Determinants of reverse knowledge transfer for emerging market multinationals the role of complexity, autonomy and embeddedness R F Q1 A S m s a o o e © P K R S s a F – 0 b 1 2 3 4 5 6 7 8 9 10 11 12[.]
Trang 1Revista de Administração
http://rausp.usp.br/ Revista de Administração xxx (2016) xxx–xxx
emergentes: el papel de la complejidad, la autonomía y la integración
Franciane Freitas Silveiraa,∗, Roberto Sbragiab, Henry Lopez-Vegac, Fredrik Telld
Q1
aUniversidade Federal do ABC, São Bernardo do Campo, SP, Brazil
bUniversidade de São Paulo, São Paulo, SP, Brazil
cJönköping University, Jönköping, Sweden
dUppsala University, Uppsala, Sweden
Received 29 June 2016; accepted 19 August 2016 Scientific Editor: Maria Sylvia Macchione Saes
Abstract
Subsidiariesconductinnovationactivitiesinforeignmarketseithertocapturevaluableknowledgethatisnecessarytoadapttheirproductstolocal marketsortocreatevaluableknowledgeforheadquarters.Foremergingmarketmultinationals,moststudieshaveoverlookedthedeterminantsof successfulreverseknowledgetransferfromsubsidiarieslocatedinemerginganddevelopedmarkets.Thispaperanalyzedtheresponsesofasurvey administeredto78Brazilianmultinationalsthatownsubsidiariesindevelopedandemergingmarkets.Wefoundthatknowledgecomplexity devel-opedatthesubsidiary,itsautonomyandembeddednessintheforeignmarketdeterminethesuccessfulreverseknowledgetransfertoheadquarters
ofemergingmarketmultinationals.Thispapercontributestopreviousstudiesofreverseknowledgetransferbyunderlyingthemaindriversfor emergingmarketmultinationals
©2016DepartamentodeAdministrac¸˜ao,FaculdadedeEconomia,Administrac¸˜aoeContabilidadedaUniversidadedeS˜aoPaulo–FEA/USP PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)
Keywords:Reverse knowledge transfer; Emerging multinationals; Brazilian multinationals
Resumo
Subsidiáriasrealizamatividadesdeinovac¸ãoemmercadosestrangeiros,querparacapturaroconhecimentovaliosoqueénecessárioparaadaptar seusprodutosaosmercadoslocaisouparacriarconhecimentodealtovalorparaasede.Nocontextodemultinacionaisdemercadosemergentes,
amaioriadosestudostêmnegligenciadoosdeterminantesdatransferênciadeconhecimetnoprovenientesdesubsidiárias(transferênciareversa) Foramanalisadasasrespostasdeumapesquisarealizadacom78multinacionaisbrasileirasquepossuemsubsidiáriasemmercadosdesenvolvidos
∗Correspondingauthorat:AlamedadaUniversidade,s/n◦–CEP09606-045,SãoBernardodoCampo,SP,Brazil.
E-mail:franciane.silveira@ufabc.edu.br (F.F Silveira).
Peer Review under the responsibility of Departamento de Administrac¸ão, Faculdade de Economia, Administrac¸ão e Contabilidade da Universidade de São Paulo – FEA/USP.
http://dx.doi.org/10.1016/j.rausp.2016.12.007
0080-2107/© 2016 Departamento de Administrac¸˜ao, Faculdade de Economia, Administrac¸˜ao e Contabilidade da Universidade de S˜ao Paulo – FEA/USP Published
by Elsevier Editora Ltda This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Trang 2eemergentes.Verificou-sequeacomplexidadedoconhecimentodesenvolvidonasubsidiária,bemcomoasuaautonomiaeinserc¸ãonomercado externodeterminam ofluxodetransferência reversadeconhecimento naempresamultinacional emergente.Estetrabalhoenriquece estudos anterioressobretransferênciareversadeconhecimentodestacandoosprincipaisdriversparaasmultinacionaisdosmercadosemergentes
©2016DepartamentodeAdministrac¸˜ao,FaculdadedeEconomia,Administrac¸˜aoeContabilidadedaUniversidadedeS˜aoPaulo–FEA/USP
PublicadoporElsevierEditoraLtda.Este ´eumartigoOpenAccesssobumalicenc¸aCCBY(http://creativecommons.org/licenses/by/4.0/)
Palavras-chave: Trasnferência reversa de conhecimento; Multinacionais emergentes; Multinacionais brasileiras
Resumen
Filialesrealizanactividadesdeinnovaciónenlosmercadosextranjeros,yaseaparacapturarelconocimientovaliosoqueesnecesarioparaadaptar susproductosalosmercadoslocales,oconelfindecrearconocimientodealtovalorparasusede.Respectoalasmultinacionalesdemercados emergentes,enlamayorpartedelosestudiosnosehadadoladebidaatenciónalosfactoresdeterminantesdelatransferenciadeconocimientoa partirdefiliales(transferenciainversa).Enesteestudioseanalizanlasrespuestasdeunaencuestarealizadaa78multinacionalesbrasile˜nasque poseenfilialesenmercadosdesarrolladosyemergentes.Losresultadosindicanquelacomplejidaddelconocimientodesarrolladoenlafilial,así comosuautonomíaeinserciónenelmercadoexternodeterminanelflujodetransferenciainversadeconocimientoenlaempresamultinacional emergente.Con estetrabajo,secolabora aldesarrollodelosestudios acercadelatransferencia inversadeconocimiento,conénfasis enlos principalesdriversparalasmultinacionalesdemercadosemergentes
©2016DepartamentodeAdministrac¸˜ao,FaculdadedeEconomia,Administrac¸˜aoeContabilidadedaUniversidadedeS˜aoPaulo–FEA/USP
PublicadoporElsevierEditoraLtda.Esteesunart´ıculoOpenAccessbajolalicenciaCCBY(http://creativecommons.org/licenses/by/4.0/)
Palabras clave: Transferencia inversa de conocimiento; Multinacionales emergentes; Multinacionales brasile˜nas
Introduction
Themultinationalenterprise(MNE)isadifferentiated
net-workinwhichitscontrolledsubsidiariesvarywidelyinterms
of duties andresponsibilities(Nohria &Ghoshal, 1994).For
example,whilesomesubsidiariesevolvethroughthe
headquar-ters’mandatesothersfocusontheirowninitiatives(Mudambi,
Piscitello,&Rabbiosi,2014).Sincethelate1990s,the
recog-nitionthat headquarters operate as knowledge receivers from
their internationally dispersedsubsidiaries hasgained
signifi-cance ininternational business research (Ambos, 2015).The
strategicimportanceoftheMNE’subsidiarieshascontinuedto
grow,inthatitisan accesspathwaytoknowledgeandtothe
technology situatedatthesubsidiaries’localmarkets (Borini,
Oliveira,Silveira,&Concer,2012;Criscuolo&Narula,2007;
Frost &Zhou, 2005), whichcanactively contribute to value
creationandsubsequentgainofcompetitiveadvantageforthe
entireMNE(Bartlett&Ghoshal,1989;Cantwell&Mudambi,
2005;Yang,Mudambi,&Meyer,2008)
An underlying idea is that MNE make use of knowledge
generatedbyforeignsubsidiaries Fromthisperspective,
sub-sidiaries upgrade their competence enhancing role such as
market expansion,costreduction andsupplieradaptation and
begintoplayamoreactiverole throughknowledge
develop-ment For example, foreign subsidiaries might develop new
products, newtechnologies, create new practices, new skills
thatwilllatershapetheirowncompetencecreatingpathwaysas
wellasaccumulatedifferentdegreesoftechnologicalcapability
(Birkinshaw,1997;Borinietal.,2012;Borini,Costa,Bezerra,&
Oliveira,2014;Cantwell&Mudambi,2005;Figueiredo&Brito,
2011;Frost,Birkinshaw,&Ensign,2002;Ghoshal&Bartlett,
1988; Govindarajan & Trimble, 2012; Mudambi, Mudambi,
&Navarra,2007; Nohria&Ghoshal,1997).Moreover,
com-petence creating subsidiaries could enhance their innovation
outcomes which enables them to compete domestically and internationally (Bell & Pavitt, 1995; Cantwell & Mudambi, 2005;Figueiredo&Brito,2011).Fromasubsidiaryperspective, reverseknowledgetransfer(RKT)givesvisibilitytosubsidiaries thatcouldleveragetheirstrategicpositioninthemultinational network(Borinietal.,2012;Holm&Pedersen,2000)
Thesefactorshavehighlightedthatreverseknowledge trans-ferisakeyvariableinthestudyofcross-borderknowledgeflows
inMNEs(Ambos,2015).Asaresult,theknowledgetransferin thereversedirection,thatis,fromsubsidiariestoMNE headquar-ters,hasemergedasaprominentthemeininternationalbusiness studies(Ambos,2015;Ambos,Ambos,&Schlegelmilch,2006; Q2
Criscuolo, 2005;Frost&Zou, 2005;Gupta&Govindarajan,
2000; Hakanson & Nobel, 2001; Rabiosi, 2008; Rabiosi & Santangelo, 2011;Rabiosi, 2011;Yangetal., 2008).Whilea numberofarticlesexploretheantecedents,successamountand successkey-factorsindifferentfunctionalconFigurationsatthe multinationalcorporation(Ambos,2015),additionalresearchis needed (Michailova&Mustaffa,2012).First,sincethe trans-fer ofknowledge inMNEs hasgrown considerablyin recent years,becomingthereforemorepronetovariousdefinitionsand measurementsofthesameconstructsresultinginconclusions, oftencontradictoryandambiguous.Second,whilerecognizing theimportanceofinvestigatingtherelationshipofthesubsidiary withexternalcompanieslocatedinthehostcountries,the liter-ature often focusesonly onthe research of knowledge flows within theMNE.Thisnarrowattentionconsiderssubsidiaries areprimarilyrecipientsofknowledge(Michailova&Mustaffa,
2012)
Fromemergingmultinationalsenterprises(EMNEs)’s view-point, the ability to transfer knowledge in reverse direction seemstobeevenmorecrucial Forexample, authorssaythat the EMNEsstrategicmodelsareguidedbythepursuitof for-eigncapabilities,suchastechnologicalknowledge,whichcan
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
Trang 3becombinedwiththe existingresources(Bartlett&Ghoshal,
2000).Thatissobecause,insteadofinternationalizingtoutilize
existingadvantages,emergingmarketmultinationalswill
inter-nationalizeaimingatacquiringnewadvantagesandcapabilities
(Guillén&García-Canal,2009;Mathews,2006;Ramamurti&
Singh,2009)andshouldtodoitquickerthantraditional
multi-nationalsdidintheirexpansionpaths(Mathews,2006)
InthecontextofBrazilianmultinationals,recentstudieshave
soughttounderstandtheprimaryfactorsthatinfluencetheRKT
ThestudyofBorinietal.(2012)arguesthatthereverse
knowl-edge transfer is a function of the strategic guidance of the:
(1)subsidiaries’R&Dlaboratories,(2) integration
(communi-cation) betweenheadquarters and subsidiaries, (3) subsidiary
entrepreneurialorientation,(4)subsidiarylifetimeand(5)entry
viagreenfieldinvestments.Moreover,thestudyofBezerraand
Borini(2015)teststheimpactthatanationdevelopmentexerts
onthereverseinnovationtransferinproductsandprocesses.In
thisstudy,theysoughttounderstandwhichdeterminantsofRKT
arepresentinBrazilianmultinationals.Inourstudy,weshowthat
RKTisrelatedtothedegreeof:(1)knowledgecomplexitythatis
being transferred, (2) subsidiary autonomy and (3) external
embeddednes.Ashighlightedbynumerousauthors(Mimbaeva
etal.,2007;VanWijk,Jansen,&Lyles,2008),suchaspectsare
Q3
identifiedaskeyonesforunderstandingtheRKTphenomenon
Althoughtherearemanykindsofknowledgetobetransferred
throughconventionaland/orreversedirection,thisstudyfocuses
specificallyonthetechnologicaltypeofknowledge(ofproduct
andprocess).Ourfindingsarebasedinananalysisofthesurvey
responsesadministeredto78Brazilianmultinationalsthatown
subsidiariesindevelopedandemergingmarkets
Asacontribution,itisexpectedthatourstudyadds
knowl-edgetotheinternationalbusinessestheory,sincetheknowledge
transferhasbeentreatedasakeyfactorofcompetitiveadvantage
ofMNEs(Borinietal.,2012,2014;Govindarajan&Ramamurti,
2011)and,specifically,oftheemergingmultinationals
compa-nies(Cuervo-Cazurra,2012;Immelt,Govindarajan,&Trimble,
2009;Ramamurti,2008).Sincemostresearchthatexplainsthis
phenomenonisbasedonMNEswithsubsidiariesand
headquar-tersindevelopedcountries,lessaffectedbyinstitutionaldistance
(Rabbiosi,2011;Yangetal.,2008),onecannotassumethatthe
Q4
factorsthatinfluenceRKTfromforMNEsarethesameasthose
forEMNEs(Borinietal.,2016).Apractitionercontributionof
thisstudyseekstoinformEMNEmanagersaboutthestrategic
driversofRKT
Thispaperisstructuredasfollows:thenextsection,
“Con-Q5
ceptualframework”sectionpresentstheproposeddeterminants
ofreversetechnologytransfer.“Methodology”sectionoutlines
our research strategy and field procedures “Findings”
sec-tionpresentsourresultsanddiscussestheimplicationsofour
findingsforfirmsinemergingmarkets.Finally,“Conclusion”
sectionpresentsourmainconclusions,somelimitationsofthe
study,andavenuesforfurtherresearch
Theliteraturearguesthatknowledgetransfer,whether
aris-ingfrominternalorexternalsources,hasanimportantimpact
onorganizationalperformanceandinnovationcapacity(Lyles
&Salk,1996;Powell,Koput,&Smith-Doerr,1996;Tsai,2001; VanWijketal.,2008).Theunderlyingideaisthatthetransferred knowledge contributes to the development of organizational capabilities that are difficult to imitateand can later lead to betterperformance(Szulanski,1996).Knowledgetransfer sti-mulates the combination of the existing knowledge with the newly acquired oneandincreasesthecapability of aunitfor carrying out new combinations (Jansen, Van Den Bisch, & Volberda,2005)
However, transferringknowledgebetween unitsof asame organizationisnoteasierthanconductingexternalknowledge transfers(Kogut&Zander,1992).Thisisparticularlythecase whenitcomestoRKT.Thisprocesscanbeevenmore challeng-ing,sincewhile“[ ]theconventionaltransferisaprocessof teaching,thereversetransferisaprocessofpersuading(Yang
etal., 2008)” Inthiscase, the effortismuch higherbecause its effectiveness depends on convincing headquarters There-fore,thetransferdependsonheadquarter’sassessmentthatthe featuresandrelevanceofthesubsidiary’sknowledgeiscrucial
sothatthereversetransferdoesoccur.TheRKTisdefinedas
“an intra-organizationalexchange of information, technology
or know-how frominternational subsidiaries(located in host countries)tocorporateheadquarters(homecountries).Theterm
‘reverse’ is usedto distinguishthesetransfers fromthe more conventional formof ‘forward’transfers – fromheadquarters
tosubsidiaries–,and‘lateral’transfers betweensubsidiaries” Q6
(Ambos,2015)
Somestudieshavehighlightedthatsubsidiariescreate com-petitive advantages for MNEs when valuable knowledge is transferred to the headquarters (e.g Gupta & Govindarajan,
2000;Hakanson&Nobel,2001;Rabbiosi,2011; Yangetal.,
2008).ForMNEs,someof the determinants ofRKT include the:(1)knowledgefeaturesbeingtransferred(Mimbaevaetal., 2007),(2)organizationalcharacteristics(size,age,autonomy) (Frostetal., 2002;Gupta&Govindarajan,2000),(3) roleof organizational mechanisms (Hakanson & Nobel, 2001; Rab-biosi, 2011), (4) the subsidiaries’ roles (Ambos et al., 2006; Rabbiosi, 2011;Yang etal., 2008),(5) thehost country eco-nomicdevelopment(Cantwell&Mudambi,2005;Frostetal., 2002;Gupta&Govindarajan,2000),(6)theabsorptivecapacity (Ambosetal.,2006),(7)theknowledgerelevance(Yangetal.,
2008),(8)theinternalembeddedness(subsidiary/headquarters) and (9) the external embeddedness (subsidiary/partners) (Figueiredo,2011;Meyer,Mudambi,&Narula,2011)
Following, it is explained how knowledge characteristics, suchascomplexity,autonomy,andexternalembeddedness influ-enceRKTfromsubsidiariestoheadqueartersofEMNEs
Subsidiary’s autonomy
Subsidiary’s autonomy could be defined as the extent to which a subsidiary is allowed to make decisions on its key strategic issues(Mudambi &Navarra,2004),withouta head-quartersdirectintervention(Roth&Morrison,1992).Ahigher level of autonomyisoftenrelatedtoknowledge creationand development at the MNE (Ghoshal & Nohria, 1989; Gupta
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
198
199 200 201 202 203 204
Trang 4&Govindarajan,1991;Nohria &Ghoshal,1994),since
inde-pendentsubsidiaries,(1)havestrategicmandates(Birkinshaw,
Hood,&Jonsson,1998),(2)make quickdecisions(Cantwell
&Piscitello, 1999),(3)recognizeandtakeadvantageof local
opportunities(Frostetal.,2002),(4)developnewknowledgeas
oflocalknowledgebases(Andersson,Forsgren,&Holm,2002),
(5)generateintrinsicmotivationonindividuals(Mudambietal.,
2007),(6)haveinitiativeandwillingnesstosharetheknowledge
acquired(Gupta&Govindarajan,2000;Tsai,2002).Onthe
con-trary,alowlevelofautonomy,maylimitthesubsidiaryfreedom,
hindering its knowledge creation anddevelopment capability
(Ghoshal & Bartlett, 1988) Foss and Pedersen (2002) also
explainthathighlevelsofsubsidiaryautonomy–associatedwith
lossofcontrol–couldbeovercomedbytheincreasein
knowl-edge exchange amongst subsidiaries While opposite results
havealsobeenreported(Frostetal.,2002;Gammelgaard,Holm,
&Pedersen,2004),mostresearches havesuggestedmainlya
positiverelationshipbetweenknowledge decentralization and
transfer(Cantwell&Mudambi,2005;Foss&Pedersen,2002;
VanWijketal.,2008)
Recently,Rabiosi(2008)arguedthat RKTiscoupledwith
subsidiary autonomy, i.e mechanisms of personal
communi-cation between subsidiary and headquarters Yet, regarding
subsidiaries of EMNEs, it is argued that, dueto their recent
progressintheinternationalmarketand,therefore,duetotheir
earlyage, theyarestronglydependent onheadquarters’
deci-sionmakingpower(Dunning,1993).Thismightnotbedifferent
inBrazilianMNEs,thattendtobemorecentralizing,limiting
therefore their subsidiaries’ knowledge creation possibilities
(Chu&Wood,2008).Thisisanunfavorablesituationforthe
developmentofexistingandnewknowledgeattheheadquarter
However,inthesamewayastraditionalMNEs,the
international-izationprocessofEMNEsrequiresthecapabilitytoacquireand
developknowledge(Mathews,2006).Hence,subsidiariesplay
acentralroleinthepursuitofnewknowledge(Borini&Fleury,
2011) Different authors state that EMNEs survival depends
evenmoreheavilyonresourcesthathavebeendevelopedabroad
whencomparedtothemultinationalsfromdevelopedcountries
(Guillén&García-Canal,2009;Mathews,2006).Therefore,this
studyadvocatesthatsubsidiaryautonomyiscriticalforRKTin
EMNEs,whichallowsustohypothesizethat:
H1. The greater the subsidiary autonomy, the greater the
reverseknowledgetransfer
Knowledge complexity
The increasing specialization and sophistication in R&D
requires companies to integrate distinct knowledge areas to
developnewproducts.Asaresultknwoledgeturnstobehighly
complexanddifficulttoconductintra-knowledgetransfers.A
paradox emerges: the greater the number of functional areas
andscientific disciplines necessary todevelop newproducts,
themorecomplexitistotransfertheknowledge(Ciabuschi&
Martín,2012).Knowledgecomplexityisassociatedtothe
ampli-tudewhichistheextentofspecializationfields(Grant,1996)and
theambiguityofthereferencedknowledge(Reed&DeFillippi,
1990) The greater the number of techniques, organizational routines,peopleandresourcesinvolvedthatareconnectedtoa particularknowledge,themorecomplexitbecomes.These con-ditionsmoderatetheinformationamountthatmustbeprocessed fortheunderstandingofcomponentsinvolved(Simonin,1999) Thus, management scholars tend to agree on the idea that complexity hinders knowledge transfersince it decreases the receiver’sabilitytoidentify,understandandintegratethe knowl-edgetobeacquired(Simonin,1999).Yet,oppositeresultshave been found in the literature (Mimbaeva et al., 2007) Since, complexknowledgeisthemostvaluabletothecompany’s com-petitiveness.Studieshaveshown,forexample,thatglobalteams areabletosharecomplexknowledgethroughrulesandcodes commontotheexchangingarea(Reddy,2008) Q7
IntheEMNEperspective,additionaleffortstosharethiskind
of knowledgecanbe advantageoussince,as itsimitationand substitution is hampered,it may be usefultothe building of strategic capabilities (Nair,Demirbag, &Mellahi, 2015)due
to the prevailing need to use the available foreign resources (Mathews, 2006) A study conducted in Indian multination-als, for example, found that RKT happens regardless of the knowledgecomplexity.InBrazilianMNEs,itissuspectedthat onlylesscomplexknowledgefromsubsidiariesistransferredin reversedirection,consideringthattheforeignsubsidiariesrole
isdeterminedbytheBrazilianheadquarters(Galina&Moura,
2013) whichstill holds greatercentralization inthedecisions andinnovations.Accordinglyit wasformulatedthefollowing hypothesis:
H2. Thelowerthecomplexityofthesubsidiary’sR&D knowl-edge,thegreaterthedegreeofreverseknowledgetransfer
Local embeddedness
EmbeddednesisrelatedtothenotionthatMNE’scompetitive performancecanbefacilitatedthroughthesocialrelationships they create with several business players such as customers, universities and local research institutions (Grabher, 1993; Granovetter, 1985; Uzzi, 1996) More specifically, embed-dedness refers to the mutualadaptation of activitiesbetween two companies as much as a common understanding of the collective targets and appropriate ways to work in a social system (Tsai & Ghoshal, 1998) Therefore, it is considered
as astrategic resourcefor MNEs.It provides easyaccess to the resources and capabilities that are outside the company (Anderssonetal.,2002;Uzzi&Gillespie,2002)thatareable
to generate a large knowledge transfer among the partners (Figueiredo,2011;Uzzi&Gillespie,2002)
Thedegreeofembeddednessbyforeignsubsidiaries, mea-sured by the proximityto localpartners, reflects subsidiary’s abilitytoabsorbknowledgefromitslocalnetwork,which some-timesmightresultinnewknowledgecreation(Andersonetal., Q8
2002).Thisscenariotendstodirectlyfostersubsidiary’s innova-tivecapacity,i.e.improvementofexistingproductsandservices
or newproduct,service,technologydevelopment(Andersson,
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
287 288
289
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
Trang 5etal.,2002;Håkanson&Nobel,2001;Yamin&Otto,2004)
Indirectly,localsubsidiaryembeddednesscanfosterknowledge
transfertootherMNE’sunits(Powelletal.,1996;Yamin&Otto,
2004),constructing,inturn,thesubsidiary’spowerrelationships
withintheMNE(Andersson,Forsgren,&Holm,2007)
Higher levels of subsidiary embeddedness are related to
an understanding of the context in which the local
knowl-edgeresides Frequently,subsidiariesinteract withits closest
networkof local companiesandinstitutions inordertolearn
aboutcustomersandtechnologiesand,therefore‘capture’the
localknowledge(Figueiredo,2011).Subsequently,itmustuse
theconnectivityalreadyestablishedwithin theMNEnetwork
for transferring the knowledge in reverse direction (Meyer
et al., 2011; Najafi-Tavani, Giroud, & Andersson, 2013)
RegardingMNEs of emerging markets,Child andRodriguez
(2005),Mathews(2006)andLuoandTung(2007)emphasize
the importance of relationships and knowledge opportunities
availableatsubsidiarieshostingmarkets.Forexample,
provid-ing easy access to technologies found in developed markets
(Figueiredo,2005).RamamurtiandSingh(2009,pp.126–127)
showthatEMNEscanpursueseveraldifferentstrategies,such
as“low-costpartners”,“globalconsolidators”and“globalfirst
movers”.Basedonthesearguments,thefollowinghypothesisis
suggested:
H3. Thegreatertheembeddednessofaforeignsubsidiary,the
higherthereverseknowledgetransfer
Methodology
Sample and data collection
Thesample ofthisstudyconsists of BrazilianMNEswith
manufacturing,salesorR&Dsubsidiariesabroad.Weexpected
thatsubsidiarieswithmorestrategicactivitieswouldhavemore
opportunitiesoftransferringknowledgetotheheadquartersin
reversedirection.Thedatawascollectedusinganeletronic
sur-veywithBrazilianMNEssubsidiariesestablishedabroad(see
Appendix1).Duetothenon-existenceofanofficialnumberof
Brazilianmultinationalsowningsubsidiarieswitheither
man-ufacturingorR&Dcentersinstalledabroad.Thefirststepwas
toidentifyBrazilianmultinationalspresentingthese
character-isticsfromsecondarydatasources,suchasGINEBRAProject
(Management System for the Internationalization of Brazilian
Enterprises) that resulted in the publication ‘Business
Man-agementfor the Internationalization of BrazilianCompanies’
(coordinatedbyFleury,2010),anannualsurveyoftheFundac¸ão
DomCabral(Dom Cabral Foundation),ValorEconômico
(Eco-nomic Value),andSOBEET(Brazilian Society of Transnational
Corporations)surveysaswellasdatafromtheBrazilian
Multi-nationalsObservatory(Center of Brazilian Multinationals)of
theESPM(School of Higher Education in Advertising and
Mar-keting).
Inthissecondarysources,63multinationalcompanieswere
listed, being possible to identify 240 subsidiaries with
for-eign manufacturing operations and/or R&D centers Of this
population,39Brazilianmultinationalsparticipatedinthe sur-vey (61.9%), with 78 responses, corresponding to 32.5% of allsubsidiaries.Thismeansthatinsomecasesresponseswere receivedfrommorethanonesubsidiaryperheadquarter
Intheattempttoidentifypossibleshortcomingsor misunder-standingsinthesurvey,apre-testwasconductedtogetherwith specialists from academiaandindustry (Cooper&Schindler,
2003)whichhelptogeneratenewinsightsandadjustmentsin thequestionnaire.Following,theelectronicsurveywassentto participants,withafollow-upphone-calltoclarifyanyquestions fromrespondents.Thetotalperiodofdatacollectionwasfive months,from October 2013up toFebruary2014 Responses werecollectedfrom R&Doffices andthe respondentsranged fromsubsidiarydirector,internationalbusinessandR&D direc-tor,andengineeringmanagers
Measures Dependent variable
Thedependentvariable(reverseknowledgetransfer–RKT) represents, overthelastthreeyears, therate ofRKTof tech-nologyand market knowledge that the subsidiary transferred back tothe headquarters.In ordertodetailthetypesof tech-nologicalcontent,itwasappliedtheIammarino,Padilla-Pérez, andVonTunzelmann(2008)scale,whichwasvalidated previ-ouslybyotherauthors(Lall,1992;Bell&Pavitt,1995;Ariffin andFigueiredo(2003)),whorankthetechnologicalknowledge Q9
transferintermsofproductandprocess.Onafive-pointscale (rangingfrom1“notatall”to5“toaverygreatextent”).For ensuring therobustnessresults,itwas alsoinsertedadummy variablewhichallowedtherespondenttoindicatethecasesin whichthe subsidiaryhadneverdone orhaddone thereverse transferofaspecificproductorprocessknowledge(0or1)
Independent variables
The knowledge complexity construct measures the num-ber of interdependenttechnologies, routines, individuals,and resources linkedtoaparticularknowledge orasset(Simonin,
1999).Moreover,thecomplexityconstructwasmeasuredusing
a six-item Likert scale based on responses (1=strongly dis-agree;5=stronglyagree)(adaptedfromSimonin,2004;Zander
&Kogut,1995).Thesubsidiaryautonomymeasureindicatesthe extenttowhichasubsidiaryisallowedtomakedecisionsabout itskeystrategicissues(Rabbiosi,2011).Themeasureof sub-sidiaryautonomywasbasedonascaleoriginallydevelopedby
GhoshalandNohria(1989)andlaterusedbyBirkinshawetal (1998)andRabbiosi(2011).Afive-itemLikertscaleassessedit Thesubsidiaryembeddednessindicatesthecollaborationdegree withthelocalnetworks.Inparticular,thisstudyfocusesonthe subsidiary embeddedness withlocalcustomersandsuppliers ThisconstructwasdevelopedbasedonAnderssonetal.(2002, 2005).Afive-itemLikertscaleassessedit
Controls variables
The MNE literaturesuggestsseveralfactorsthat might be correlatedtoRKT.Inparticular,itisexpectedthatsubsidiaries
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
412 413 414
Trang 6morelikelytotransferreverseknowledge
Subsidiary location. Thehostcountryhasbeenrelatedto
fac-tors that impact the subsidiary development and positioning
(Birkinshaw & Hood, 1998; Gupta & Govindarajan, 2000;
Mudambi&Cantwell,2005;Rabiosi,2011)aswellasthenature
Q10
ofRKT(Yangetal.,2008).Particularly,thishappensbecausethe
subsidiary’scapabilitiesandskillscouldreflectthecountry
tech-nologicalandinstitutionalforces,suchaslegalandinstitutional
factors(forexamplepatentprotectionandindustrialincentives)
that ensure the proliferation of innovation The assumption,
therefore,isthatcompaniesinemergingmarketsgetinvolvedin
lessinnovationthancompaniesindevelopedmarkets,duetothe
lackofhightechnologyinemergingmarkets(Vernon-Wortzel&
Wortzel,1998).Thus,thehighertheeconomicdevelopmentof
thesubsidiary’shostcountry,thegreaterthebenefitsearnedby
theheadquartersarisingfromthetransferredknowledge(Frost
etal.,2002)
Foremerged market MNEs, subsidiarieslocated in
devel-opedor high-incomecountriescanimpacttherate andspeed
ofRKT,sincetheresourcesavailableinthesemarketscanhelp
increasetheheadquartersbreadthandnovelty(Mathews,2006)
Onthecontrary,Aulakh(2007)andCuervo-CazurraandGenc
Q11
(2008)arguethatemergingmarketMNEshavethesame
knowl-edgeresourcesthanthoseoperatingindevelopedcountries.In
thespecificcaseofBraziliancompanies,Bezerraetal.(2015)
Q12
have concluded that MNEs’ Brazilian subsidiarieslocated in
developedcountriestransfermoreknowledgeinreverse
direc-tion thansubsidiarieslocatedin emergingcountries.In order
tocapturethesubsidiarylocationeffectsonthelevelsofRKT,
thedummyvariablelow-incomecountries(0)andhigh-income
countries(1)wereaddedtothemodel
Subsidiary’s age. Moreancient subsidiariescouldhavesome
advantagesoverneweronesdueto(1)theincreased
informa-tionandresources,(2)thehigherdevelopmentofR&Dskills,
(3)acquiredexperienceandexpertise,and(4)increasedlearning
curveeffects.Thereforetheymightbelessdependenton
knowl-edge from headquarters (Foss & Pedersen,2002; Yamin and
Otto,2004).Previousstudiesshowbothpositiveandnegative
effectsoforganizations’sageregardingthelearningand
innova-tionoutcomes(Sørensen&Stuart,2000).Whilepositiveeffects
are justified by the knowledge increase, accumulated
experi-ence and possession of stronger relationships with suppliers,
andcustomersthatenabletheinnovationprocessimprovement
(Cohen&Levinthal,1990).Negativeeffectsareassociatedwith
upgrade difficulties of more mature companies with external
technologicaladvances,attheriskofbecominginertandlimited
forlearningandadaptingtonewcircumstances.Inotherwords,
thereisalossofinnovativecapacity(Sørensen&Stuart,2000;
Tushman&Anderson,1986)
Inthisregard,intheBrazilianmultinationalscontext,Bezerra
etal (2015)found that theyounger asubsidiary, the greater
its extent of RKT.Thus, despite the inconclusivefindings of
subsidiaries’age,itisexpectedthatoldersubsidiariesaremore
likelytodevelopandtransferbackknowledgetoheadquarters
than recentlyestablished subsidiaries Particularly, duetothe periodofexistenceofBraziliansubsidiariesismuchlowerwhen comparedtoemergedmarketsubsidiaries.Inordertocapturethe subsidiaryageeffectsonthelevelsofRKT,thedummyvariable young(0)andoldsubsidiary(1)wereaddedtothemodel.The detailsofeachvariable,includingindicatorsandauthors,used
asbackgroundispresentedinAppendix1
Data analysis
Adescriptiveanalysiswascarriedouttoidentifythe frequen-ciesofrespondents’answersforallconstructscomprisedinthe survey.ThePartialLeastSquare–StructuralEquation Model-ing(PLS-SEM)wasusedtoassessthedeterminants’influence
of RKT(Hair,Hult,Ringle,&Sarstedt,2014).The structural modelwasestimatedonSmartPLS3.0(Ringleetal.,2014)using Q13
the ‘path’weightingscheme.Thedecisiontousethismethod took intoaccount anumber of criteria,including (1) the fact that theindicatorsdonothaveanormaldistribution,whichis oneoftheassumptionsfortheuseofthemaximumlikelihood method(ML);(2)theuseofintervalscales(Joreskog&Wold,
1982);(3)itsabilitytodealwithmorecomplexmodelsas com-pared toLISREL(Henseler,Ringle,&Sinkovics,2009);and (4)thesmallsamplesize
Since the PLSalgorithm formulation(Hui &Wold,1982; Lohmöller, 1989) is recognized that it is biased and is only
“consistent at large”,which meansthat the bias decreases as the numberof indicatorsby latentvariable isincreased.This issueoccursbecausetherelationshipsamongstlatentvariables (correlations andpathcoefficients) are estimated as from the factorialscores,whichareobtainedasasumoraweighted aver-ageoftheirindicators,includingthemeasurementerrors.This factistreatedascorrelationattenuationinthemethodological references relatedtopsychometrics,forexample(Nunnally& Bernstein,1994,p.212).However,despitethisbias,Hairetal (2014,p 79)mentionsomesimulationswhereit isidentified thatthebiasissmallforpracticalpurposes.Forfourandeight indicatorsbylatentvariable,ChinandNewsted(1999,p.333)
foundabiasequalto0.05.Tominimizethisbias(attenuation)the latentvariablesweremeasuredwithfivetosixindicatorseach, reachingreliabilityvalues(compositereliabilityandCronbach’s alpha)higherthan0.8(Table2)
Additionally, toassessthisbiassize,thedisattenuated cor-relations were calculated (or “correction” for attenuation as explained by Nunnally and Bernstein (1994, p 241) of the dependentvariable(RKT)withtheotherindependentvariables (Table1)
Itisobservedthatthehighestbiaswasequalto0.053.Asthis
isasmallbiasforpracticalpurposesandisintheconservative direction(underestimatingthepopulationparameter),theresults wereconsideredadequateforpurposesofresultsinterpretation fromthe pointof viewofstatistical significanceandpractical importance
Anotherwaytocheckthesamplesizeadequacyisthrough analyzing the statistical power sensitivity, performed with G*Power3software(Faul,Erdfelder,Buchner,&Lang,2009) Forasampleof78respondents,withasignificancelevelof5%
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470 471 472 473 474 475 476
477
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
Trang 7Table 1
Disattenuated correlations of the dependent variable RKT.
Disattenuated correlation with RKT (using CR) 0.161 0.375 0.307 0.343 0.463
andstatisticalpowerof0.80(Cohen,1998),thetest‘sensitivity
analysis’foundthat themodel isabletodetectaneffectsize
of0.1574,whichisconsideredamediumeffect(Cohen,1998)
Using the population effect formula f2=R2/(1−R2) (Cohen,
1998),itwasconcludedthattheresearchwilldetectaminimum
R2of0.1507
Findings
TherespondentsincludedalargevarietyofBrazilian
multi-nationals ranging from natural resources (12%), consumer
goods(21%),basicinputs(32%),manufacturing(19%),system
assembly(10%)andrawmaterialsforconstruction(6%).The
respondingsubsidiarieslocationswere:LatinAmerica(42%),
NorthAmerica(24%),Asia (14%),Europe(14%)andAfrica
(5%).Atthe countrylevel, thelargestnumberof subsidiaries
areintheU.S.(15%),Argentina(15%),Colombia(10%)and
Mexico (9%) Moreover, China (6%) already appears as an
importantdestinationforBraziliansubsidiaries.Astothesize
andnumberofemployeesatthesubsidiary,56%ofresponding
subsidiariesareintherange100–1000employees,followedby
14%ofsubsidiariesemployingmorethan1000workers.This
descriptive statistics shows that a relative percentageof
sub-sidiariesconsistofconsolidatedcompaniesabroad.Asregard
tothesubsidiaries’age,themajority(69%)isundertenyearsof
age,22%arebetweentenandnineteenyearsandonly9%are
morethan20yearsof activities.Theentrymodeof Brazilian
subsidiariesabroadrepresents77%acquisitionsand23%direct
investmentorgreenfieldinvestment
Evaluation of the measurement model
In measuring the constructs, the model was conducted by
evaluatingtheconvergent,discriminantandreliabilityvalidity
AspresentedinTable1,theconstructs(alsocalledlatent
vari-ables)weremeasured using reflectiveindicatorstoverify the
adequatereliabilityoftheCronbach’salphavalues.Inaddition,
all latent variablesachieved convergent validity, that is, they
haveanaveragevarianceextracted(AVE)higherthan0.5,and
compositereliabilityhigherthan0.7(Hairetal.,2014;Henseler
etal.,2009;Tenenhaus,Vinzi,Chatelin,&Lauro,2005)
How-ever,threeitemsofthescaleshadtoberemovedfromthemodel
sothat the AVEreached the referencevalue (3.7;4.2;4.4 in
Appendix1).Thediscriminantvalidityisverifiedbythe
For-nellLarckercriterionandwasevaluatedthroughthecross-loads
analysis Thisfacilitated todetermine whether a constructis
trulydistinctfromotherconstructsthroughempiricalpatterns
Basedonthisresult,itwasnotedthatallcorrelationsamongstthe
latentvariablesweresmallerthanthesquarerootoftheaverage varianceextractedoftheirlatentvariables(Fornell&Larcker,
1981).Thus,itcanbesaidthatthemodelpresentedconvergent, discriminantandreliabilityvalidity.Themeans,standard devi-ations,reliabilityestimatesandfactorcorrelationsarereported
inTable2
Assessment of the structural model
Thestructuralmodelisabletospecifytherelationship pat-ternsamongsttheconstructs.Themodelwasassessedusingfive criteria:(i)pathcoefficients(β);(ii)pathsignificant(p-value);
(iii) varianceexplain(R2); (iv)effectsize (f2)and(v) predic-tiverelevance(Q2).AccordingtoHairetal.(2014),themain criteria for the structural model evaluationarethe coefficient
ofdetermination(R2)andthelevelandsignificanceofthepath coefficients(β).Tocalculatethem,thepathweightingscheme andabootstrappingtechniquewereusedwith78observations and 500 randomsamples toestimate the t-values inorderto assessthe significance.Forsocialscience researches,R2 val-uesof0.26,0.13and0.02areconsideredstrong,moderateand weak,respectively(Cohen,1998)
Continuing Fichman and Kemerer (1997), in addition to the full model, we have evaluated two nested models (con-trolmodelandtheoreticalmodel).Intotal,thesethreemodels were accessed to evaluate the true impactand the additional explanatorypowerofthetheoreticalvariablesafterthevariance explainedbythecontrol.Thefullmodelincludesallthisstudy variables,thecontrolmodelincludesonlythecontrolvariables, andthe theoretical model includesthe hypothesized relation-ships.Comparisonsamongstthethreemodelsaresummarized
inTable3 TheR2valueresultsforthefullmodel(includingcontrol vari-ables)indicatethatthevarianceof36%inRKTwasexplained
bythemodel.Thisresultisconsideredsubstantialandprovides evidencethat the model iscapableof explainingthe depend-entvariable(Cohen,1998).Whencomparingtheresultsofthe adjusted R2 (33%) with the sensitivity analysis on statistical power,itisfoundaR2valuewellabovetheminimumdetectable
bythemodel,whichis15%
A comparison between the full model and control model (location and age) shows that the control model explains an incrementalvarianceonR2 of19%onthedependentvariable (RKT).Thedeltabetweenthecontrolmodelandthefullmodel was(R2=0.17).Thisresultsuggeststhat,despitehaving pre-sentedamoderateresult,controlvariablesalonedonotprovide
asolidbasisthroughwhichonecanunderstandandpredictRKT patterns
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569 570 571 572 573 574
575
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
Trang 8Table 2
Evaluation of the measurement model.
Note 1: In bold on the diagonal, there are values of the square root of the average variance extracted.
Note 2: AVE, average variance extracted; C.R., composite reliability; C.A., Cronbachs alpha.
Note 3: AVE benchmarks: 0.5; composite reliability: 0.7; Cronbach’s alpha: 0.6.
Table 3
Significance test results of the structural model path coefficients.
Values oftwere calculated through bootstrapping with 500 resamples and 78 cases per sample.
* p≤ 0.05.
**p≤ 0.01.
***p≤ 0.001
Comparing the full model and the theoretical model, the
incrementalvariance derivedbythemodelisaround 30%for
RKT.Resultsindicatethatthetheoreticalmodelinthisstudyis
substantiveenoughtoexplainthevarianceintheresearchmodel
However,controlvariableswereresponsibleforaconsiderable
proportionofthevarianceintheR2valueofRKT.Asthe
pre-dictedpathsforthestructuralmodel,allthehypothesizedwere
statisticallysignificant.The confidencelevel intheprediction
modelwasmeasuredbytheindicatorQ2whichmustbehigher
thanzero TheQ2 valuetoconstruct‘RKT’is0.171ensuring
themodelpredictiverelevance(Hairetal.,2014;Henseleretal.,
2009)
Theeffectsize(f2)measuresthemagnitudeofan
indepen-dent variable on adependent variable (Tabachnick& Fidell,
2007) The exogenousconstructs omission of the model can
beusedtoassessinwhichcasetheseomittedconstructshave
substantialimpactontheendogenousconstructs.Cohen(1998)
providedvaluesof0.02,0.15and0.35consideredweak,
mod-erateandstrong,respectively Thef2 isalsocalculatedbyR2
included=f2−R2excluded/1−R2included(Hairetal.,2014)
Following,Table3showsthesignificanceresultsofeachpath
amongstthelatentvariablesandtheeffectsize
Theresultssupporttwoofthethreehypothesesstatements
Hypothesis H1 shows that autonomy has a positive and
sig-nificant effect on reverse transfer (β=0.19, p≤0.05) The
effectsize (f2)of 0.05 indicates that the constructsubsidiary
autonomyhasaweakeffectontheendogenouslatentvariable
RKT(Cohen,1998) HypothesisH2 states thatthe lowerthe
complexityofsubsidiary’sR&Dknowledge,thelargertherate
of reverse technology transfer to headquarters Surprisingly, this study’s results showed that knowledge complexity hasa significant, but positive effect on reverse transfer (β=0.25,
p≤0.01) Thisrelationshipischaracterized byaweakeffect (0.08)ontheendogenouslatentvariable‘RKT’(Cohen,1998) Finally,theresultsshowedthatsubsidiaryembeddednesshasa significant andpositiveeffect(0.15)onRKT,whichconfirms
H3hypothesis(β=0.35,p≤0.001).Thisrelationshipis charac-terizedbyamoderatetostrongeffectontheendogenouslatent variable‘RKT’(Cohen,1998)
With regardtothe controlvariables,the localizationeffect waspositiveandsignificant(β=0.19,p=0.05)forRKT, indi-catingthatsubsidiarieslocatedindevelopingcountriesaremore likelytotransferknowledgeinreversedirection.Alsofor the subsidiaryagevariablethecoefficientissignificant(β=−0.18,
p=0.01)butthenegativesignindicatesthatRKTismorelikely
to occur from young subsidiaries, confirming the findings of Bezerraetal.(2015)
Discussion
Despite ambiguousevidenceabout RKT inBrazil(Fleury
& Fleury, 2011),this study found that Braziliansubsidiaries withahighautonomydegreearemorecapableoftransferring knowledgebacktoheadquarters,confirmingourhypothesisH1
An argument on the positiveeffect of autonomy for RKT is basedonthe ideathatthesubsidiariesindependenceprovides
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
662
663 664 665 666 667 668
Trang 9greateraccess tolocalknowledge databases,knowledgefrom
localpartners and possibilities toinnovate (Anderssonet al.,
2002;Ciabuschi&Martín,2012;Gupta&Govindarajan,1991;
Mudambi&Cantwell,2005).Hence,subsidiary autonomyis
recognizedasanimportantpredictorofreverseknowledge
trans-ferinthecontextofEMNEs.Autonomyempowerssubsidiaries
toexploretheirownbusinessandmarketopportunitiessothat
they can make use of external sources to their competitive
advantage Taking into account that Brazilian multinationals
are still at an early stage of internationalization, it is a new
phenomenon the fact that their subsidiaries have been
seek-ingfor autonomy andindependencefrom their headquarters’
decisions
Thispaperidentifiedthatknowledgecharacteristicsand
sub-sidiarycharacteristicsdeterminetherateofreverseknowledge
transfer from subsidiaries to emerging market MNEs First,
fromtheknowledgecharacteristicsviewpoint,itwaspossibleto
showthattheknowledgecomplexitylevelhasapositiveimpact
ontheextent of RKT.Thisfinding iscontrarytothisstudy’s
hypothesis(H2),whichsuggestedthatthelowerthesubsidiary
knowledgecomplexity,thegreatertheRKT.Itissuspectedthat
one of the reasons for this intriguing, but interesting result,
mayberelatedtotheknowledgecomplexityparadox,because,
whileknowledgetransferencountershighercostsproblems,itis
themostcompensatorytypeofknowledgetotheheadquarters
Thus,itissuspectedthattheBrazilianmultinationalstryto
trans-ferthemostcomplexknowledgedevelopedintheirsubsidiaries,
regardlessofthecomplexitylevelsassociated,whichincludes
theinvolvementtoagreaterextent,oftheheadquarterssothat
thistype of transferactually materializes (Nairet al., 2015)
Sucharesultisalsoinlinewiththeframeworkoflearningand
effectiveleverage (Mathews,2006) ofthe EMNE’s resources
andnetworksabroad(LLLchart).Otherpossibleexplanationis
theeffectofsubsidiary’srole.Forexample,moreinnovative
sub-sidiariesmighttransfermorecomplexR&Dknowledge,which
suggeststhatimplementerandcontributorsubsidiariesmaynot
transfer(ortransfertoalesserextent)complextypeknowledge
Insummary,althoughtheinitialH2wasnotsupported,thisresult
providesanopportunitytosuggestthatinnovativesubsidiaries
mayengageincomplexknowledgetransferandthusbecomea
competitiveplayer
OurresultsalsosupportthehypothesisH3whichproposes
thatlocalembeddednessimpactstherateofRKT.Itwasfound
thatembeddednesswithsuppliersandcustomers,inotherwords,
localbusinessnetworksincreasethepossibilityofgainingaccess
tonewknowledge, whichcan subsequentlybe transferred to
EMNEs This paper confirms that subsidiaries from
emerg-ing market multinationals become internationalized in order
toexploreknowledgeandexistingcapabilitiesinforeign
mar-kets as well as to develop new knowledge and capabilities
throughknowledgeavailableinthesubsidiaries’host
environ-ment(Narula,2012).Forsubsidiariesisessentialtobeembedded
inlocalbusinessnetworkstoobtaindistinctiveknowledge
devel-opment.Newconnectionswithlocalnetworksallowsubsidiaries
toperforminnovativetasks forheadquarters, instead oftasks
limited to adaptation of products and processes to the local
market(Borini&Fleury,2011)
Withregardtothefirstcontrolvariable(location),theresults indicatedthatsubsidiarieslocatedindevelopedmarkets,such
asNorthAmericaandEurope,areprobablytheonesthatmost transferknowledgetotheirheadquarters.Thisresultisinline withseveralcontributionsintheliteraturewhichstatethatthe innovationcapacityofsubsidiarieslargelydependsonthehost countriesadvantages(Gupta&Govindarajan,2000;Mudambi
&Cantwell,2008;Yangetal.,2008)
BasedonpreviousfindingsaboutEMNEs,twoperspectives canbepresented.Thefirstperspective,ledbyCuervo-Cazurra andGenc(2008),Ramamurti(2008),KhannaandPalepu(2011),
Cuervo-Cazurra (2012) and Ramamurti (2012), argues that EMNEs have anew typeof capability,unlike the traditional MNEscapabilities,whichisrelatedtotheabilityofcopingwith the institutional deficienciesto whichtheyare exposed This current advocates that emerging MNEs, for having operated
inenvironmentspresentingdifficultconditions,suchas under-developed premises, corrupt bureaucracies, poor educational institutions and unstable governments, have the “advantages
of adversity.”The secondperspective, ledbyauthors suchas
Mathews (2006) andChild andRodriguez (2005),arguethat MNEsplacetheirsubsidiariesindevelopedcountriesasaway
toleveragetheir productive,technologicalandmarketing effi-ciency, following an asset-seeking strategy, looking for their competitiveadvantagesincrease.Therefore,thepreferencesof emerging MNEs for developing markets exemplifytheir ten-dency to explore the “institutional voids”. However when it comes to subsidiaries that transfer knowledge in the reverse direction,theyare morelikelytobeincountrieswherethere arebetterinfrastructureconditions,businesssupportinstitutions andfavorablelegalenvironment
Regarding the second control variable (age), the results surprisingly indicatedthat therewas asignificantcorrelation, thoughnegative,betweenageandRKT.Thus,theyoungerthe subsidiary, the morelikely the existence of RKT.A possible explanationforthisunexpectedresultisthefactthatexperience leads to efficiency gains, but on the other hand, in environ-mentswherechangesoccurveryrapidly,theadjustmentbetween organizational capabilities and market demands declines, as the subsidiariesgrowolder, havinginviewthat moremature companiestakelongertoincorporatethemostcurrent techno-logical developments (Sørensen& Stuart, 2000).It is inthis perspectivethatageandaccumulatedskillscanbecome disad-vantageswhencomparedtoyoungersubsidiaries.Particularly, this occurs with regard to the company’sability to adapt or developmajortechnologicalchanges(Sørensen&Stuart,2000; Tushman & Anderson, 1986) With respect to the group of emerging MNEs, younger subsidiariesmay be more influen-tial in the headquarters’ knowledge exactly because they are abletobemoreagileanddynamicinrelationtotechnological developments
Conclusions, limitations and further research
Thispaperexplainedreverseknowledgeflowsinsubsidiaries
of emerging market multinationals and tested the impact of threedeterminantsinBrazilianmultinationals(Govindarajan&
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
777
778 779 780
Trang 10knowl-edge flow of RKT in Brazilian MNEs are suggested First,
in comparison withtraditional MNEs, Brazilian MNEs have
a higher interest in reverse technology transfer, due to the
higherimportanceofsubsidiariesforheadquarters.Second,
sub-sidiariesofBrazilianMNEswilltransferproducts’knowledge
justwithabasicandintermediatelevelof technological
com-plexity (Ariffin&Figueiredo, 2003;Iammarinoetal., 2008)
Third,ontheprocessofRKTinforeignsubsidiariesofBrazilian
MNEs,thisworkexploredtheimpactofknowledgecomplexity
characteristicsaswellsubsidiarycharacteristics,i.e.autonomy
andembeddedness.TheresultsshowedthatRKTispositively
affected by knowledge complexity, subsidiary autonomy and
embeddednessofforeignsubsidiarieswithcustomersand
sup-pliers Fourth, it was assessed the effect of the subsidiary’s
location and age on the RKT The results indicate that
sub-sidiaries located in developed countries are more likely to
transfer knowledge in reverse direction as well as younger
subsidiaries This paper’sempirical implicationssuggest that
subsidiarieswithhigheraccesstolocalknowledgewillbebetter
positionedtoacquirenewknowledgeandconsequentlytransfer
it backtoheadquarters.The externalembeddednesshasbeen
indicatedasanimportantdeterminantofRKT.Fromthe
view-pointofpracticalimplications,itisnecessarythatsubsidiaries
investinmechanismsofrelationshipandknowledgeexchange
to establish strong collaborations with local partners These
findings mayalso beusefulfor policy makersinas much as
understandingtheinnovationtransferpatternisakeycomponent
ofacountry’sinnovationsystem
Animportantlimitationofthisstudyisthatthisresearchis limited tothenarrowcontextofBraziliansubsidiaries, which thereforeimposeslimitstotheresultsgeneralization.Second, thesamplesizeandsamplecompositionturnitdifficulttomake far-reaching generalizations of its results Third, the survey methodprovidesasnapshotthatreducestheinformationsource credibility,theaccesstotherightpeople,theresponsescontrol, andtheutilizationofonlyonerespondentbycompany.Fourth, itschoiceofcontrolvariables,whichcouldhavecoveredother aspects, possibly stakeholdersin the achievedresult Finally,
it is assumed somerestrictionsrelated totheunit of analysis andtheinformationfromheadquarters.Furtherresearchescould explore the autonomy and integration degree of subsidiaries fromemergingmarketsmultinationals
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest Q14
BreschiandLissoni (2001),DimaggioandPowell(1983),
Lall (1983), Minbaeva (2007), Reddy (2011), and Ringle, Wende,andWill(2005)
Dependent variables
Reverse knowledge
transfer (RKT)
1.1 Development of new production process; 1.2 Development of new equipment and/or tools; 1.3 Development of new products; 1.4 Know-how and expertise in the form of plans, models, instructions, guides, formulas, specifications, designs, plans, technical drawings, and/or prototypes to design new products; 1.5 Results of research into new materials and specifications; 1.6 Results of research and development (R&D) into new product generations.
Ariffin and Figueiredo (2003); Bell and Pavitt (1995); Iammarino et al.
(2008); Lall (1992); Yang
et al (2008)
Independent variables
Complexity 2.1 Its understanding requires prior learning from other related technological knowledge; 2.2 Its
understanding requires a large amount of information; 2.3 It is the product of many interdependent routines, individuals and resources; 2.4 It includes many different skills or competencies; 2.5 It is technologically sophisticated and difficult to deploy; 2.6 It is complex (vs simple)
Simonin (2004); Zander and Kogut (1995)
Autonomy 3.1 Implementation of changes in products and services; 3.2 Development of new products and
services; 3.3 Implementation of changes in production processes; 3.4 Entry into new markets in the country; 3.5 Procurement and supply chain management; 3.6 Management of Purchasing and Supply Chain; 3.7 Hiring and firing of the subsidiary workforce.
Ghoshal and Nohria (1989);
Birkinshaw et al (1998);
Rabiosi (2011) External
embeddedness
(with customers,
suppliers)
4.1 Customers/suppliers has fully participated in the development of technological knowledge in the subsidiary; 4.2 Customers/suppliers showed important initiatives for the development of technological knowledge in the subsidiary; 4.3 Customers/suppliers satisfied the requirements in developing technological knowledge in the subsidiary; 4.4 The technological subsidiary knowledge was partially developed within this Customers/suppliers’ premises; 4.5 The cooperation with customers/suppliers has been characterized by frequent interactions.
Lane and Lubatkin (1998) , Andersson et al (2005) and Najafi-Tavani et al (2013)
Moderating variables
Subsidiary’s location 5.1 Low-income countries (0); 5.2 High-income countries (1) Mudambi and Cantwell
(2005) Subsidiary’s age 6.1 subsidiaries under 10 years old (0); 6.2 Subsidiaries with over 10 years old (1) Ambos and Schlegelmilch
(2007); Rabiosi (2011)
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810 811 812 813 814 815 816 817 818 819 820 821 822 823
824
825
826
827 828 829
830
831