XAY DlTNG BO CAU HOI TRAC NGHIEM H O C PHAN TO AN CAO CAP C H O SINH \TEN CAC NGANH KINH TE TRi rONG CAO DANG BACH \TET DOAN CHUNG THUY Trudng Cao dang Su pham Bach Viet Tom tat Troug thdi gian gan di[.]
Trang 1H O C PHAN TO.AN C A O C A P C H O SINH \ T E N CAC NGANH KINH TE
T R i r O N G C A O D A N G BACH \ T E T
DOAN CHUNG THUY
Trudng Cao dang Su pham Bach Viet Tom tat: Troug thdi gian gan diy, viec sii dung phuong phap trie nghiem khach quan cho hpc piian Toan cao cap dang dupc cac tnrdng dai hoc va cao hoc phan Hoc phan Toan cao cap la mpt uong nhung hpc phan bit bupc doi vdi sinh vien nam thii nhat cac nganh kinh te, nhim giup cac em hinh thanh quyet cac van de dat ra Bo cau hoi trie nghiem dupc phan tich dp kho va dp phan each, kha nang lua chpn cua timg phuang an tra Idi cua timg cau hoi quan ket qua hpc tap cua sinh vien dong thdi sinh vien co the sir dung bo cau hoi nay de nang cao ning luc tu bpc, tu nghien ciiu ciia minh
Tir khoa: cau hoi trie nghiem toan cao cap, nganh kinh te
1 DAT VANDE
Giao dye nude ta ffong thap I^ tir 2011 - 2020 se phit tiiln ffong bdi canh the gidi cd nMlu tiiay ddi nhanh va tiiach tiiuc Toan ciu hda vi bgi nhip qudc te vl giao due da trd thanh xu tbi tit ylu Tilp tuc ddi mdi phuang phap day hgc \ a danh gia ket qui hpc tap, ren luyen theo hudng phat huy tinh ti'cb eye, ty giac, chu dgng, sang tgo va ning lyc
ty hgc cua ngudi hgc Ddi mdi ky tiii tdt naMep trung hgc phd tiidng, ky tiu tiiyen sinh dai hgc, cao ding theo hudng dim bao thiet tiiyc, Meu qua, khach quan va cdng bang; kit hgp kit qua kilm tra danh gii ffong qua trinb giio due vdi kit qua thi
Do nhu ciu nang cao chit lugng day hgc hien nay, viec su dung he thdng can hdi trie nghiem ffong mdi mdn hgc ndi chung \ a mdn Toan ndi rien^ vi tun cich siJr dung hgp
ly ffong qua ffinh dgy hgc d nrng bd mdn li con dudng cd nMeu ffien vgng ffong ngMen cuu giao due
Hgc phin Toan cao cip la mdt ffong nhihig hpc phin bit huge ddi vdi sinh vien nim tiiir nhit cac naanh kinh tl ciia mrdng Cao dang Bich \'iet, nhim giup cic em Mnh tiianh va phit triln nr duy logic, kha ning phin tich, xem xet moi lien he va giai quylt cic \ in dl dit ra Trang bi cho sinh \ ien cac kiln thuc ca ban, hieu va nim vimg cic khai mem, dinh ngMa, cic phep toan cac bii toan ca ban ciia toan cao cap, tgo dieu kien cho sinh vien tilp thu kiln thirc cic mdn hgc chuyen nginh; ren 1^; nang thuc hanh tinh loin chinh xac, ung dyng vao giai cac bai toan kinh tl Ndi dung kiln tiiuc rdng tap trung vao 4 chuang nhung chi vdi thai lugng 45 tiet nen yeu ciu sinh vien phii ty hgc
vi ty nghien cuu tiiem Bd ciu hdi ffic ngMem dugc xay dung nhim danh gia khich quan kit qua hgc tap cua sinh vien cac nganh kinh tl ffudng Cao dang Bich Viet, giiip
Tan chi Khoa hoc va Giao due Tmong Dai hoc Su |Aam Hue
Trang 2giang vien cd nhiing dieu chinh ffong boat dgng day ddng thdi cd the giiip sinh vien nang cao ning luc ty hgc, tu kilm tra danh gii kit qua hgc tip
2 XAY DUNG B O CAU HOI TRAC NGHIEM HQC P H A N TOAN CAO CAP CHO SINK VIEN CAC NGANH KINH TE T R U I N G CD BACH VIET
2.1 Phan tfch ndi dung hoc phan toan cao cap danh cho sinh vien cac nganh kinh
te tnrdng Cao dang Bach Viet
Chuffng 1 Phep tinh viphan hdm sd mpt bien so (10 tiit): Gidi ban la mgt khai ni?m
khd cua toan hgc, khi da hilu dugc khai niem gidi hgn thi sg de dang hilu dugc cic khii niem dgo him, tich phan bdi vi cac phep toin dd diu xuat phit tir phep tinh gidi ban Phep tinh vi phan cua ham mgt biln sd gin liln vdi phep tinh dao ham ciia ham sd Khai niem dao ham la mdt ffong nhung tu tudng quan trgng nhit ciia giii tich Nhd vio khii niem dao him ngudi ta cd the khao sat toan dien mpt dai lugng biln thien Khai ni?m dgo him gin liln vdi cac bai toan kinh t l xa hdi: vin de tang trudng kinh tl, phuang an tdi uu ffong giao thdng, ffong sin xuat kinh doanh
Chucmg 2 Phep tinh tich phan hdm so mpt biin s6 (15 tiit): Phep tinh tich phan la
phep tinh co ban thu hai ciia toan cao cip Day la phep tinh ngugc cua phep tinh vi phan Chinh vi till de tinh tich phan nhanh chdng, chinh xic cin thong thao phep tinh dgo ham cua ham so Cin nim vihig dinh nghia tich phan xic dinh, ben cgnh dd phai biet van dung cic tinh chit cua tich phan xic dinh bdi vi nhd cd tinh chit nay va cac tich phan ca bin ma ta co the tinh dugc cac tich phan phirc tgp hon Phan bi§t su khic nhau giaa tich phin suy rdng va tich phan xic dinh Nim virng khai niem hdi tiJ, phan
ky ciia tich phan suy rgng, nam virng khai niem hgi tu tuyet ddi, ban hdi ty ciia tich phan suy rdng
Chuang 3 Phep tinh viphan hdm nhiiu biin (10 tiit): Phep tinh vi phin ham sd nhilu
bien so la sy md rdng mpt each tu nMen va cin thiet cua phep tinh vi phan ham sd mdt bien sd Cic bai toan thuc tl thudng xuit hien sy phu thuoc mdt biln s6 vio hai biln sd hoac nhieu ban, ching han Ham lgi nhuan phu thuge vio ylu td tiln luang va lao ddng Vi viy, khio sat ham sd nhieu biln sd vira mang tinh tdng quit vira mang tinh thuc tien Trong chuang nay iigudi hgc cin mo ta dugc miln xic dinh va dd thj cua ham hai bien Nam vung cic qui tic tinh dao him rieng vi vi phan toan phin ffen ca sd tinh dgo ham cua ham mgt bien; cdng thdc vi phan toan phin va bilt each ap dung vao phep tinh gin diing; tim cue tti tu do va cue trj cd dilu kien ciia ham hai biln
Chuong 4 Phuang trinh viphan (10 tiet): Cung nhu phep tinh dao ham va vi phan,
phuang ffinh vi phan cd tim quan ffgng rit Idn va cd ung dyng rdng rai ffong mpi linh vyc khoa hgc ky thuat va kinh tl Cu thi la nhilu bai toin kinh tl, ky thuat dien tu, y
hgc diu din din phuang ninh vi phan Bk hgc tdt chuong niy, yeu ciu ngudi hoc phai
nhin dang duoc timg loai phuong tiinh vi phan, qua dd mdi cd till tich phan dugc (tim
dugc ngMem), bdi vi khdng cd mgt phuang phap chung nao dh giii phuong hinh vi
phan
Trang 32.2 Bien soan va thu nghifm cac cau t r i e nghiem
Tien hanh lap bang qui dinh hai chieu phan tich ndi dung, xic dinh muc tieu kilm ffa dinh gia vdi cMeu ngang bieu tiii cho cac qua tiinh Ui duy tiieo tfiang miic dp nhgn thuc cua Bloom v i chieu dgc la ndi dung kiln thuc cin danh gia [4, ff 57] Tuy tiiudc vao muc dp quan ti:gng cua tiing muc tieu kilm ff^ dinh gia se xay dung sd luang ciu hdi phii hgp
Mgt de tiii ti^c nghiem cd till cd nMlu each phdi hgp khac nhau giiia cic logi ciu ffic
ngMem nhu thuang thiy a cac dl thi tilng Anh, phdi hgp giiia cau ffic nghiem nMlu
lua chgn, cau tiiic ngMem Diing - Sai, Can Diln khuylt, Ddi CMIU cap ddi [4, ff 67],
My nMen bg cau hdi trie nghiem toan cao cip chi sii dung Mnh tinic ffic nghiem nMlu
iya chgn, day la hmh thiic dugc su dung nMlu nhit ffong cac dh tiii trie ngMem dl kilm
tra dinh gia ket qua hgc tip cua sinh vien cua cic ffudng dgi hgc, cao ding chuyen nghiep hien nay
Cac ciu hdi trie ngMem dugc sogn thao dya ffen chuong trinh Toin cao cip danh cho sinb vien trudng Cao dang Bach Viet; suu tim tCr cic tai lieu tham khao, chpn Igc \a chinh siia lgi cho phii hgp vdi trinh dg cua sinh vien ciia trudng Mdi chuang se bien sogn vdi sd lugng ciu hdi vira dii va phu hgp vdi npi dung va muc tieu Idem tra danh gia ciia hgc phin
Bang 1 Sd lugng cdu hdi trong bd cdu hdi TNKQ
\ d i duDg
Chircmg I Phep tinh vi phan ham so mpt bien so
Chuong 2 Phep tinh tich phan ham so mot bien so
ChironR 3 Phep tinh vi phan ham nhieu bien
Chuong 4 Phuong &inh vi phan
Tong cgng
Mirc Qff nh^n thirc
Nhan
b i l t
8
15
10
5
38
Hilu
30
33
11
14
88
V | n
d y n g
22
27
29
21
99
ToDg cgng
60
75
50
40
225 Sau khi liy y kiln chuyen gia ve bd ciu hdi trie nghiem, ngudi ngMen cmi tien hinh thii nghiem tren 100 sinh vien nam thii nhat cua khoa Quan tri Kinh doanh va khoa Ngan hang cua trudng Cao ding Bach Viet
Ndi dimg thir nghiem: Ngudi ngMen cuu sii dung cic cau hdi ffic nghiem khach quan
da bien soan tiianh 2 dh kilm ffa giira k>' \ a 2 de kilm ffa cudi k> Mdi dl gdm 40 cau,
chia lim 4 ma dl, lim ffong thdi gian 90 phiit
2.3 Phan tich kit qua thir nghiem bang phan mem SPSS
2.3.1 Phdn tich dp khd
Do khd p cua ciu tiic nghiem bing t> sd phin Oram tiu sinh lam dung ciu hdi ffen tdng
Trang 4Tong sd thi sinh tham gia lam cau hoi XAY DUNG BO CAU HOI TRAC NGHIEM HOC PHAN TOAN HOC CAO CAP
Xem xet tan sd cac cau ffa ldi cua mdi cau hdi bang each: Tren thanh cdng cy chgn Analyze/Descriptive Statistics/Frequencies
- IBM iVbi btattJDcs uaia hanof •!
nsforrn Analyze Direct Marketing Graphs Utilities AdG-ons Wine Roberts
Descrip^e Stabs lies TatJles
.a/: j g 1:^ , i
GZ] FrJitjencies
1 ^ DescrtpUves
Hinh 1 Tinh dp kho p
Tren bang Frequencies chgn cau hdi can tinh tan sd rdi bam OK
Bang 2, Vi du Tdn sudt cdc phuang dn trd l&i cua cdu 3
C3
Valid
A
B
C
D
Total
Frequency
11
4
f 7!
10(
Percent 11.0 4.0 6.0 79.(
100.(
Valid Percent
11 0 4.(
6.(
79.(
100.(
Cumulative Percent
11.0 15.0 21.0 100.0
Dap in cau 3 Ii ciu D, do khd cua cau D la 79.0% hay 0.79
2.3.2 Phdn tich dp phdn each
Do phin cich (hay do phan biet) ciia can trie nghiem la khi ning cua ciu ffac nghiem thuc hien dugc sy phan biet ning luc khac nhau ciia hgc sinh: gidi, trung binh, kem [3,
ff 60]
Chgn tren thanh cdng cu Data/Sort Cases/Diem/OK Sau khi diem di dugc sap xep lai
ta tM^t lip hai biln mdi la nhdm diem cao (Dc) va nhdm dilm thip (Dt)
Lap bang tan suit hai chieu giiia nhdm diem cao, nhdm diem thap va cic ciu hdi Tren thanh cdng cu chon Analyze/Tables/Custorae table
Trang 5S Ta cd mdt sd trudng hgp sau:
Khio sat ket qui lam bai ciia 100 SV, nhdm dilm cao: 30 SV, nhdm dilm thip: 30 S\'
Bang 3 Md hinh lot cua cdc phuang dn trd lai
A
Diem cao Valid N
1
1
1
27
Diem thap Valid N
A
2
4
20
Dd khd va dg phan biet cua cau hdi l i tdt Cac phuang in tri Idi sai (A, B, C) diu dugc nhieu sinh vien nhdm dilm thap lya chgn han nhdm diem cao
Bang 4 Phucmg an nhiiu chua hdp ddn
A
D*
Diem cao Valid N
2
I
0
27
Diem thap Valid N
4
2
C
18 Phuang in B cin phii dugc xem lai, neu tat ca sinh vien deu nhgn thiy ciu dd la sai thi
cd the loai bd phuang in do vi thay the bing mgt phuong in mdi hoac siia chua lai phuang an cii cho hap din ban
Bang 5 Phuang an Ira l&i khdng ro rdng
A
B * C23 ^
D
Diem cao Valid N
0
15
13
2
Diem thap Valid N
6
8
8
8
So lugng sinh vien lya chgn giiia phuang an B vi phuang in C la ddng deu vdi nhau,
do dd giang vien can xem lgi cau din hoac can nMeu, ciing cd the sogn Igi ciu hdi neu can thiet
Bang 6 Cdu hdi cd phuang dn trd l&i sai
A'
C33 B
Diem cao Valid N
0
5
23
Diem thap Valid N
3
18
6
Trang 6Sd Iugng sinh vien cua nhdm diem cao chgn phuong an C la kha Idn ffong kM phucmg
an tra ldi diing A lai khdng dugc chgn, giang vien can kiem tra lai dap an xem phuang
an nao la dap in dung
Bing 7 Cdu trd l&i do dodn ngdu nhien
A*
D
Diem cao Valid N
7
8
8
7
Diem thap VaUdN
9
(
6
9 Ket qua cho thiy sinh vien lya chgn can tra ldi dua tren sy phdng doan ngau nhien Giang vien can xem lai cac phuong in tra ldi dua ffen sy phdng doan cua nhdm diem cao Sy phong doin ngau nMen cua nhdm ffen cho thay cd sy phan van ve de bai Sy phdng doan se dan den su sai lech ffong kit qui do ludng
Vdi sy hd ffg cua phin mem SPSS, ngudi nghien cuu da phin tich chinh xac do khd v i
dp phan cich, kha ning lua chgn cua tirag phuang an tra ldi ciia timg cau hdi [4, ff.30], tir dd chinh sua va logi bd cae cau khdng dap iing ve dg khd, cd do phan cich im hay cac phuang in nhilu khdng dat yen can, cMnh sira cac can hdi va can tra ldi chua phii hgp
3 KET LUAN
3.1 K i t qua dat dugc
Tren co sd ly luan ciia trie ngMem khich quan v i quy trinh xay dyng ngin hang ciu hdi trie nghiem ngudi nghien ciiu da bien soan dugc 225 ciu bdi trie nghiem cho SV cic nganh kinh te ciia trudng cao dang Bach Viet vdi hinh thiic chii yeu la ciu hoi trie ngMem cd 4 lya chgn Sau qua trinb thii nghiem ffong dieu kien thuc tiln, ffen ca sd cua iy thuylt ve phan tich ciu trie nghiem khich quan, cac can hdi dugc phin tich vi dugc xic dinh vl do khd va dp phan each bing phin mem SPSS Viec xir Iy cic cau hdi bing phin mem chuyen dung lim giam bdt dugc nhieu thdi gian tinb toan hem khi ap dung ly thuyet cd dien
Ket qui cd 211 ciu hdi dam bao cic tieu chuan ciia ciu trie nghiem khach quan cd the sir dung dugc de danh gia ket qua hgc tip cua sinh vien sau kM hpc xong hgc phan Toan cao cip
3.2 Hudug pbat trien
Tiep tuc hoin thien va bd sung them cau hdi de sd Iugng ciu hdi ffong bg cau hdi nhieu ban va cd chat lugng hem Xiy dyng them cac cau hdi trie ngMem khich quan vdi cac hinh thiic khac nhu cau hdi cd hai lya chgn, cau hdi ghep hgp
Trang 7Tiep tuc xay dung bg can hdi trie ngMem khich quan cho hgc phan Toan cao cip 2 cho cac chuyen nganh Cdng nghe Thdng tin, Cdng nghe Thyc phim, Xay dyng
Vdi CO sd vit chit vl cdng nghe thdng tin kha hoan cMnh cua trudng (5 phdng may vdi
40 may mdi mdi phdng), ngudi nghien ciiu se tiiiet kl bg ciu hdi trie ngMem cd thi kiem tra vi tM bang he thdng may tinh cua trudng
TAI Lr$U THAM KHAO
[1] Le Si Ddng (2007) Toan cao cdp phdn Gidi tich (Diing cho sinh vien nganh Kinh ti-Tdi chinh - Ngdn hdng), NXB Giao due
[2] Nguyen Quoc Hung (2009) Toan cao cdp CI vd mdi sd ung dung trong kinh doanh,
NXB DHQG Tp.Hd Chi Minh
[3] Lam Quang Thiep (1994) Nhung ca so cua kv ihudl Irdc nghiim, NXB Vu Bai hoc
Ha Noi
[4] Lam Quang Thiep (1996) Trdc nghiim vd do luang ca bdn trong gido due, Vu Dai
hpc
[5] Duong Thieu T6ng (2005) Trdc nghiem vd do lu&ng thanh qua hgc tdp, NXB
KHXH
[6] Nguyin Dinh Tri (2009) Gido trinh Todn hpc cao cdp (Dimg cho sinh vien cdc tnrcmg Cao ddng), NXB Giao due
Title: BUILDING A SET OF MULTIPLE CHOICE QUESTIONS IN ADVANCED
MATHEMATICS FOR STUDENTS MAJORING IN ECONOMICS AT BACH VIET COLLEGE
Abstract: In recent years, the objective testing method has been applied to Advanced
Mathematics m mid-term tests and final examinations by Universities and Colleges Advanced
Mathematics is one of the compulsory credits for the first year students in Economics; it helps the solve the required issues The Difficulty, the Separation and the Ability of each alternative choice answer for each question were analyzed by SPSS software The set of multiple-choice questions using the multiple-choice tests in order to improve students's self-study abilities is essential Key words; multiple choice questions, advanced mathematics, economics
ThS DOAN CHUNG THUY
Trudng Cao dang Su pham Bach Viet
DT: 0902 812 809, Email: chungthuydoan@yahoo.com