TRUONG DAI HOC DONG THAP Tap chl Khoa hoc so 21 (8 2016) MOT SO BIEN PHAP DANH GIA KET QUA HOC TAP CUA SINH VIEN THEO Hl/OfNG TIEP CAN NANG LlTC THONG QUA DAY HOC MON PHU^ONG PHAP DAY HQC TOAN TAI TRU[.]
Trang 1MOT SO BIEN PHAP DANH GIA KET QUA HOC TAP CUA SINH VIEN THEO Hl/OfNG TIEP CAN NANG LlTC THONG QUA DAY HOC MON PHU^ONG PHAP DAY HQC TOAN TAI TRUOfNG DAI HOC DONG THAP
• Le Xuan Trud'ng'"' Tom tat
Ddnh gid vai tu cdch Id mot bo phgn cua qud trinh dgy hoc cdn dong gop mot cdch co y nghta vdo viec hoc tap cua sinh vien ddnh gid khong don thudn chi Id viec thu thdp cdc thong tin ve chat luang hoc tap cua sinh vien md con tao cahoi vd thuc ddy gud trinh hoc tap cua ho Chinh vi vdy, de ra duoc cdc bien phdp thich hop di ddnh gid ndng luc hoc tap cua sinh vien se Id mot irong nhimg dong luc quan trong ndng cao chdt luong ddo tgo Bdi bdo ndy di xudt, phdn tich duac mot s6 thdnh to cua ndng luc hoc tap mon phuang phdp dgy hoc todn vd di ra dtrgc cdc bien phdp khd thi ve ddnh gid ndng luc cua sinh vien trong khi hoc tdp mon hoc ndy
Tit khoa: Biin phdp; tiip can ndng luc; phirang phdp dgy hoc todn, ddnh gid; sinh viin; Dong Thdp
duoc xac dinh
Nhu vgy, de DG dupe nang luc hoc tap ciia SV
1 Dat van de
Trong chuang trinh dao tgo gigo vien nganh
Su phgm Togn hpc tgi Trudng Dgi hgc Dong Thap,
cac mdn bgc ve phuang phap day hgc (PPDH) dupc
chia thanb 3 hgc phan; Hgc phan PPDH dai cuong
mdn toan, PPDH chuyen nganh toan 1 va PPDH
chuyen nganh toan 2, mdi hgc pban gom 3 tin chi
Day la cac hoc phan dgy ngbe thyc sy cho sinh vien
(SV), viec de ra dupc cac bien phap danh gia theo
hudng tiep can nang lyc, khdng chi danh gia dupc
nang luc bpc tgp ciia SV qua hoc tap mon PPDH
toan ma cdn cd tac dung mdt each gian ttep guip
SV boc each danh gia nang luc cua hpc sinh (HS)
qua dgy hpc mdn toan d trudng Trung hoc pbo
thdng (THPT) DG theo hudng ttep can nang luc
khdng phai mdi doi vdi mdt so nudc cd nen giao
dye phat tnen Tuy nhien, day la van de cdn mdi d
Viet Nam Do vgy nghien cim de de xuat cac bien
phap DG cd hieu qua theo hudng tiep can nang
luc la van de thdi sy va cap thiet ttong giai dogn
hien nay Bai bao nay de xuat mdt so bien phap to
chiic DG ket qua hpc tap ciia SV tfieo hudng tiep
can nang luc tfidng qua day hpc mon PPDH toan
d Trudng Dai hpc Dong Thap
2 Khai niem DG ket qua hoc tap cua SV
theo dinh hudng tiep can nang Iwc trong day h9C
mon PPDH toan
DG ket qua bpc tap cua SV theo hudng ttep
can nang lyc ttong day bgc mdn PPDH toan la viec
DG dua vao cac thanh to nang luc img vdi mdi
npi dung hpc tap cua mdn hpc theo cac tieu chi da
thi giang vien can phai thuc hien cac cdng viec sau:
- Xac dinh duac cac thanh td nang lyc duoc hinh thanh qua mdi ndi dung bpc tap,
- Timg thanh td can phai xac dinh duoc cac tieu chi DG cy tbe;
- Viec DG nang luc cua SV phai gan lien vdi viec to chiic hoat ddng boc tap tbeo dinh hudng tiep can nang lyc
Can cii vao khai niem DG ndi tten va can cii vao chuan dau ra cua mdn hpc, cd the de xuat cac dac trung co ban cua DG ket qua hpc tap S V theo budng Uep can nang luc ngudi hpc ttong day hoc nghe d trudng su pbam nbu sau:
Bang 1 Cac dac tnmg co ban cua DG Itet qua hgc tgp SV theo hirdng tiep can nang lm:
*> Tru6ng Dai hoc D6ng Thap
Thir ttf
1 Muc dich
2 Noi dung
DG
3 Congcu
DG
4 Thm diemDG
5 Hinh thUcBG
6 Ket qua
DG
DG nang lire
- DG kha i^ng SV van dung cac kien thUc, ky nang dS hoc vao giai quyet van de thuc tien
i ^ ^ nghiep
- Quy chuan theo cac miic do phat tnen nang lire Clia SV (dua vao chuan diu ra timg mon hoc) Nhiem vu, bai tap trong tinh huong nghl i^hiep, bfii canh thuc t^ i ^ e nghiep
DG moi then diem ciia qua tiinh day hoc, chii troi^ den DG trong khi hoc
Da dang hoa cac hinh thUc DG DG thoi^ qua
\iku Iuan tir hoc, xemma, lam mot bai tap tren
thiet ke va thirc hanh mot tiet dav toan
- liang luc S V phu thuoc vao do kho cua nhiem
vu hoac bai tap da hoan thanh
- SV nao thuc hien dirge nhiem vu cang kho,
Trang 23 Cac thanh to cua nang lyc hoc tap mon
PPDH toan cua SV
3.1 Nang lire huy d$ng kien thirc de giai
quyet mot van de do giang vien dat ra trong khi
hoc tap mon PPDH toan
Bieu bien chung cua nang lyc nay la: SV
phai chpn lpc nhimg kien tbiic ma minh da ITnh
hpi dupc d cac mon hpc sao cho pbii bgp va thich
img vdi mpt van de giang vien dat ra cho SV can
giai quyet
Bieu bi§n cy the ciia nang luc nay
- Lya chon dugc tri thirc ndi dimg vatri thirc
phuong phap trong mdn PPDH dgi cuong mdn
toan da hgc de giM quyet mdt tinh huong hgc tap
gidng vien dat ra ChSng han nhu: PPDH phat
hien va giai quyet van de; phuang phap van dap;
PPDH hgp tac theo nhom; phuong pbap luyen tap;
phuang phap tryc quan; cac budc dgy hpc khai
niem, cac budc dgy hgc djnh ly; cac budc day hgc
giai bai tap can dupc lya chon va sit dyng nhu the
nao de to chitc mpt ngi dung nao do ttong dgy bgc
mdn toan THPT
Vi du 1: Khi giang vien giang day PPDH
cac ngi dung ve chii de To hgp lien quan den bai
quy tac dem la quy tSc cgng va quy t4c nhan,
g i ^ g vien neu ra tinh huong: Sau khi hinb thanh
cho HS hai quy tSc dem (tiet I, chuang 2, Sach
giao khoa II nang cao), den pban ciing co kien
thirc ck bai quy t&c nay, giang vien yeu cau SV
phai lya chgn mdt ttong cac PPDH da hgc de HS
dupc luyen tgp, ciing co dat hieu qud nhat Khi do
SV lya chpn PPDH hgp tac theo nhdm vao tinh
huong nay la pbii hpp Bdi vi cac bai tap cung co
ngi dung nay hen quan nhieu den van de thyc te,
neu vgn dyng PPDH hpp tac theo nhdm se tao
dieu kien cho HS dupc hoat dpng, giao luu nbieu
bon, kien thuc dugc HS tim toi, tiep thu tir nbieu
chieu, qua do se nSm cbSc kien thirc bon Trong
tinh huong nay cd the chia cac nhom lam cimg
mgt ngi dung hogc moi nhdm Iam mot noi dung
khac nhau tuy vao sy phan hda cua ldp den mirc
dg nao Cy tiie SV cd tiie giai quyet tinh huong
nay b3ng each chia HS lam 4 nhdm hgc tgp theo
phieu hoc tap sau day:
Phieu hftc t^p (diing cho ca 4 nhom)
Mot hop CO 5 bi do, 4 bi xanh vd 7 bi vdng, tdt cd diu khdc nhau
a) Co bao nhieu cdch chon ra mot viin bi? b) Co bao nhiiu cdch chgn ra 3 viin bi trong
do CO 1 bi do, I bi xanh vd 1 bi vdng?
Hay giai bai toan tren va cho biet khi nao dung q i ^ tac cpng, khi nao dirng quy tac nhan
Kit qud mong dai tir cdc nhom:
a) Cd 5 each chgn 1 bi dd, 4 each cbgn I bi xanh va 7 each cbgn I bi vang Vay cd 5 + 4 + 7 =
16 each chpn I vien bi b) Cd 5 each chgn I bi dd, 4 each chgn 1 bi xanh va 7 each chpn I bi vang Vay cd 5 x 4 x 7 =
140 each chgn 3 vien bi ttong dd cd I bi do, 1 bi xanh va I bi vang
0 cau a) dung quy t5c cgng, d cau b) dung quy t i c nhan Cd the yeu cau HS nit ra dupc khi nao dung quy tSc cdng, khi nao dung quy t5c nhan
- Huy ddng duoc cac kien thiic dang hpc ngay ttong pban mdn PPDH chuyen nganh toan 1, PPDH chuyen nganh toan 2, ddng thdi buy dong duoc cac phuang phap giai toan SV da dugc hpc trong cac mdn Dai so so cap, Hinh bpc so c ^ de giai quyet tinh huong hpc tgp gjang vien giao SV tai ldp ciing nhu d nha,
Vi du 2: Giang vien yeu cau SV thyc hien tinh huong bpc tap nhu sau: Lam rd phuang dien ngii nghTa va phuang dien cii p h ^ ttong gidi phuong trinb thdng qua cac vi dy cy the
Ket qud mong dpi d cau tta ldi cita SV Phuang dien ngii ngbia trong giai phucmg trinh la khi giai pbuang trinh ta xet ve mat ngi dung cac menh de toan hpc Chu ttong ve phuang dien nay giiip HS hieu sau sdc v^ pbuang trinh, khac pbuc each Iam may mdc, hinh tbiic Cy tfie doi vdi phuang trinh 2V2x + 3 = 2x + 4, xet ve phuong dien ngii nghTa duoc gidi nhu sau:
Dieu kien 2J: + 3 > 0 < = > X > — A p dyng bat dang thuc Cdsi cho 2 so khdng am 2x + 3 va I, ta dupc: (2x + 3) + I > 2V2x + 3 Dau "=" xay ra
khi 2x + 3 = 1 o X = -I, Vay nghiem cita phuong
Trang 3Phuang dien cu phap ttong gidi phuong trinh
la xet ve cau true hinh thiic va bien doi hinh thirc
trong giai phuang trinh Chu yeu la su dyng cac
dinh ly ve bien doi tuang duong phuang trinh,
bien doi he qua Chu ttpng ve phuong dien nay se
ren liQ^en cho HS ky nang lam viec theo quy trinh
va phong each lam viec quy cu Doi vdi phuang
trinh fren, xet ve phuang dien cu phap, cd the giai
nhu sau:
2x + 4 > 0
4(2x + 3) = (2x +
4)-x > - 2
4x^ + 8x + 4 = 0
<^ X = -I (nhan)
Hien nay ttong day hgc gidi phuong trinh d
trudng THPT deu phai chu frpng cd hai phuang
dien nay
3.2 Nang lyc thiet ke va thirc hanh mot tiet
d^y hoc mon Toan ir trudng THPT
PPDH toan d Trudng Dai hoc Dong Thap
dupc chia lam ba hpc phan, PPDH Dai cuang,
PPDH chi^en nganh toan I vaPPDH chuyen nganh
toan 2, moi hpc phan tuong img se cd mgt tin chi
ren luyen ngoai gid chinh khda dd la Ren luyen
nghiep vy su phgm thudng xiQ'en (RLNVSPTX)
4, RLNVSPTX 5 va RLNVSPTX 6 Trong kbi dgy
hgc PPDH chuyen nganb toan, ngoai viec cho SV
thiet ke giao an va giang mau theo nhdm I tiet
Chung tdi cdn quan tam nhieu den cac hgc phan
ren luyen de dap iing cac nang lyc co bdn trudc
khi SV xuong trudng pbo thdng Thuc tap su pbam
(TTSP) vao nam cuoi
Bieu hien cua nang lyc nay la:
- Tim hiiu chuongtrinh, sdch gido khoa, sdch
gido vien vd cdc tdi lieu tham khdo (nam dupc myc
tieu, npi dung cua chucmg trinb mon toan d trudng
THPT; tim hieu dung y, cau tnic cua sach giao
khoa mdn toan; chuan kien thiic kT nang mdn toan
THPT; each sii dyng sach giao vien nhu the nao
cho hieu qud ma khdng dnh hudng den tinh sang
tgo Clia ngudi giao vien)
- Thiit ke gido dn cho timg tiet lin lop, bao
gom: Xac dinh myc tieu cua bai hpc (theo dinh
hudng boat dgng hda muc tieu); thiet ke cac boat
frong bai hpc (ke cd cac phuang tien tu tgo hien dai ciing nhu tho so nhu: phieu hpc t ^ , bdng phy, hinh ve, img dyng phan mem day hoc toan)
- Tiin hdnh mot gia dgy todn, cie SV gidng mdu tai l&p sau do ren luyin ngodi gia theo nhdm ddng logt cho tdt cd SV
De tien hanh tot dupc mpt gid day toan, can phdi ren luyen mpt so nang lyc thanh phan nhu:
- Trinh bay bdng, ve hinh dep va su dyng cac do diing dgy bpc toan (thudc Eke, bang phy, phieu hpc tap, den chieu, may tinh ); nang lyc phoi hpp cac phuang phap ttong qua ttinh dgy hoc todn; nang lyc to chuc ldp hpc, bao gom tbanh lgp nhdm hpc tgp, to chiic hoat dgng theo nhdm, phan phoi thdi gian, cac boat ddng chung cua tap the; nang luc xii
ly cac tinh buong su pbam dien ra ttong qua trinh day hoc mdn toan
3.3 Nang lyc ty hoc, t y nghien cmi mon PPDH toan
Bieu hien cua nang lyc nay la,
- HD tuhoc de ldm he thdng bdi tap, nhu: cau
hoi ngan, cau hdi tong hop, bai t ^ ttSc nghiem; bai tap mdn hpc; bdi tap giiip SV ren luyen kT nang Trong dd cau hdi ng5n chu yeu giup SV he thong hda dn tap tryc tiep cac kien tiiiic viia hpc sau bai boc Bai tap ttSc nghiem guip SV cd the ty kiem tta kien tbiic Nhung bai tap giup SV ty hgc de ren luyen mdt so kT nang, nhu hudng dan HS sang tao bai toan mdi, tim nhieu each gidi, khai thac bai toan
de boi dudng HS gidi
- HB tu hoc di chudn bi cho xemmar mon hoc: Nhiing chu de xeminar cd the la mpt van de
ttong chuong trinh, cung cd the la van de nang cao ngoai chuong trinh,
- HD tu hoc de chudn bi sdn phdm bdo cdo cho budi dgy hoc trin lap bdng dgy hoc du dn cua gidng vien Nhihig van de gidng vien giao hogc
dupc S V ty lua cbpn tbeo nhdm dudi dgng mdt dy
an, SV phdi cd ke hogch ty hoc de hoan thanh cac
dy an nay ciing la hoan tiianh nhiem vy hpc t ^ cua mpt chuang hay mgt phan nao dd De SV ty hgc cd chat lupng tot, giang vien thudng phdi cd he thong cau hdi hudng dan ho tu hpc
- Ndng luc to chiec mot so hogt dong ngogi khoa o truong THPT nhu bdi dudng HS gidi, giup
dd HS yiu kem mon todn, cdu lac bo todn, ldm
Trang 4T R U O N G BJil HOC DONG THAP Tap chl Khoa_hQCj6j1J8^1R) I jfoNG
De to chiic hoat dong tigo^i khoa cho HS sau
khi ra truong, SV can phai ren luyen mot so nang
lire trong trucmg sir phgrn nhu' nang lire to chirc
hoat dpng tap the theo chu de toan hoc (hai hoa
toan hoc; cau lac bp toan hoc, bao toan); nang luc
khai thac bai toan va day khai thac bai toan de boi
duong HS gioi; nang luc sang tao bai toan mai va
day HS sang tao bai toan moi; nang luc lam de cac
bai toan kho tir sach giao khoa de phu dao cho HS
kem toan
3.4 Nang lire hoat dong ngon ngu' trong hoc
tap mon PPDH toan
Bieu hien ciia nang Iuc nay la'
Ngon ngii noi Iim lodt: S V trong qua trinh
hpc tap mon PPDH toan phai dupc ren luyen ve
ngon ngii noi qua viec thao luan a lop, qua cac
buoi xeminar, qua viec lap luan mot van de de bao
ve quan diem ciia minh truoc tap the nhom, lop
Ngoai cac van de sii dung ngon ngu noi trong hoc
tap mon PPDH toan tai lop, SV con phai ren cac
kl nang ve sir dung ngon ngir noi qua day hpc mot
net tpan cho HS THPT, SV cp kha nang dien dat
mach lac nhiing ky hieu toan hoc bang ngon ngii
noi de tiet day hap dan HS
- Ngon nga viel: SV phai c6 kha nang trinh
bay mgt van de bang van ban lien quan dSn mon
PPDH toan mpt each logic, chjt che Chang ban
nhu; Viet tieu luan tu hpc; lam bai tap mon hpc;
bai tap Ion va viet khoa luan tot nghiep Ngoai ra
s y con phai ren ngon ngii viet qua viec trinh bay
bang van ban, qua viec tra loi mpt sp cau hoi t6ng
hpp lien quan den "nghe day toan" Ngoai ra SV
con phai ren luyen ngon ngii viet de trinh bay ke
hoach bai hoc (giao an) ciia minh mot each chjt
che, logic
- Ngon ngu loan hoc: Ngon ngii tpan hpc khac
vdl ngpn ngii tu nhien 6 cho: ngpn ngu tpan hpc gpn
gang hon ngon ngu tu nhien Boi vi chu yeu diing
cac ki hieu thay the (ki hieu tpan hoc, so do, do thi,
hinh ve minh hpa) Hon niia moi ky hi?u tpan hoc
hay moi su ket hop cac ky hieu deu co mgt nghia
duy nhat, dwu do lam chp ngpn ngir toan hoc co
kha nang dien dat chinh xac tu tuong toan hpc hon
ngon ngii tu nhien SV phii co nang lyic sir dung
ngon ngir toan hpc vao vi$c viet torn tJt mpt dinh
nghia, dmh ly hay tinh chit trpng khi viet heu luan
mon PPDH tpfa SV phai njm viing cac ky hieu
CO ban va mgt sp ky tu Hy Lap thucmg gap tron
mpn tpan THPT ' 3.5 Nang lyc t y B G ket qua hoc tiip cua SV
Nang luc tu DG kSt qua hpc tiip cua ban than
SV phai dupc the hien trong tSt ca cac hoc phJn trpng chuang trinh dao tao nganh Su pham toan hpc Tuy nhien dpi vpi phan mpn PPDH toan thi nang luc nay cua SV cang phai duoc ren luySn nhieu hon, boi vi day la mon hoc day nghe thuc sir Bieu hien cua nang luc nay la
- Nang luc tu DG duoc k§t qua hoc tap cila bin than Vai nhimg bai tap ve nha duoc giang vien giao cho (bai tap trong giao trinh, h6u luan bai tan diuc hanh mot tiet day toan THPT), SVphai bijt dupc ban than dap ung duoc den dau, tu do de dilu chinh then gian hpc tap cua minh thich hop voi tim
van de giang vien giap °
- Nang luc tu DG ciia SV doi vdi viec hoc tap cua ban SV phai cp kha nang nhan xet duoc mic
dp thuc hipn nhipm vu cua ban d6i vdi cong viec giang vien giao khi ban g.ai mot bai tap tai lop trinh bay mpt van de thao luan truoc lop, khi ren luyen nghiep vu su pham
4 Mpt so bi^n pliap DG niing luc hoc tap cua SV nganh sir ph?ni toan thong qua dav hoc cac mon hpc PPDH toan tai Truong Oai hoc Dong Thap
[ill it'i'*
.lili'!*
»(!«*'
:J»i>*.*
ji.«nlioffl luiifcui*
iiijjnsiii"
.:[.:v"jr«'
^liipdirafe 'IJioktl'ila fi'^DOjarfJiin
DGfluaiDoll pifflioic^eiiiBici
*»>»•.! lim Us i
*SPH»iabi:
4.1 Bien p h a p 1: Da dang hoa cac hinh thu-c DG trong day hpc mon PPDH toan Iheo cac thanh to nang lux hoc tap cua mon hoc Nang luc nghe nghiep cua SV chi ducic boc
15 thong qua cac hpat dgng hoc tap vrk mot s6 hoat dpng bp trp, dp vay can to chuc hoc tap dl SV boc
16 cac thanh to nang luc va DG theo cac thanh to nay De DG dupc nang luc flieo cac thWi to
flii vi$c DG fliep mpt bai flii cupi kj- se khang zi\
hipu qua ma phdi da dang hoa cac hinh thirc DG
va chii trpng ^ext BG qua trinh trong qua trinh day
hpc phan mpn nay
Cac hinh thirc BG bao gom DG fliong quati4_
lujn tu hpc; DG fliong qua xemma; DG fliong qnai vi?c lam mpt bai tap flen Ipp; BG flipng qua fliiffl wlil"''*''''''
ke va fliuc hanh mpt flet day tpan THPT; DG fliong'* ^ ' H * in, qua kiem tra fliudng xuyen; DG fliong qua bai thi
het hpc phan; DGfli6ng qua vipc fliam gia cac phong
IDhiigSVj
• t i r i n l , , 1! ni ^ «
kiii
cung nhu thuc hanh mgt net day trpng khi hpc tip trap hoat dgng cau lac bp, ren luyen NVSPTX
Trang 53 J '
Vi du 3 : Khi DG ket qua bpc tgp mdn PPDH
chuyen nganh toan 1, chiing tdi khdng chi don
thuan lay con so diem khi SV tfu ket tbiic boc phan
ma phai DG qua nhieu thanh td nang lyc da neu
tten Mdi nang lyc can cd cac tieu chi DGtinh theo
ttpng so Cu the la:
- DG sdn pham bao cdo timg chit de ciia timg
nhdm SV do giang vien giao viec tir dau mdn hpc
vdl ttpng so 0,15 (gpi chung la ti^u lugn) Chdng
ban, mdt nhdm dupc giao chuan bi chu de ve dgy
hpc nguyen ham va tich pban, vdi yeu ciu ciia giang
vien thi nhdm phai bao cao tten ldp 4 ndi dung sau
I) Ndi dung, chuong trinh ngi^en ham, ticb phan d
trudng THPT; 2) PPDH ndi dung nay; 3) He thong
bai tap CO ban; 4) Trinh bay mpt tiet giang mdu
Ddi vdi viec bao cao tten ldp, tieu cbi DG Id phai
CO sy hap dan, day du npi dung, cd su giao luu ket
noi vdl cac thanh vien cdn lgi cua Idp Gidng vien
se bo sung nhihig y cdn thieu hoac nhung van de
ca ldp chua thdng nhat, diem bao cao tten ldp la
5 diem Sau khi bao cao va dupc gdp y, nhdm se
hoan thien san pham de nap lgi giang vien Tieu
cbi de DG sdn pham Id: Hinh thuc dep, dung quy
each (I diem); ndi dung phii hgp vdi chu de, cd tinh
sang tgo, dao sau (4 diem) Tong diem cd bao cao
tten ldp va san pham la 10 diem vdi ttpng so 0,15
- DG qua mdt bai kiem tta sau khi bet mdt
phan hoac bet mdt chuong vdi ttong sd 0,15 Tieu
chi ttong DG nay la SV phai buy dpng kien thiic
ly thuyet de viet lugn hogc giai bai tap, binh luan
tiieo hudng tim khd khan va sai Iam cita HS pho
thdng, phat trien bai toan nhu the nao Nbu vay
tong diem ciia tieu luan va diem bdi kiem tra chia
cho 2 ta duac diem kiem tta tiiudng xiQ'en (KTTX)
- Ngoai cac diem tieu luan, diem bdi kiem tta,
dS phdn anh het dupc nang luc nghe ngbiep ciia
SV ttong diem hpc pban PPDH chuyen nganh toan
1, cbiing tdi cdn cpng cac diem thudng vao diem
KTTX cho nhiing SV tiiam gia dat giai ttong cac
dot to chiic thi ren luyen nghiep vu su pham, thi
giang, cau lgc bp Gidi nhat cdng 2,5 diem, gidi nhi
cdng 2,0 diSm, gjdi bacdng 1,5 diem (so diem cdng
vao khdng vupt qua 10 diem ttong diem KTTX)
- DGtbdng qua mpt bai tbi bet pban mdn frpng
so 0,7 (thi theo Iich cua Nha trudng)
Nbu vgy diem cuoi cimg trong mdn PPDH
chuyen nganh toan 1 ciia SV se dupc tinh nhu sau:
Diem bpc phan PPDH toan 1 = (diem KTTX) >•
0,3 + (Diem thi het hpc phan) x 0,7 Xu hudng d§ xuat cd the tang dan ttgng so d diem KTTX va diem tht k6t tiiiic hgc phan tfieo ty le (4:6); (55); (6:4)
de nhdm DG sat nang luc hem cua SV,
4.2 Bien phap 2: Ket hyp mot each hyp ly viec DG cua giang vien voi viec ty DG cua SV, coi day la dgng co thiic day nang lyc ty hoc, ty giai quyet van de ciia SV
Qua trinb DG nang lyc cita SV phdi dupc chuyen hda dan thanh khau ty DGnang lyc cua hp Dieu nay chi co the lam dugc khi giang vien biet each ket hpp mpt each hgp ly viec DG ciia minh vdi viec tu DG cua SV ttong qua trinh hgc tap va ren luyen Ket hgp mgt each hpp ly d day, tiic la giang vien khdng the ty minh DG hodn toan mpt hogt dgng hgc t ^ vd ren luyen nao do cua SV ma phai biet tap dan cbo bg tu nhgn xet dupc ket qud hogt dpng cua chinh ban than minb va ciia ban be trong nhdm, ttong ldp Hogt dpng da lam tot den dau, chd nao la chua thanb cong, ty vgch ra duoc phuong an khac pbyc cd su gdp y cua cac ban ttong nhdm, frong ldp
Vl du 4: Khi DG mpt tiet giang mau tten ldp
do SV tien hanh, nbiing tiet ndy da dugc SV chuan
bi tbeo nhdm tai nha tir trudc Co the tien hanh theo trinh ty sau:
- Budc 1: Cho SV ty nhgn xet ve tiet day ciia minb dya vdo muc Ueu da dat ra, muc tieu nao ^ dgt, muc tieu nao cbua dgt, ty nhan xet dupc ly do vi sao -Budc 2' Sau khi SVtunhan xet, cd ldp tham gia ty DG tiet dgy cua ban vdi tu each la "ddng ngbiep", tu DG co bdn dya vdo cac tieu chuan ctia mot tiet day hgc d trudng pbo tbdng ve: kien tbiic chinh xac, logic chua; img dung thuc te nhu the ndo,
to cbiic hoat ddng cd phat huy duac tinh tich cue cua HS bay kbdng; phoi hop cac phuong phap ra sao, sii dung cac phuong tien true quan; kha nang hieu bai ciia HS nhu the ndo
- Budc 3: Giang vien tham giay kien de chan chinh nhung dieu SV kbi gdp y cd the hieu chua diing va khdng dinh nhiing y kien dimg
- Budc 4: Td chiic gdp y de xay dyng lai tiet gidng phil hpp ban, SV tbam gia ddng gdp, giang vien dinh hudng de dya vao cdc phuong an da neu thi SV cd the ty lua chon cho nunb mdt phuang an dgy tam ddc nhat vdi minh
Trang 64.3 Bien phap 3: Dam bao nguyen t5c DG
nang Iyc trong qua trinh to chux h9c tap va ren
luyen cho SV
Nguyen tac DGtheo nang luc, bao gom [I,
tt 90]:
1) Bdo dam tinh gid tri: Phai do ludng chinh
xac miic dp phat trien nang lyc ngudi hpc
2) Ddm bdo do tin cdy Ket qua DGngudi hpc
on dinh, chinb xac, khdng bj phy thugc vao ngudi
DG, Ket qua DG phdi thong nhat khi duoc lgp di
lap lai nhieu lan
3) Ddm bdo tinh linh hogt: Thyc hien da dang
cac binh thiic, phuang pbap DG de ngudi hpc cd
CO hoi tfi^ bien tot nang lyc cita ho
4) Ddm bdo tinh cdng bang: Ngudi DG va
ngudi duoc DG phai deu hieu chuan, tieu cbi, hanh
vi DG nhu nhau
5) Ddm bdo tinh hi thdng: Ket qud DG chan
doan dugc su dung de xac nhan vung pbat tnen
bien co ciia ngudi hpc
6) Ddm bdo tinh todn dien: Ket qua DG phai
phan anh sy phat trien cua cac tbanh to va chi so
hanh vi cua nang lyc dupc do ludng,
7) Phdt tnin ngudi hoc: Ddm bdo DG dupc sy
tien bd so vdi cbinh ban than ngudi bpc ve nang luc
mach npi dung dd Tiep den la cac chi so hanh vi de gnip xac djnb bdng chimg ve phat trien cac thanli
to, Mpt khi cac chi so da dupc xac dinh, moi hanh
vi lai ddi hdi ngudi hpc thyc hien tot nhu tfie nib
Vi vgy can sii dung mau cdng viec ma ngudi hpc
phdi dap img (Sa do 1)
Vi dv 5: Khi DG nang lyc dgy hgc mgt tiet toan d trudng pho thdng cug SV, dya vao so do tren
ta cd the lap nhu sau (So do 2):
J ND2
H t o h v i 3 , 2 l H
- * Thanh 163,2 ( „ , ^ , , , J [
Ghi chu: ND: noi dung
Sff do 1 Sff do D G ket qua hoc taip theo cac t h a n h to
oang lire qua npi dung mon hoc
DG nang luc ngudi hgc cd tiie tten mgt ITnh
vyc hgc tap, hogc mgch ndi dung, hoac chu de hgc
t ^ ling vdi mdi mach noi dung la cac tfianh to nang
luc dai dien cho su phat trien ciia ngudi bpc ttong
NLDH mOt tiet l o ^
TK L
an
1 6 chuc day
XD trpng tint bikid^y
Phoi hpp phuong phip
Trinh bay vSnban
Trinh bay bang
SiJrd\iDg phuong t i ^
To chiic dieu khien
Dinh gia hpc tap
^ then gian Phanbd
H
PP dung voi tiing n$i dung
van ban dep
Gpngai^
B i ^ sii d p g (hay tbanh di^)
Dilng g i ^ an
Bilt dinh pi
(hay tbanh thjo)
Ghi chu: TK: thiil ki; NLDH' ndng tire dt^ hoc.XD: xdc dinh
Sff dh 2 So do OG nSng luc day hpc m6t tiet t o ^
cuaSV
5 Ket l u ^
Bai bao chi mdi budc dau de xuat mgt so bi^
p b ^ DG ket qua hgc t ^ ciia S V theo hudng tiep c§n nang lyc ttong day hpc mdn PPDH toan DG theo nang luc la van de mdi d Viet Nam, t i ^ nhien can phai biet tan dyng triet de viec DG tbeo kien thuc,
ky nang ma lau nay da sit dyng DG nang lyc dugc COI la budc phat tri^n cao ban so vdi DG kien tiiitc,
ky nang DG nang lyc tgp tnmg vao muc tieu DG
su tien bd cua SV so vdi chinh hp ban la muc tieu
DG, xep hang giua SV vdi nhau Do day la van de mdi nen can phdi cd sy t ^ trung tri tue nghien ciru
de cd dupc nhimg bien phap khd thi nhat ttong qua
Trang 7*4isDi,
^^- Tai lieu tham khao
•^ii^j [!]• Bd Giao dye va Dao tgo (2014), Tdi lieu Hqi thdo Xdy dimg chuang trinh gido due pho thdng 'Jktji^ theo dinh huang phdt trien ndng Iuc, Trudng Dgi hgc Can Tha, thang 12-2014,
;,,icjji [2] Nguyin Cdng Khanh (chu bien), Dao Tbi Oanh, Le My Dung (2014), Kiim tra ddnh gid trong
• gido due, NXB Dgi hgc Su phgm
'adsiiy 1^^^" N g ' ^ ^ n B a K i m ( 2 0 0 4 ) , P/iwo77g;j/ja/)rfa^ Apc^ar cwowgmoK/oan, NXB Dgi hgc Supham
iVfc\ ,^ t4]- Biii Van Nghi (2008), Phieang phdp dgy hpc nhiing ndi dung cu thi mon todn, NXB Dai hpc
Jl ^' Su phgm
[5] Doan Quynh (tong chu bien) (2007), NguySn Huy Doan (chu bien), Nguyen Xuan Liem,
1^ "^ Nguyen Khac Minh, Dgng Hung Thang, Dgi s6 vd gidi tich 11 (ndng cao), NXB Giao dye
*S ' MEASURES TO ASSESS SUDENTS' LEARNING OUTCOMES
- , ^ BY COMPETENCE-DmECTION THROUGH TEACHING THE COURSE
« ~7 "METHODOLOGY OF MATHEMATICS INSTRUCTION'*
"^ =i AT DONG THAP UINIVERSITY
— -^ Summary
J - ^' Assessment as part of teaching process should contnbute significantly to the students' learning,
— —- Assessment not only collects data about student learning quality, but also creates opporturtity and promotes
— — their leaming process Therefore, making reasonable assessment methods will be one of the important
* _ *^ motivations to improve ttaining quality This article proposes, analyzes some learning-competence
^J_ factors for the course "Metfiodology of Mathematics instruction" and provides some feasable measures
^ "~ to assess students' competence wdiile attending this course
•£." ,1 Keywords: Measure; competence access; mathematics instruction method; assess; students;
"~ — Dong Thap,
^ - *' Ngdy nhdn bdi: 20/4/2016; Ngdy nhgn lgi: 05/6/2016; Ngdy duyet ddng: 15/8/2016