenchymathatcanfalsifythereading
Themulti-echosequencesmakeitpossibletoeliminate theeffectofiron,providing amoreprecise corrected fat quantification.32,34,35,37
Steatosis quantification in color cartography
Liverfatquantificationcanalsobecarriedoutthrough car-tographyoracolormap.Itprovidesrapidvisualappreciation
of the existence of steatosis and the measurements are madedirectlyontheimage(Figure7a,b,andc)
Thedifferentcolorsofthemapcorrespondtothe distri-butionandintensityoftheinfiltratethatcanbediffuseor regional(‘‘geographicsteatosis’’or‘‘inpatches’’),oreven
bepresentinafocallesion,suchasoccursinlipomasand someadenomasandhepatocellularcarcinomas
Figure 7 Colormapsin3patientswithdifferentsteatosisgrades:a)patientwithnormalfatcontent:thedarkblueoftheliver correspondstothelowerpartofthecolorimetricscaleandtoaquantificationbelow6%(normal);b)inthispatientthelightblue
ishigheronthescaleandthefatcontentisincreasedtoanaverage17%;c)theimageinthethirdpatientassignedgreentothe liver,whichisindicativeofahighfatcontentandwasquantifiedat33%
Trang 8Figure 8 Liveradenomawithfat.a)TheT1sequenceshows 3smallfocallesions insegments7and8oftheliver.Thecolor mapforquantifyingfatshowsthat2ofthemhavebluetonesinthecenter(b),inwhichthelipidconcentrationwas37and19%, respectively(c).ThehistologicdiagnosiswasHNF1adenoma
Cartography facilitates the analysis of fat content by
comparingthecolorsofthecolorimetricbarthatisattached
totheimage.Inourequipment,darkbluetonescorrespond
tothelowestlipidconcentration.Lightblueandgreentones
indicatelargerquantities ofinfiltrate,andyellowandred
tonesappearinthehighestconcentrations.Thecartography
imagecoverstheentirecircumferenceoftheabdomen,and
thusthesubcutaneousfatandtheperitonealandperirenal
spacesarealsohighlightedinredtones
To quantify the liver infiltrate, the radiologist utilizes
electronicdevicesthatcanchoosetheregionsinwhichthe
percentageoftheexistingfatistobecalculated.The
pres-ence of fat within a focal lesion of the liver aids in its
characterization(Figure8)
Normal values of liver fat
Fat content values below 6% are considered normal
MRcanidentifytriglycerideinfiltratesaslowas6-15%.The
fatpercentagefiguresobtainedintheparametricimageare
reproducibleintime,makingthemusefulinthediagnosis,
aswellasin thefollow-up of theprogressionof steatosis
undertreatment
In 2comparative, prospectivestudies, MR results have
beenmoreaccuratethanthoseofUSandCTstudiesforthe
diagnosisandquantificationofsteatosis.38 -40
MRalsohasspecialsequencesforstudyingtheironcontent
in theliver parenchyma and in other organs, such asthe
pancreas,spleen,andthe heart Itcan accurately detect
andquantifytheamountofirondepositedintheliver,with
reproducibility, and therefore is a useful tool for
diagno-sisandfor monitoring treatment response When thereis
alargeamount ofironaccumulationin thelivertissue,it
distortsthemagneticfieldandproducessignaldecayinthe
T1,T2,andT2*sequences
ThedualechoT1sequencecanmakearapidqualitative
appreciationoftheincreaseinthehepaticironcontentdue
tothefactthatinthissequencethedecaypresentsinthe
IPimage(Figure5eandf),incontrasttowhatoccursinthe
caseofsteatosis,asdescribedabove
The most well-known quantitative technique in our environment, and the most widely used in our depart-ment, is that of Gandon et al., from the University of Rennes, France, published on the university website: http://www.radio.univrennes1.fr/Sources/EN/Hemo.htlm Thestudycanbeperformedonvariousmagneticresonance machines, adapting the protocol to themagnitude of the available magnetic field,either at 0.5, 1.0,or 1.5T.The calculation is made ‘‘online’’ with a Java application providedbytheuniversity.41
The method is efficacious for ruling out the existence
of small parenchymal iron overloads, even when values are below 60mol Fe/g In contrast, the efficacy of the techniquecanbelostwhenthedepositsareveryintense, becausetheycause completeloss of theresonancesignal duetotheeffectthathepaticironproducesonthemagnetic field
Thereareother techniquesfor evaluatingparenchymal iron Among them, the so-called MRI R2 and R2* tech-nique canprovide parametricimagesthat reflecttheiron content in the liver and spleen (Figure 9) The results
of comparisons with liver biopsy have been dissimilar due to the heterogeneity of the iron deposits They are generally similar, but MR has the obvious advantages in treatmentfollow-upandpatientpreferencebecauseofits noninvasiveness.42,43
Normal and pathologic values of iron concentration
WiththetechniquedescribedbyGandonetal.,valuesof40
to100ml/mlrepresentaslightironoverloadinlivertissue, whereas valuesof 100 to200ml/ml correspond to mod-erateoverload,andthoseover300ml/mlindicatemajor overload,whichcansaturatethesequencesandfalsifythe readings.41The MRIR2-R2*measurestheparenchymaliron concentrationinmgofFe/g.42,43
The protocol utilized in our imagingdepartment includes thepresentationof2additionalnon-contrastenhancedMR anatomic sequencesthat areclinically useful: the above-mentioned T1-weighted sequence with IP and OP images that also serve the purpose of qualitatively evaluating
Trang 9Figure 9 Hemochromatosis.a)Inthecolorimetricmap,theredscorrespondtothehigherpartofthescale,indicatinggreateriron concentrationintheliverparenchyma.b)AlsonotethereddotintheamplifiedimageofthespleenproducedbytheGamna-Gandy sideroticbodies.c)Inaddition,theanatomicimageinT1ofthispatientshoweddecayoftheparenchymalsignalofthepancreas (arrow)andthepresenceofenlargedperipancreaticlymphnodes(arrows)inrelationtothehemochromatosis(d)
fat and iron, plus an axial T2 sequence They provide
an excellent anatomic image of the liver, the organs of
the upper abdomen, and the retroperitoneum, including
thegallbladderandbileducts, thespleen,intestine,
pan-creas,pancreaticduct,kidneys,adrenalglands,aorta,and
vena cava They can detect benign or malignant focal
lesions of the liver, in which case broadening the study
to include sequences with endovenous contrast medium,
whethergadoliniumorgadoxetic acid(Primovist®),should
beevaluated
The need for precise, reproducible, noninvasive methods
that arecapable ofdetecting thedifferent stages of CLD
derivesfromvariousfacts,amongwhichthefollowingstand
out:theincreaseindiseaseprevalence(whichinthecaseof
NAFLhasbeenqualifiedasepidemic),improvedknowledge
ofthepathology,andthegreatertherapeuticopportunities
(thathavealsomadethedecisionsthattheclinicianmust
makemorecomplex).44,45
Fibrosis
Even though there are still few opportunities for curein
advancedstages of cirrhosis, withthe exception of
trans-plantation, early or intermediate stages of fibrosis are
becoming entities that are treatable through preventive
means andother possiblycurative ones that can stop the
progression or enable the regression of fibrosis, such as
the new direct antiviral agents and certain experimental drugs.46 -50
The diagnosis of fibrosis as the central factor in CLD pathogeny acquires greater significance in this context Recent AASLD-IDSA guidelines point out that the correct evaluation of fibrosis is essential for evaluating treat-mentindication, andin somecases, itsduration.51 Inthe consensus meeting on the use of different elastography techniquesheldinDenver,Colorado, inOctober2014that includedinfectologists,hepatologists,radiologists, patholo-gists,biomedicalengineers,andFDArepresentatives,itwas establishedthatthepriorityfor givingantiviral treatment
topatientswithhepatitisBandCvirusesiscurrently deter-minedbythepresenceor absenceof moderate-to-intense fibrosis(F3orhigher).22
The MRE technique developed at the Mayo Clinic in Rochesterhas enrichedourdiagnosticcapacity by provid-ingtheclinicianwithawiderangeofinformationonfibrosis thatothertechnologiescannot.Amongthemare:
a) The sample of tissue volume examined through MRE
is significantly larger than that analyzed by ultra-soundmethods:Fibroscan®=approximately4cm3;ARFI pSWI=0.5to1cm3;andARFI2DSWE=20cm3,compared withapproximately250cm3oftheMRE22(Table2) b) Akineticimageissimultaneouslyobtainedthatconfirms thepassageofwavelengthsintheamplitudeanddepth
oftheorgan
c) Thepresentation of acolor elastographicmapenables thevisual evaluation of stiffness gradeand the homo-geneous or irregular distribution of fibrosis so that
Trang 10measurements directed by the image to the zone of
interestcanbemade
d) MREandUSE,whetherARFIpSWEorARFI2DSWE,provide
theanatomicimagesoftheliverandtheorgansofthe
upperabdomeninthesameprocedure,whichisnotthe
casewithtransitoryelastographythroughFibroscan®.22
e) Thepossibilityofquantifyingspleenstiffnessisanextra
advantage,andhowthismeasurementmightbea
predic-torofportalhypertensionisdiscussedfurtherahead.52
The specific fibrosis study protocol can be broadened
duringthe same MRE session with2 additional sequences
for quantifying the concentration and distribution of the
fat infiltrate, and if so desired, the measurement of the
ironcontentof theparenchyma, whichfrequently coexist
inpatientswithCLD
Unlike the USE techniques that have differing results
depending on the equipment manufacturer, making it
impossibletocomparetheir equivalence,the 3MRE
man-ufacturerscurrentlyapprovedbytheFDA(GeneralElectric,
Siemens,andPhillips)usethesameshearwavemanagement
methods,processingalgorithms,andimagedisplay,making
theirresultscomparable.22,53
Thissetofparametricdataobtainednoninvasively
qual-ifiesMRasthemethodthatprovidesthemostinformation,
comparedwiththeother diagnostic procedures,including
biologictests,USE,andevenbiopsy,withwhichithasshown
excellentconcordance.12,22,44,54
MREisalsothemethodthatguaranteesthegreatest
per-formancesuccess:inacaseseriesof141patients,Huwart
etal.obtainedsuccessfulstudieswithMREin133/141(94%),
comparedwith118/141(84%)withtransitoryelastography,
inadditiontoobtaininggreaterdiagnosticefficacy.13Similar
resultshavebeenreportedintherecentstudybyIchikawa
etal.55
TheefficacyandcorrelationofMREwithliverbiopsyhas
beenthemotivationforanincreasingnumberofstudies.The
2012meta-analysisbyWangetal.showedthattheefficacy
ofMREfordiagnosingfibrosisprovidedfiguresof0.95,0.98,
0.98,and0.99undertheAUROCcurve.56Theseauthorsalso
statedthatliverstiffnessmeasuredwithMREincreasedin
parallelwiththegradeoffibrosis:whentherewasgreater
stiffness,therewasmorefibrosis.Huwarthetal.reported
thatin 141patients in whomliverbiopsy wasperformed,
theMREareasundertheAUROCcurvewere:0.994forF≥
2;0.985forF≥3;and0.998forF=4.13
A meta-analysis carried out in 2014 by Su et al that
included989patientsin13studies,showedgreatdiagnostic
efficacyofMREforthedetection,quantification,andstaging
ofliverfibrosis.Themeansensitivityandspecificityfigures
for:F≥1,F≥2,F≥3,andF≥4were:0.87,0.92,0.87,
and0.92,respectively.57
Anothermeta-analysisconductedby Singetal.in2015
that included 697 patients, 92.1% of whom had less than
aone-yearintervalbetween MREandbiopsy, showedthat
themeanvaluesoftheareaundertheAUROCcurve(with
a95% confidence interval)for the diagnosis of anystage:
negativefibrosis (≥ stage 1), significant fibrosis (≥ stage
2),advancedfibrosis(≥stage3),andcirrhosis,were:0.84
(0.76-0.92), 0.88 (0.84-0.91), 0.93 (0.90-0.95), and 0.92
(0.90-0.94),respectively.58 Inaddition, thepercentage of
procedurefailuresinthe697patientscollectedinthesame meta-analysis was4.3%, a verylow figure comparedwith othertechniques.TheauthorsconcludedthatMREishighly efficaciousforthediagnosisofsignificantoradvanced fibro-sisandthattheresultisindependentofbodymassandCLD etiology
MRE is an efficacious tool for following the progres-sionofpatientswithCLDanditsmeasurementshavebeen proven to be reliable, repeatable, and reproducible.59 -61 ThepossibilityofMREreplacingliverbiopsyfordiagnosing fibrosishasbeenexpressedinseveralstudies,emphasizing the fact that the tissue volume analyzed in MRE is sub-stantially greater than that in liver biopsy, which is only 0.2%oftheparenchyma,andthereisnoinformationabout whetherthe distributionofthe infiltratesishomogeneous
orheterogeneous.13,16,43,44,59
Portal hypertension
Examination of the liver by MRE has also awakened the interest instudying splenic viscoelasticityand itspossible relationtothedevelopmentofportalhypertension.The cor-relationbetweentheincreaseinstiffnessofthespleenand thepressuregradientofthehepaticveins(HVPG)hasshown promisingresultsforthedetectionofsevereportal hyper-tensionandthepresenceorabsenceofesophagealvarices TheexperimentalstudiescarriedoutbyNedredaletal andYinetal.24,25withMREonanimalsfoundthattherewas
asignificantcorrelationbetweenspleenstiffnessmeasured withMRE andthe HVPG In their preliminarystudy on 38 patientswithCLD,Talwalkar etal demonstrateda signif-icant correlation between the stiffness of the spleen and thatoftheliver,withincreasedsplenicstiffnessinthemore advancedstagesofliverfibrosis(Figure3h).Amean stiff-ness≥10.5kPahasbeenconsideredamarkerofhigh-grade esophagealvarices.24,25,28
The majority of thosestudies have been basedon the measurement of stiffness of the liver and spleen Ronot
etal.recentlyutilizedathree-dimensionalMREtechnique (3DMRE),measuring3parameters:stiffness,elasticity,and viscosityofthespleen.Theyconcludedthat3DMREis use-ful for: a)noninvasively estimating theincrease in HVPG, b)detecting high-riskesophagealvarices,andc) recogniz-ing advanced portal hypertension.29 Likewise, Shin et al found a linear correlation with the endoscopic grade of esophageal varices, using the 3DMRE techniques.30 The abovementioned works constitute progress in the knowl-edge of portal hypertension and even though they do not replace endoscopy or HVPG measurement, they rep-resent an advance that can be useful in the selection of patientsthatrequiretreatment,anditshouldcontinuetobe studied.23
Steatosis
Anotherareaofrenewedinterestindiagnosisthrough para-metric imaging has been the diagnosis of steatosis This interesthasbeenbroughtaboutbytheincreaseinobesityin thegeneralpopulation,whichisthemostfrequentcauseof fatinfiltrateintheliver.Theriseinobesityhasbeen