Determinants of intention to use the mobile banking apps An extension of the classic TAM model ARTICLE IN PRESS+Model SJME 8; No of Pages 14 Spanish Journal of Marketing ESIC (2016) xxx, xxx xxx www e[.]
Trang 1Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
www.elsevier.es/sjme
ARTICLE
F Mu˜ noz-Leivaa , ∗, S Climent-Climentb, F Liébana-Cabanillasa
aDepartment of Marketing and Market Research, University of Granada, Granada, Spain
bFaculty of Business and Business Administration, University of Granada, Granada, Spain
Received6May2016;accepted2December2016
KEYWORDS
Mobilebanking;
Mobileapps;
Trust;
Risk;
Socialimage;
TAM
Abstract Forfinancialinstitutionsmobilebankinghasrepresentedabreakthroughinterms
ofremotebanking services.However,many customersremainuncertainduetoitssecurity This studydevelopsatechnologyacceptancemodel thatintegratestheinnovationdiffusion theory,perceivedriskandtrustintheclassicTAMmodelinordertoshedlightonwhatfactors determineuseracceptanceofmobilebankingapplications.Theparticipantshadtoexamine
amobile applicationofthelargestEuropean bank.In theproposedmodel, anapproach to externalinfluences was included, theoreticallyandoriginally statedby Davis etal (1989) Theproposedmodelwasempiricallytestedusingdatacollectedfromanonlinesurveyapplying structuralequationmodeling(SEM).Theresultsobtainedinthisstudydemonstratehowattitude determinemainlytheintendeduseofmobileapps,discardingusefulnessandriskasfactors thatdirectlyimproveitsuse.Finally,thestudyshowsthemainmanagementimplicationsand identifiescertainstrategiestoreinforcethisnewbusinessinthecontextofnewtechnological advances
©2016ESIC&AEMARK.PublishedbyElsevierEspa˜na,S.L.U.Thisisanopenaccessarticleunder theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
PALABRAS CLAVE
Bancaparamóviles;
aplicacionespara
móviles;
confianza;
riesgo;
imagensocial;
TAM
Determinantes de la intención de uso de las aplicaciones de banca para móviles: una extensión del modelo TAM clásico
Resumen Paralasentidadesfinancieraslabancaparamóvilesharepresentadounainnovación
entérminosdeserviciosdebancaremota.Sinembargo,muchosclientessiguenconsiderando inciertasuseguridad.Esteestudiodesarrollaunmodelodeaceptacióntecnológicaqueintegra,
enelmodeloTAMclásico,la teoríadela difusióndela innovación,elriesgopercibido yla confianza,afindeclarificarquéfactoresdeterminanlaaceptacióndelasaplicacionesdebanca
∗Correspondingauthorat:DepartmentofMarketingandMarketResearch,UGR,CampusCartuja,Granada,Spain.
E-mail address:franml@ugr.es (F Mu˜ noz-Leiva).
http://dx.doi.org/10.1016/j.sjme.2016.12.001
2444-9695/© 2016 ESIC & AEMARK Published by Elsevier Espa˜ na, S.L.U This is an open access article under the CC BY-NC-ND license ( http://
Trang 2Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
para móvilesporpartedelusuario.Los participantestuvieron queexaminarunaaplicación paramóvilespertenecientealmayorbancoeuropeo.Enelmodelopropuesto,seincluyóuna aproximaciónhacialasinfluenciasexternas,quefueestablecidademanerateóricayoriginal porpartedeDavis etal (1989).Elmodelopropuestosetestóempíricamente utilizando la informaciónrecolectada medianteunaencuestaonline,aplicando elmodelodeecuaciones estructurales(SEM) Los resultados obtenidos enel estudiodemuestran elmodo en que la actituddeterminaprincipalmenteelusoprevistodelasaplicacionesparamóvil,descartando
lautilidadyelriesgocomofactoresquemejorandirectamentesuuso.Porúltimo,elestudio muestralasprincipalesimplicacionesparalagestión,eidentificaciertasestrategiasderefuerzo
deestenuevonegocioenelcontextodelosnuevosavancestecnológicos
©2016ESIC&AEMARK.PublicadoporElsevierEspa˜na,S.L.U.Esteesunart´ıculoOpenAccess bajolalicenciaCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Introduction mobile banking & mobile
commerce
Online banking services
Banksareconsideredhighlydynamicbusinessentitiesthat,
joinedinaglobalnetwork,offerbetterconditionstothose
clientswhodecidetouseonline bankingservices (Mu˜
noz-Leiva,Sánchez-Fernández, & Luque-Martínez, 2010) This
sector,asinmanyothers,convertstheInternetandmobile
applications or apps into the most effective channel for
offeringbankingproductsandservicestoclients.Asa
con-sequence, we are witnessing an increasingly competitive
bankingsectorwithincreasinglydemandingclients(Shaikh
&Karjaluoto,2015)
Sinceelectronicbankingfirstappeared, Webapps have
gainedrapid popularity due to the advantages they offer
bankingentities in terms of comfort and ease when
per-formingclienttransactions,increasingmarketcoverageand
servicequality.Incontrasttotraditionalbankingactivities,
onlinebankingprovidesmorefeaturesandfunctionalitiesat
alowercost(Laukkanen,2007)
Onlinebankingandmobileappsoffinancialentitiesallow
users to, among other advantages, access their accounts
fromanylocationandatanytime.Suchaccessibility
repre-sentsanadvantageovertraditionalbanks.Despiteallofthis,
itisimportanttohighlight thatthenumberofclientsthat
operatethroughonlinebankinghasnotincreasedasmuch
asitwasexpected.Aspectssuchasthelackof
differentia-tionbetweenbanks,lackoftrustinthesystem,impersonal
treatmentorlackofsecurityhavecausedreluctancefrom
manycustomerstousesuchtools(Mu˜noz-Leivaetal.,2010)
Accordingtoa recent study byPrice Waterhouse1
con-ductedin 2013involving157 managersfortechnologyand
systems for financial institutions in 14 major markets in
America, Europe and the Asia-Pacific, the weightof
digi-talchannelsin retailbankingwillgrowsignificantlyinthe
comingyears.Thenumberofmobilebanking(orm-banking)
userswillincreaseby64%until2016;andthosewhomake
Table 1 Previousstudiesapproachingtherateofadoption
ofmobilebankingapps
Performanceexpectancy,effort expectancy,facilitating conditions,hedonicmotivation
Hewetal.(2015)
Socialidentification,stickiness HsuandLin(2016) Perceivedcompatibility,attitude Harrison(2015)
purchases throughsocial networksanduse onlinebanking willalsosignificantly increases,56%and 37%respectively Thissituationwillbedetrimentaltoothertraditional chan-nelssuchasbankbranchesandtelephonebanking,whose userswillfallby 25%and13% respectively.However,they willnotdisappearandtheywillcontinuetohavean impor-tantrolefocusedonthemostcomplexbanking
In light of theabove,the bankingsector has notbeen immunetothedevelopmentofmobileapps.Inthiscontext, Lee,McGoldrick, Keeling,andDoherty(2003)statedor m-bankingappstobeaninnovationthatcouldbecomeoneof m-commerce’svalue-addedapps.Zhou,Lu,andWang(2010) definedm-bankingastheuseofmobiledevicessuchascell phonesandpersonaldigitalassistants(PDAs)toaccess bank-ing networks via the wireless application protocol (WAP) Andfinally,Luo, Li,Zhang,andShim(2010)describeitas
an innovative methodfor accessingbankingservicesvia a channel whereby the customer interacts with a bank via
a mobile device Upon considering these definitions, we propose todefine mobilebankingasaremoteservice(via mobilephone,PDAs,tablets,etc.)offeredbyfinancial enti-tiestomeettheneedsoftheircustomers
Regardingresearchesexploringmobilebankingapps(for smartphones)andtheirrateofadoption,itisworthnoting that this study only found a few previous research stud-iesapproachingthemostsignificantantecedentsregarding users’ intention to use of said apps (see Table 1) Hew, Lee, Ooi, and Wei (2015) suggested that apps which are easy to use would attract consumers to use them; fur-thermore,thesignificantandpositiveassociation between effortexpectancyandeaseofusehadalsobeenconfirmed, andfinallyconsumers’perceptionontheusefulnessofapps
Trang 3Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
would directly influenced by the user-friendliness of the
apps.Ononehand,Harrison(2015)suggestedthatperceived
compatibilityhadthestrongesteffectonbehavioral
inten-tion; and on the other hand, credibility, performance
expectancy,effortexpectancy,andsocialinfluence,ordered
bytheireffectsize,significantlyinfluenceattitudetoward
mobilebanking,whichinturninfluencedbehavioral
inten-tion.Finally,HsuandLin(2016)suggestedthatstickinessand
socialidentificationsignificantlyinfluenceauser’sintention
tomakein-apppurchases
Furthermore, despite recent and different extensions
of the Davis et al.’s (1989) TechnologyAcceptance Model
(TAM),justafewstudieshavefocusedonthefactorsthat
influencetheacceptanceofthesemobileappsfroma
holis-ticapproachintegrating severalprinciplesassociatedwith
the theory of trust, risk and social image (e.g Liébana
Cabanillas,2012;Liébana-Cabanillas,Sánchez-Fernández,&
Mu˜noz-Leiva,2014a,2014b)orsocialinfluencesor
subjec-tivenorms(Bashir&Madhavaiah,2015;Sellitto,2015;Slade,
Dwivedi,Piercy,&Williams,2015)
In order to fill this gap, the present paper proposes
a conceptual model thatintegrates the main determining
variables regarding user behavior relatedto the adoption
ofaninnovativetechnologyinonlinebanking.Thearticle,
using the TAM model asa framework and its subsequent
extensions, aims to model the m-banking user behavior
throughtherelationshipsthatexistbetweendifferent
varia-bles such as: social image, usefulness, user-friendliness,
trust,intention toadopt thetechnology, etc These
rela-tionships between variables will beexplained in detailin
nextsection
With regard to the structure, this article consists of
these sections:the next section refers tothe conceptual
frameworkthat willsupporttheresearchhypotheses; the
subsequentsectionscorrespondtotheempiricalresearch;
andthefinalsectionextractsthemainfindings,and
contrib-utionsandlimitationsarisingfromtheresearch
Scientific literature review, research
hypothesis
In the nextparagraphs, the theoreticalframework of the
proposedresearchwillbesummarized,specifiedinthe
con-textofa behavioralmodel.The literaturereview andthe
useoftheTechnologyAcceptanceModel(TAM)asastarting
point have ledtothedevelopment ofa behavioralmodel
that explains the process of adoption of m-banking apps
amongpotentialusers
Hypotheses for research related to the TAM
Inordertoanalyzethe userbehavior regardingthe
adop-tion of innovative technology, several behavioral decision
theories and intentional models have been developed by
scientificliteratureoverthelastfourdecades.Accordingto
theaim of thisstudy,anddue totherelevance regarding
theexplanationofonlineconsumerbehavior,wehaveused
theseattitudinalmodelsandtheoriesbasedonSocial
Psy-chology,suchastheTechnologyAcceptanceModel, orTAM
(Davis, Bagozzi, & Warshaw, 1989) The TAM model, was
designedbasedontheTheoryofReasonedAction,or TRA
(Fishbein& Ajzen,1975; Ajzen& Fishbein,1980)withthe aimof making predictions onacceptance and use ofnew information technologies and systems, by identifying the featuresthatdrivesuccess forcompany’sinformation sys-tems and their adaptability to work-related needs (Davis
etal.,1989)
Theseattitudinalmodelsarebasedonthebenefits pro-vided by information systems, eliminating the negative traits of itsuse The modelsare basedon describing the characteristics of the information processes that lead to intentionstoeitheracceptorrejecta technological inno-vation
The TAM hasbeen regardedas themost robust, parsi-monious and influential model in innovations acceptance behavior(Davisetal.,1989;Pavlou,2003),andtherefore,
weconsider thistheoreticalmodel asa base for the pur-poseof the present study.The TAMmodel statesattitude towarduseofnewtechnologyasaconstructexplainedby twoperceivedvariables:usefulnessandeaseofuse Perceivedeaseofuseisdefinedas:the degree to which a
1989:985).Theapproximationtothisconstructisbasedon measurestodeterminehowsystemsallowyou toperform tasksfaster, increase productivity, performance and work efficiency.Theeffectofperceivedeaseofuseonattitude hasbeenshowninvariousstudiesappliedtodifferent con-texts(Chau&Lai,2003;Hernández,2010).Itwasalsofound thatthisconstructhasapositiveimpactonattitudetoward mobilesocial networkgames(Park, Baek,Ohm,& Chang,
2014);andaccordingtoHa,Yoon,andChoi(2007)on atti-tudetowardmobilegames.Consideringthesefundamentals,
wehaveformulatedthefollowinghypothesis:
H1. Theeaseofuseoftheproposedm-bankingappshasa positiveimpactontheusers’attitudetowardit
In addition, it was found that ease of use has a posi-tiveimpactonusefulnessofvirtualcommunities(Hsu&Lu,
2007),intheelectronicbankingsector(Aldás,Lassala,Ruiz,
&Sanz,2011;Mu˜noz-Leivaetal.,2012;Liébana-Cabanillas, Mu˜noz-Leiva, & Rejón-Guardia, 2013), or in the case of mobilegamesapplications(Haetal.,2007).Thus:
H2. Theeaseofuseoftheproposedm-bankingappshasa positiveimpactonitsperceivedusefulness
Since the original TAM, perceived usefulness has been appliedtoawiderangeofITstomeasureinnovation perfor-manceforjob,lifeandstudy(Liu&Li,2011).Accordingto Davis(1989),perceivedusefulnesscanbedefinedas:‘‘the
severaloccasions,perceivedusefulnesshasalsobeenseen
asa perceivedrelative advantage;for thisreason,Rogers (2003)considersasimilarconstructnamed‘‘relative advan-tage’’definedas‘‘thewayitisperceivedasbeing‘better’ thanitspredecessor’’
Inourstudy,thisvariableisrelevantsincemobile appli-cations of banks are considered innovative within online banking,andthe usefulnessprovidedconsumersis closely relatedtotheadvantagesthatitoffers
Trang 4Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
Severalstudies have demonstrated thedirect
relation-ship between perceived usefulness and attitude (Mu˜noz
etal.,2012;Aboelmaged&Gebba,2013;Krishanan,Khin,
Teng,&Chinna,2016).Althoughalsowiththeintentionto
use(Gu, Lee, & Suh,2009; Jeong& Yoon,2013; Ko, Kim,
&Lee, 2009; Kulviwat etal.,2007; Liu& Li,2011;Zhang
&Mao,2008).Inconnectionwiththeabove,we statethe
followinghypotheses:
H3. Perceived usefulness hasa positive effecton users’
attitudetowardtheproposedm-bankingapps
Studiesrelatedtotheeffectsofperceivedusefulnessin
thefieldofnewtechnologiespresentdifferentresults.Some
studiessupportthesignificantandpositiveeffectofthis
con-structonintentiontousing(Pham&Ho,2015),whileothers
donotshowsignificantresultsforthisrelationship(Li,Liu,
&Heikkilä,2014)
Inthissense,weconsideritevenmoreimportantto
con-trastthishypothesissincetheuseofm-bankingappsisstill
consideredan innovation withinexistingpaymentsystems
andtheusefulnessitprovidestotheconsumerwillbeclosely
relatedtoitsadoption
Therefore,weproposethefollowinghypothesis:
H4. Perceivedusefulnesshasapositiveeffectonthe
inten-tionofuseoftheproposedm-bankingapps
Furthermore,boththeTRAandTAMhaveshownthat
atti-tudeisanessentialantecedenttointentionswhenitcomes
todevelopinga particularbehavior According toFishbein
andAjzen(1975),attitudecanbedefinedasa
multidimen-sionalconstruct, consistingof threedimensions:cognitive
(experience, beliefs andopinions),affective or emotional
(feelings,emotionsandsubjectiveevaluations)anda
cona-tiveorbehavioraldimension(intentiontopurchase,respect
topurchaseandresponsetorejection)
The main criticism received by this concept revolves
aroundthefactthatmostconsumers respondtothe
emo-tionalcomponent,withoutgiving muchimportancetothe
rest,whichcomplicatesthemeasurementofconsumer
atti-tudes.Itisforthisreasonthatthemultidimensionalconcept
isabandonedinfavorofaone-dimensionalconcept,sothat
thecognitiveandconativecompoundsarerelocatedoutside
theattitudeconcept;thefirstasbeliefsor knowledgeand
thesecondasintention(Alcántara,2012)
According to our research, it is expected that
atti-tude facilitates transactions and serve to reduce barriers
towardtheadoptionofinnovation(Pavlou,2002;
Liébana-Cabanillas et al., 2014a) It is also expected to favor
intendeduse ofthe proposedmobileapplication (Saghafi,
Moghaddam,& Aslani, 2016).According tothe above,we
haveproposedthefollowinghypothesis:
H5. Users’attitudetowardusingtheproposedm-banking
appshasapositiveeffectontheirintentionofusingit
Shaikh and Karjaluoto (2015) performed a systematic
reviewofliteratureonm-bankingadoptionpublishedfrom
January2005toMarch2014,concludingthattheTAMmodel
anditsadaptationsisthemostemployedinpublishedworks
Inthisvein,wehavefocusedourstudyontheoriginalTAM
modelconsideredthemostrelevant,althoughwehavealso included the following external influences: social image, trustandperceivedrisk
Extension of the TAM: social image, trust and perceived risk
AccordingtoGoffman(1967)socialimageisadesiredsocial value that each person creates through interaction with others.Inourresearch,social imageisimportantbecause innovation can provide users witha sense of uncertainty about the consequences of consumption, and therefore, usersmay choose toseekadvice fromothersfor opinions andpersonalexperiences
Socialimageis associatedwithfactorssuchasrespect, honor, status, reputation, credibility, competence, social connection,loyalty,trust,feelingproud/ashamed,etc.(Bao
etal., 2003).Lin andBhattacherjee (2010)defined social imageasthe‘‘extenttowhichusersmayderiverespectand admirationfrompeersintheirsocialnetworkasaresultof theirITusage.’’Inordertokeepadistinctsocialimage,the presenceofotherpeoplesurroundingtheusertoreinforce
orrejectsaidimagebecomesnecessary(Whiteetal.,2004) Therefore,social imageis capableofinfluencingthe ease
ofuseofadvancedmobileservices(López-Nicolás, Molina-Castillo,&Bouwman,2008).Asaconsequencetotheabove mentioned,weproposethefollowinghypotheses:
H6. Socialimagehasapositiveeffectontheeaseofuse
ofm-bankingapps
Furthermore,socialimageiscapableofinducingthe use-fulness of mobile data services and 3G adoption, as it is foundedinpreviousstudies(Hong&Tam,2006;Chong,Ooi, Lin,&Bao,2012;respectively).Thus,weproposethenext:
H7. Socialimagehasapositiveeffectontheusefulnessof m-bankingapps
In this regard, social image is also expected of being capableofdirectly influencingtheattitudetowardmobile services (Grandón, Nasco, & Mykytyn, 2011; Liang, 2016; Schierz,Schilke,&Wirtz,2010).Therefore:
H8. Socialimagehasapositiveeffectonattitudestoward m-bankingapps
Trust has been widely studied and its definitions are numerous Gefen, Karahanna, and Straub (2003b)defined trustas‘‘theexpectationthatotherindividualsor compa-nieswithwhomoneinteractswillnottakeundueadvantage
ofadependence uponthem’’(p.308) Traditionally,trust hasbeenformedbytwobasiccomponents:acognitive com-ponent that defines trust as ‘‘the belief that the other party’swordorpromiseisreliableandthepartywillfulfill itsobligationsinanexchangerelationship’’(Dwyer,Schurr,
&Oh,1987:18;Schurr&Ozanne,1985:940);anda behav-ioralcomponentthatisdefinedasthewillingnessordesire
tofollowaparticularpatternofbehavior,whichdetermines thesuccessrateofacceptanceoftheinnovation( Liébana-Cabanillasetal.,2014b:154)
Trang 5Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
The generationoftrusthasbeen considered adecisive
factor in stimulating purchases over the Internet (Gefen,
Rao,&Tractinsky,2003a;Gefenetal.,2003b).Thereason
for such importance liesin the fact that, in the absence
ofanypracticalguarantee,theconsumercannotbecertain
that the seller willnot resort toundesirable,
opportunis-ticbehavior,suchasviolationofprivacy,unauthorizeduse
of credit card information, unequitative pricing or access
tounauthorizedtransactions(Reichheld&Schefter,2000)
Theconsumerwillthereforebeaffectedbyasenseof
inse-curityandconcernabouttheprivacy andcontrolof hisor
herpersonalinformation.Generationoftrustcan
compen-satethisconcernaboutsecurityandprivacy(Rifon,LaRose,
&Choi,2005)andsocompanieswithelectroniccommerce
seekfeasible,efficientmeansofincreasingperceivedtrust
and,thereby,theirtrafficandsales (e.g.,Stewart,2003)
Therefore,weproposearelationshipbetweentrustandrisk,
beingthesecondoneaconsequenceofthefirstone(Harris,
Brookshire,&Chin,2016;Sladeetal.,2015).Therefore,we
proposethefollowinghypothesis:
H9. Perceivedtrustintheproposedm-bankingapphasa
negativeeffectonusers’perceivedrisktowardit
In ourresearch, trustis proposed asan antecedentto
easeofuse,basedontheideathattrustreducestheneed
tounderstand,controlandmonitorthesituation,
facilitat-ing theuse of the toolfor the user without much effort
In thecontext of the Internet,authors like Pavlou (2002,
2003)andBounaguiandNel(2009)haveidentifiedapositive
relationshipbetweentrustandeaseofuse.Thus:
H10. Perceivedtrustintheproposedm-bankingapphasa
positiveeffectontheeaseofuseofit
Other studies have also shown a positive relationship
between trust and attitude (Agag and El-Masry, 2016;
Chauhan,2015),aswellasbetween trustandrisk(Park&
Tussyadiah,2016;Pavlou,2003).Therefore:
H11. Perceivedtrustintheproposedm-bankingapphasa
positiveeffectonusers’attitudetowardit
Lastly,perceivedrisk wasinitiallyapproachedbyBauer
(1960) through the analysis of two factors: uncertainty
(lack of consumer knowledge regarding the possible
out-come of a certain transaction) and the possible negative
consequencesderivedfromthepurchasingprocedure
(trans-action).Thesameauthoralsostatedlateronthatanygiven
userbehaviorisassociatedwithaparticularrisksincethe
consequencesofsaidbehaviorcannotbeproperlyassessed
beforehand (Bauer, 1967) Also, Gerrard and Cunningham
(2003)approached the sameconcept as‘‘the uncertainty
Kim(2010)as‘‘a customer’s perception of the uncertainty
multidi-mensional construct built from several different factors
explainingtheoverallriskassociatedwiththeadoptionof
a certain innovation, purchase or service (Featherman &
Pavlou,2003;Aldásetal.,2011),aswehavedefinedinthis
research
Various studies have revealed that perceived risk neg-atively influences attitude (Zimmer et al., 2010) and, therefore,intentionofadoptinge-commerce(Crespo&del Bosque,2010;Herrero & SanMartín,2012)andremoteor mobilepaymentsystems(Liébana-Cabanillasetal.,2014a; Liébana-Cabanillas, Mu˜noz-Leiva, & Sánchez-Fernández, 2017; Slade etal., 2015).In our research, perceived risk
iscrucialsinceitisconsideredan antecedentofintention
touse.Therefore,weproposethisresearchhypothesis:
H12. The perceivedriskoftheproposedm-bankingapps hasanegativeeffectonusers’intentionofusingit
Fig.1summarizesourproposedmodel
Methodological aspects
Sampling procedure
As for the methodological aspects of research applied to carry out the experience, a web study was applied that consisted of the viewing of an explanatory video of the mobile application of Banco Santander (Fig 2), which describedthetool’soperation,featuresandadvantages.At theendofthevideo,weproceededtogatheranswersfrom
anonlinequestionnaire designedinGoogleDocssenttoa randomselectionofsubjectswhoeitherhadusedamobile bankingapporwerefamiliarwithit.Theinvitationtothe onlinesurveywasconductedbyemailduetoitshighsocial impactandthereforefasterresponse
According to the last report published by Price WaterhouseCoopers(2013)on‘‘Globalinsightsandactions forBanksinthedigitalage’’,thenumberofmobile bank-inguserswillincreaseby64%by2016.Inthesameline,the datagatheredbyTecnocomReport(2012)showthatSpain’s userbaseincreasedby113%between2011and2012, reach-ingalmost6millionusers.Thesedatacollectedissimilarto theinformationfoundintheTecnocomReport(2012),which pointsoutthat15.1%ofSpanishadultsuseeitheramobile versionor amobileapp oftheir bank’swebsite Concern-ingtheir environment, according tothe ING International SurveyonFinancialEmpowermentintheDigitalEra(2013), theSpanishpopulation hasthehighest userate ofmobile bankingamongEuropeans,rankingonlybehindTurkey.This
is the reason why Banco Santander wasselected for this study,sinceitisthelargestSpanishbankintermsofstock capitalizationaccordingtotheBritishmagazineTheBanker (www.thebanker.com) anditoccupies the14thpositionin theglobalranking
FieldworkbeganonAugust15,2014,andendedonAugust
31,2014,andparticipationwasentirelyvoluntary.Thefinal sample was composed of 103 regular users of electronic banking,andobtainsasamplingerrorof9.66%inthe esti-mation of a proportion, under the assumptions of simple randomsampling The final sample wasintegrated by 53 male(51.5%)and 50 female(48.5%) participants, with55 individualsagedinthe18 -34range(53.4%)and48(46.6%) aged35orolder
Table2liststhespecificationsofthestudy
Trang 6Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
Perceived trust
Perceived ease of use
use Social image
Perceived usefulness
Davis et al (1989) TAM
Perceived risk
H10
H11
H1 H2
H6
H8
H7
H3
H4 H5
H9
H12
Figure 1 Them-bankingadoptionmodel
Figure 2 Videoimagesshowntosubjects
Source:Youtube(2012)
Table 2 Technicaloverview
Fieldwork 15 -31August2014
Population Potentialmobilebanking
applicationusers Populationsize 5.9billiononlinebankingusers
Samplesize Conveniencesamplingmethod
Contactby Typeofsurvey Online
Averageinterview
duration
6minand18s Samplesize(surveys
started)
103 Samplingerrora 9.66%,estimatingp=q=0.5and
trustlevelof95%
a Under the assumptions of simple random sampling.
Surveys and measurement scales used
The measurement scales used in the online survey were adaptedfrompreviousresearch(AppendixA).Socialimage wasmeasured basedonadaptationsofthe scalesusedby VenkateshandBala(2008),VenkateshandDavis(2000)and Moore and Benbasat (1991) The ease of use scale was adaptedbystudiesfromVenkateshandBala(2008) The final questionnaire consisted of 22 items The questions were divided into three sections: 1) questions relatingtoevaluation;2)questionsrelatingtothesubject
of the investigation; and 3) questions relating to socio-demographic data All these questions correspond to the conceptualtheoreticalmodeldefinedabove,collectingthe hypothesizedrelationships.Themajorityofitems(18) pre-sented a graduation according to the Likert-type scales: from1(stronglydisagree)to7(stronglyagree),anitemfrom
Trang 7Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
Table 3 Convergentvalidityandinternalconsistencyanalysis
Relationshipsbetweenconstructs Standardcoefficient Cronbach’s˛ CR AVE
Perceivedease
ofuse
Perceived
usefulness
Attitudetouse
Socialimage
Trust
Perceivedrisk
1(likeit)to7(don’tlikeit),anotheritemfrom1(boring)
to7 (interesting);andone lastitemfrom1 (absurd)to 7
(interesting)
The datacollectedfor thesemeasurementscales were
subsequentlyanalyzedbytheAMOS18software
Research findings
Reliability and validity analysis
First, to measure the reliability of the scales, the
Cron-bach’salphaindicatorwasused,consideringthereference
value 0.6(Malhotra,1997),or tobemore restrictive, 0.7
(Nunnally,1978)
Inordertocontrasttheconvergentanddivergent
valid-ityof thescales,a confirmatoryfactor analysis(CFA) was
subsequentlyperformed.Thisanalysisincludedallscalesof
measurementtoextractthevarianceextracted fromeach
one of them, as well as correlations between constructs
andtheirconfidenceintervals.Inparticular,the
maximum-likelihood estimation (MLE) method was used under the
resamplingtechnique(bootstrap)with500replicates,since
the traditional MLE is very sensitive to sample size and
requiresthat thevariablesfollow amulti-normal
distribu-tion(Finney&DiStefano,1996), afactthatdidnot occur
inoursample.Inthebootstraptechnique,thep-value
cor-rectedbyBollen-Stineandthestandarderrorcorrectionsof
theconstructswereused(West,Finch,&Curran,1995)
Convergentvaliditywasassessedbythefactorloadings
of the indicators Itwas found thatthe coefficients were
significantlydifferent fromzero, and also,that the loads betweenthelatentandobservedvariableswerehighinall cases(>0.7).Therefore,wecanstatethatthelatent varia-blesadequatelyexplainedtheobservedvariables(DelBarrio
&Luque,2012)
Regarding discriminant validity, it was found that the varianceswere significantly differentfrom zero and also, that the correlation between each pair of scales did not exceed0.9 (Hair, Anderson, Tatham, & William, 1995) or, betteryet,0.8(Flavián,Guinalíu,&Gurrea,2004) Again,thereliabilityofthescalescanbeevaluatedbased
onaseriesofindicatorsextractedfromconfirmatory anal-ysis.Indeed,thecompositereliabilityoftheconstructand theanalysisof thevarianceextracted (AVE)exceededthe thresholdusedasreference,0.7 and0.5, respectively, as wellasotherindicatorsofoverallfitforthemeasurement model(Table3)
Evaluation of the discriminant validity between latent constructs
Having assessed the qualityof all proposed measurement scales,weverifiediftogetheralllatentconstructshave dis-criminant validity, i.e that the constructs that make up the model are significantly different, since the discrimi-nantvaliditybetweenthedimensionsofasamescaledoes notguaranteethatdiscriminantvaliditywillhavedifferent latentconstructs(Luque,1997)
Discriminantvalidityoccurswhen(Mu˜noz,2008):1)the value 1 is not situated in the confidence interval at 95%
Trang 8Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
forthecorrelationsbetweentheconstructs,takeninpairs
(Anderson&Gerbing,1988),2)thecorrelationbetween
dif-ferentpairsoflatentvariablesislessthan0.9(Hairetal.,
1995)and3)thesharedvariancebetweenaconstructandits
measures(extractedvariance)exceedsthesharedvariance
betweenthe constructandother constructs of themodel
(Fornell&Larcker,1981)
Inthecaseofourstudy,itwasfoundthatthecorrelations
betweenconstructs(extractedfromtheCFA)werenottoo
high,noconstructhadthevalue1initsconfidenceintervals
andthecorrelationsbetweenindicatorswerebelowtheroot
ofthe extractedvariance ofeach of theconstructstaken
inpairsoftwo, whichallowedustoconcludethatoverall
therewasdiscriminantvaliditybetweenthedifferentlatent
constructsconsidered
Discussion of findings: testing the hypotheses and
the structural model
Afteranalyzingthereliabilityandvalidityofthe
measure-mentscales,weproceededtotestthehypothesesderived
from previously conducted research, checking previously
that the adaptation of the proposed structural equation
model (SEM) was reasonably good according to the
rec-ommendedlevels:RMSEA<0.08,CFIandNFI>0.85(Bollen,
1990;Lai&Li,2005)(Table4)
To evaluate the SEM, the statistical significance of its
structuralloadswasanalyzed.Table5andFig.3showthe
resultsoftheappliedstructuralequationanalysisandthe
resultsoftheresearchhypotheses
Withregardtorelationships,wehavetotakeintoaccount
theassociatedp-valuelessthan0.05showsignificant
rela-tionshipsassociated(orquasi-significant0.05 -0.10).Inour
particularcase, allrelationshipsaresignificant exceptfor
thoseproducedbetweenusefulnessorriskandintentionto
use(H4andH12)
First,withrespect tothe effects of perceived ease of
use,wefoundempiricalevidencetosupportthestatements
ofthehypothesesH1andH2.Specifically,the importance
of the usefulness variable regarding the adoption of the
Table 4 Goodness-of-fitindicatorsinthestructuralmodel
Notes:RMSEA, root mean square error of approximation; RFI, relative fix index; GFI, goodness-of-fit index; AGFI, adjusted goodness-of-fit index; NFI, normed fit index; CFI, comparative goodness of fit; IFI, incremental fit index; TLI, Tucker -Lewis index.
proposed m-banking app is demonstrated through the attitudetowardsuchapp(oneˇ=0.21;p=0.058),asitwas pointedoutinresearchconductedbyChauandLai(2003)
ine-bankingcontextorHernández(2010)andMu˜nozetal (2012)fortravel2.0tools.Wecanalsoconfirmthepositive effectoftheeaseofuseontheusefulnessoftheproposed app (ˇ=0.61; p=0.000), as it appeared in researches conductedbyStern,Royne,Stafford,andBienstock(2008) andMu˜nozetal.(2012)
As for the effects of usefulness, empiricalevidence is found to acceptH3, demonstrating the relevance of use-fulness through the attitude of the proposed mobile app (ˇ=0.46; p=0.000),asit appearedin researchby Wuand Chen(2005)andMu˜nozetal.(2012).Bycontrast,thereisno empiricalevidencetoacceptH4(ˇ=−0.18;p=0.134),thus failingtodemonstratetheimportanceofusefulnessthrough theintentiontousethem-banking
Regarding the effects of attitude, empirical evidence
is found to accept hypothesis H5 Thus, we can con-firm the importance of attitude toward intention to use
a mobile application (ˇ=0.88; p=0.000), as it had been demonstrated in researchby Changand Wu (2012) in the e-commercecontext
Table 5 Non-standardizedcoefficients(ˇ)ofthemodels
Trang 9Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
Perceived trust
Perceived ease of use
use Social image
Perceived usefulness
Perceived risk
0.70***
–0.67***
0.22*
0.21*
0.61***
0.46***
0.88***
=.64
R 2 =.54
*** P<.000
** P<.05
* P<.10 n.s not significant
R 2 =.45
n.s.
n.s.
0.19*
0.24**
0.21*
Figure 3 Behavioralmodel(standardizedbetas)
Furthermore, there is empirical evidence to accept
the referenced hypotheses onthe effectsof social image
(H6 -H8)
Also,theimportanceofsocialimagethroughtheuseof
them-banking appproposal (ˇ=0.24, p=0.003)is shown,
as noted in researches of Rouibah and Abbas (2011) and
Zhang,Yue, andKong (2011).It isalso proventhe
impor-tanceofsocialimageoneaseofuse(ˇ=0.21;p=0.007),as
alsodemonstratedinresearchbyLu,Yao,andYu(2005)and
Bhatti(2007).The positive effectof socialimage on
atti-tude toward the proposed application (ˇ=0.19; p=0.006)
is also confirmed, asstated in previous studies by Taylor
andTodd(1995).Moreover,theimportanceofsocialimage
through the usefulness of the proposed mobile
applica-tion(ˇ=0.24;p=0.003)isalsoshown, aspreviouslynoted
in studies by Rouibah and Abbas (2011) and Zhang et al
(2011)
Asfor theeffectsoftrust,empiricalevidenceexiststo
accept hypotheses H10 and H11, thus demonstrating the
positive effect on the ease of use of the app (ˇ=0.70;
p=0.000), as shown in research by Pavlou (2002, 2003)
and Lin, Shih, and Sher (2007) Also shown is the
impor-tanceoftrustthroughtheattitude(ˇ=0.22;p=0.027),as
confirmed instudies by Oh etal.(2009) andAlsajjan and
Dennis(2010).Also,thenegativeeffectoftrustonrisk -H9
(ˇ=−0.67;p=0.000)isconfirmed,asstatedinresearchby
Pavlou(2003)andSilva-Bidarra,Mu˜noz-Leiva,and
Liébana-Cabanillas(2013)
Finally,thereisnotempiricalevidencetoaccept
hypoth-esisH12,thatis,thenegativeeffectofperceivedriskonthe
intentiontousethem-bankingapplication happensin the
expecteddirection, ashad been noted inresearch of Lu,
Yang,Chau,andCao(2011),Huang,Tsay,Huan,Li,andLai
(2011)andChen(2013),butitisnotstatisticallysignificant
(ˇ=−0.12;p=0.104)
Final discussion, limitations and future research
Main conclusions.
Theresearchaimofthisarticleistostudythosebeliefsand behavioralvariablesthatinfluencetheuseofmobilebanking applications,aswellasprovidingconclusionsbeyondmere descriptiveanalysis.To achieve the aim of this study,we havebasedonthetraditionalTAMmodel,towhichrelevant variableshavebeenaddedintheadoptionofaninnovation suchassocialimage,trustor riskassociatedwiththe pro-posedapp.Foranalysisoftheproposedtheoreticalmodel,
anonlinesurveyhasbeenlaunched
A total of 12 hypotheses were formulated in order to analyze the relationships between the constructs of the proposedtheoretical model Finally, almost all significant assumptionshavebeenprovenempiricallyandstatistically significant
Thus,researchanddataanalysismakeseveral theoreti-calandpracticalcontributions.First,andaftertheanalyses weredone,wefoundthattheattitude,withthestrongest effect,determines predisposition to use m-banking apps,
aspreviousstudiesfound out(e.g.Schierz etal.,2010,in mobilepaymentservices)
Wehavetohighlightthepositiveeffectofeaseofuseon theusefulnessoftheproposedapp,asobtainedinresearch
ofAldás et al.(2011) and Mu˜noz etal (2012) Theyalso confirmedthattrusthasapositiveeffectontheeaseofuse
ofthemobileapps,inlinewithearlierstudies(e.g.Pavlou,
2002,2003;Bounagui&Nel,2009)
The relationship between perceived usefulness and intentiontouse is not confirmed, only we can state that therelationshipisveryweakandwithoutexplanatorypower
inthiscase Contrarytotheprinciplesof theTAMmodel,
Trang 10Please cite this article in press as: Mu˜noz-Leiva, F., et al Determinants of intention to use the mobile
ithas been impossible todemonstratethe positive effect
ofusefulness ontheintention ofuse of themobile
appli-cation Previous studies reach the same conclusion as in
thecaseofMu˜noz-Leiva,Hernández-Méndez,and
Sánchez-Fernández(2012),wherethedisplayofmorecomplextools
(suchasFacebookandTripAdvisor)exertsagreatereffect
thanothersthat areeasiertouse, suchasasimple blog
Here,anexplanationofthelackofeffectmaybebasedon
thesimplicityofthetoolandlossofusefulnessoftheseapps
whenthereplacementexists,suchasanonlineversionorby
Web.TheseresultsarealsoconsistentwithJiang,Peng,and
Liu(2015);theauthorsidentifyusefulnessofmobilegames
asaconstructthatcontributetoimprovethelifeofa
per-sonviaotheraspectsasenjoymentorentertainment,which
wouldjustify the positive relationship onattitude toward
thesystem
Evenweakeristherelationshipbetween perceivedrisk
andintention of using it In this respect,this result is in
line withrecent researchappliedtodifferent innovations
where the user does not consider the risk of using them
in the future In this sense, different studies (e.g Ruiz
Mafé& Tronch, 2007)rejected theinfluence of risk inall
itsdimensions analyzed on the intentionto purchase
dis-tance courses, or Rouibah, Lowry, and Hwang (2016) in
the field of adoption of mobile payments under a
cross-culturalstudycomparingtheItalianandChinesepopulation
onintentionstoseekandsharehealthinformationonsocial
media.Fromourpointofview,theexperienceinthistype
of tools improves the intention of use, being perceived
bythe user asa technologywitha low risk exposureand
without being determinant in its adoption (Phang et al.,
2006)
However,thankstomobiledevicesandthebreakthrough
of ICT, access to mobile banking applications is a fact,
thuschangingthechannelfor interactionandengagement
betweenbanksandcustomers.Owingtotherelevanceand
importanceofthesubject,theresultsofthestudyleadto
interestingimplicationswhenitcomestothespreadingof
thesemobile applications;understanding the adoption or
acceptanceofsuchisalsoimportantwhendefininga
strat-egytoattractnewusers
Withthisaim,itisdesirablethatbanksmake
communi-cationcampaignsexplainingtheadvantagesachievedwith
thistypeofmobileapplication,inordertomakeuserssee
theusefulnessof themandincreasetheirintentiontouse
viaattitude.TheextensionintroducedintotheTAMmodel
couldalso affect thedesign of communication campaigns
tryingtoobtainincreasedtrustandmitigateriskand
uncer-tainty,characteristicsattributabletotheapplicationitself
andthepeoplewhoareresponsiblefortheirdevelopment,
maintenance,protectionandcontrol
Managerial implications
Banking companies are well aware that smartphones are
becomingthefavoritepersonaldevicesandgadgetsofthe
Spanishpopulationin particularandthesamecanbesaid
abouttheworldwidepopulationforthemostpart.According
toarecentKPMGreport(2015),by2019itisexpectedthat
morethan1800millionofuserswillbeinteractingwiththeir
bankingcompaniesthroughsmartphoneapps.Regardingthis
trend,SpainisleadingtheEUambitrespectingtheuseof smartphones and other mobile devicestoapproach finan-cialoperations.Thisnewrelationshipbetweentheuserand the financial entity makesthe latter feel obliged to ana-lyzeanddefineusers’behaviorwithinthisnewtechnological context
Ourstudyallowsdifferentimplicationsforthecompanies that make upthe ecosystem in the banking management
of the users As we have seen, the attitude has a signif-icant, positive and direct effect on the intention to use derivedfromtheusefulnessoftheanalyzedm-bankingapp, perceivedeaseofuseandsocialimage.Thisfavorable atti-tude toward theuse ofthe mobileapplication isthe only determinantoftheintention,sinceithasnotfound signifi-canceintheeffectofriskandusefulnessonit.Inthisregard, user attitudes will reflect people’s favorable or unfavor-ablefeelingstowardabehavior,whichimpliesthatattitudes will develop over timeaspeople gain experience There-fore, financial institutions should promote in a sustained mannerthevalue ofthistypeofservicesbasedon:a)the mainattributesofmobilebanking(Prodanova,San-Martín,
&Jiménez,2015)andb)onfuturefunctionaland psychoso-cialbenefits(Frambach,Roest,&Krishnan, 2007);suchas thedevelopmentofnewservicesintheapps,the improve-mentofinformationandtheintegrationofnewsocialtrends (socialcommerce,Facebookcommerce,etc.)
In additionit wouldbe interestingthat the apps allow thecustomizationbasedonuserprofileandonits require-ments,andfocusingtheeffortinactionsofCRM(Customer RelationshipManagement)andcrossselling
Ontheotherhand,wehighlightthefactthat,inourstudy bothperceivedriskandperceivedusefulness,donotachieve
a significant effect on intention They are variables that losetheirimportanceduetotheexperienceeffectalready commented Those users with experience in mobile apps (bankingornot)willreducetheiraversiontoriskassociated with their implementation, improving their perception of usefulnessandencouragingtheiruseonacontinuousbasis over time(O’cass & Fenech, 2003) In a similar sense, it
isconfirmed thattheadoptionof mobileservices(Ristola,
2010)isconditionedbyprevioususersexperience,improving theirintentiontouse(Niemelä-Nyrhinen,2007)
Despitethis,some driversandbarriersanalyzed inthis research(suchastrust,riskorthesocialimage)alongwith othervariablesthatthisresearchdidnotapproach(suchas thelevelofinnovationortheperceivedcompatibility)will determine users’ adoptionand use of thistype of mobile applications
Inthenearfuture,m-bankingappswillbeinfluencedby significantagreementsandrelationshipsthatfinancial enti-tiesarenowadaysdeveloping.Onemajorfactortobetaken intoaccountisBizum,aninstantpaymentsystem(ittakes
10sorlesstocompleteatransaction)involvingusers’own mobiledevices;itisexpectedthat,bythelasttermin2016, thissystemwillreplaceagreatpercentageregarding tradi-tionaltransfers(whichinvolve24digitsandwouldtakeup
to48hourstocomplete).Bankcompanieswillbeoffering theircustomersthepossibilitytoconnecttheirmobile tele-phonenumberwiththeirbankaccountsinordertoenable transferstocontactsavailableintheirmobiledevice.This technologywouldofcourseruninaccordanceofasignificant setofsecurityrequirementsandprotocols