Hệ thức Vi ét và ứng dụng A Lí thuyết Hệ thức Vi – ét Cho phương trình bậc hai một ẩn a 2x + bx + c = 0 (a ≠ 0) Nếu 1 2x ,x là nghiệm của phương trình thì ta có 1 2 1 2 b S x x a c P x x a [.]
Trang 1Hệ thức Vi-ét và ứng dụng
A Lí thuyết
- Hệ thức Vi – ét: Cho phương trình bậc hai một ẩn ax + bx + c = 0 (a ≠ 0) Nếu 2
x , x là nghiệm của phương trình thì ta có:
b
S x x
a c
P x x
a
- Ứng dụng của hệ thức Vi – ét:
+) Nếu phương trình ax + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có 2 một nghiệm là x = 1, nghiệm kia là 1 x2 c
a
+) Nếu phương trình ax + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có 2 một nghiệm là x = -1, nghiệm kia là 1 x2 c
a
+) Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình X2 SX P 0
B Các dạng bài tập và ví dụ minh họa
Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các
nghiệm
Phương pháp giải:
- Áp dụng hệ thức Vi-ét cho hai nghiệm:
b
S x x
a c
P x x
a
Trang 2- Biến đổi biểu thức về nghiệm của phương trình từ đề bài (dùng hằng đẳng thức, nhân đa thức với đa thức, công trừ phân thức,…) để áp dụng công thức Vi-ét nhằm tính giá trị của biểu thức theo (x1 x2) và (x x ) 1 2
Ví dụ minh họa:
Ví dụ 1: Cho phương trình x2 5x 6 0 có hai nghiệm phân biệt x , x Không 1 2 giải phương trình, tính giá trị của biểu thức x12 x22
Lời giải:
Xét phương trình 2
x 5x 6 0 có a = 1, b = 5, c = -6
Có a.c < 0 nên phương trình luôn có hai nghiệm phân biệt
Do phương trình có hai nghiệm phân biệt x , x nên ta áp dụng hệ thức Vi-ét, có: 1 2
1 2
b 5
a 1
c 6
a 1
Mặt khác, ta có:
x x
x 2x x x 2x x
x 2x x x 2x x
x x 2x x
2
5 2.( 6)
= 37
Trang 3Ví dụ 2: Cho phương trình x2 7x 4 0 có hai nghiệm phân biệt x , x Không 1 2 giải phương trình, tính giá trị của biểu thức
1 1
x x
Lời giải:
Xét phương trình 2
x 7x 4 0 có a = 1, b = 7, c = -4
Do a.c < 0 nên phương trình luôn có hai nghiệm phân biệt
Do phương trình có hai nghiệm phân biệt x , x nên ta áp dụng hệ thức Vi-ét, có: 1 2
1 2
b 7
a 1
c 4
a 1
Mặt khác, ta có:
1 1
x x
x x x x
1 2
x x
x x
7 7
4 4
Dạng 2: Tìm tham số m để phương trình thỏa mãn điều kiện cho trước
Phương pháp giải:
- Tính biệt thức: b2- 4ac hoặc ' b'2- ac (với b = 2b’) để tìm điều kiện của
m để phương trình có nghiệm
Trang 4- Áp dụng hệ thức Vi-ét cho hai nghiệm:
b
S x x
a c
P x x
a
- Biến đổi biểu thức về nghiệm của phương trình từ đề bài để áp dụng công thức Vi-ét nhằm tìm ra điều kiện của m thỏa mãn yêu cầu đề bài
Ví dụ minh họa:
Ví dụ 1: Cho phương trình x2 5mx 4 0 Tìm m để x , x là nghiệm của 1 2 phương trình và thỏa mãn: 2 2
x x 6x x 9
Lời giải:
Xét phương trình x2 5mx 4 0 (*)
Để phương trình (*) có nghiệm khi và chỉ khi:
(5m) 4.1.( 4) 25m 16 0
Mà m2 0 với mọi m nên 25m2 160 với mọi m
Do đó, phương trình (*) có nghiệm với mọi m Gọi hai nghiệm của phương trình là
x , x
Áp dụng hệ thức Vi-ét ta có:
5m
1 4
1
Mặt khác, ta có:
x x 6x x 9
x 2x x x 4x x 9
x x 4x x 9
Trang 5 2
5m 4.( 4) 9
2
25m 16 9
2
25m 25
2
m 1
m 1
Vậy m = 1 hoặc m = -1 thì phương trình có hai nghiệm x , x1 2 thỏa mãn:
x x 6x x 9
Ví dụ 2: Cho phương trình x2 2(m 1)x 3 m 0 (m là tham số) Tìm m để phương trình có hai nghiệm x , x1 2 thỏa mãn x12 x22 10
Lời giải:
Xét phương trình 2
x 2(m 1)x 3 m 0 (*)
Ta có:
2(m 1) 4.1.( 3 m) 4(m 2m 1) 12 4m
4m 8m 4 12 4m 4m 4m 16 4m 4m 1 15 (2m 1) 15
Ta có: (2m 1) 2 0 với mọi m
2
(2m 1) 15 0
với mọi m
Do đó, phương trình (*) luôn có hai nghiệm phân biệt với mọi m Gọi hai nghiệm của phương trình là x , x1 2
Áp dụng hệ thức Vi-ét ta có:
Trang 6
1 2
2(m 1)
1
3 m
1
Mặt khác, ta có:
x x 10
x 2x x x 2x x 10
x x 2x x 10
2m 2 2( 3 m) 10
2
4m 8m 4 6 2m 10
2
4m 6m 0
2m(2m 3) 0
m 0
2
m 0
m 2
Vậy khi m 3
2
hoặc m0 thì phương trình có hai nghiệm x , x thỏa mãn 1 2
x x 10
Dạng 3: Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc tham số Phương pháp giải:
Trang 7Để tìm hệ thức giữa các nghiệm x , x của phương trình bậc hai không phụ thuộc 1 2 tham số ta làm như sau:
- Tìm điều kiện để phương trình có nghiệm x , x1 2 là 0
- Áp dụng hệ thức Vi-ét
b
S x x
a c
P x x
a
- Biến đổi biểu thức kết quả sao cho không còn chứa tham số
Ví dụ minh họa:
Ví dụ 1: Cho phương trình x2 2(m 1)x m 3 0 (m là tham số) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m
Lời giải:
Xét phương trình 2
x 2(m 1)x m 3 0 (*)
Ta có:
' (m 1) 1.(m 3) m 2m 1 m 3 m 3m 4
2
Mà
2
3
m
2
0 với mọi m nên
2
' m
> 0 với mọi m
Do đó, phương trình (*) luôn có hai nghiệm phân biệt x , x1 2 với mọi m
Áp dụng hệ thức Vi-ét ta có:
Trang 8
Từ hệ trên, ta dễ thấy: x1 x2 - 2x x1 2 = 2m – 2 – (2m - 6) = 4 không phụ thuộc vào m
Vậy biểu thức liên hệ cần tìm là x1 x2 - 2x x1 2 = 4
Ví dụ 2 Cho phương trình x2 2(m 1)x 2m 0 (m là tham số) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m
Lời giải:
Xét phương trình 2
x 2(m 1)x 2m 0 ta có:
' (m 1) 2m m 2m 1 2m m 1
Mà m2 0 với mọi m nên ' m2 1 > 0 với mọi m
Do đó, phương trình luôn có hai nghiệm x , x1 2 với mọi m
Áp dụng hệ thức Vi-ét ta có:
1 2
2(m 1)
1 2m
1
Từ hệ trên, dễ thấy: x1 x2 + x x1 2 = - 2m - 2 + 2m = -2 không phụ thuộc vào m Vậy biểu thức liên hệ cần tìm là: x1 x2 + x x = -2 1 2
Dạng 4: Áp dụng hệ thức Vi-ét để nhẩm nghiệm
Phương pháp giải:
Trang 9+) Nếu phương trình ax + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có 2 một nghiệm là x1 = 1, nghiệm kia là x2 c
a
+) Nếu phương trình ax + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có 2 một nghiệm là x1 = -1, nghiệm kia là x2 c
a
Ví dụ minh họa:
Ví dụ 1 Áp dụng hệ thức Vi-ét để nhẩm nghiệm của các phương trình:
a) x2 9x 10 0
b) x2 8x 7 0
Lời giải:
a)
Xét phương trình 2
x 9x 10 0 có: a = 1, b = 9, c = -10
Ta có: a + b + c = 1 + 9 – 10 = 0
Do đó, phương trình 2
x 9x 10 0 có một nghiệm là x1 = 1, nghiệm kia là
2
c 10
a 1
Vậy tập nghiệm của phương trình là: S = {1; -10}
b)
Xét phương trình 2
x 8x 7 0 có: a = 1, b = 8, c = 7
Ta có: a – b + c = 1 – 8 + 7 = 0
Do đó, phương trình 2
x 8x 7 0 có một nghiệm là x1 = -1, nghiệm kia là
2
c 7
a 1
Trang 10Vậy tập nghiệm của phương trình là: S = {-1; -7}
Ví dụ 2 Áp dụng hệ thức Vi-ét để nhẩm nghiệm của các phương trình:
2
x 2(m4)x 2m 7 0
Lời giải:
Xét phương trình x2 2(m4)x2m 7 0 có: a = 1, b = -2(m+4), c = 2m + 7
Ta có: a + b + c = 1 – 2(m + 4) + 2m + 7 = 1 – 2m – 8 + 2m + 7 = 0
Do đó, phương trình 2
x 2(m4)x 2m 7 0 có một nghiệm x1 = 1, nghiệm kia là x2 2m 7 2m 7
1
Vậy tập nghiệm của phương trình là: S = {1; 2m + 7} với m là tham số
Dạng 5: Tìm hai số khi biết tổng và tích
Phương pháp giải:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình X2 SX P 0
Ví dụ minh họa:
Ví dụ 1 Cho hai số có tổng bằng 6 và tích bằng 5 Tìm hai số đó
Lời giải:
Nếu hai số có tổng bằng 6 và tích bằng 5 thì hai số đó là hai nghiệm của phương trình x2 6x 5 0
Xét phương trình 2
x 6x 5 0 có a = 1, b = -6, c = 5
Dễ thấy: a + b + c = 1 – 6 + 5 = 0
Do đó, phương trình có hai nghiệm là x1 1 và x2 5 5
1
Vậy hai số cần tìm là 1 và 5
Trang 11Ví dụ 2 Cho hai số có tổng bằng 17 và tích bằng 180 Tìm hai số đó
Lời giải:
Nếu hai số có tổng bằng 17 và tích bằng 180 thì hai số đó là hai nghiệm của
phương trình 2
x 17x 180 0 Xét phương trình 2
x 6x 5 0 có ( 17)2 4.1.180 431 0
Do đó, phương trình vô nghiệm
Vậy không có số thỏa mãn yêu cầu đề bài
C Bài tập tự luyện
Bài 1: Tìm các giá trị của tham số m để phương trình x2 2x m 1 0 (m là tham số) có hai nghiệm phân biệt x , x1 2 thỏa mãn x12 x22 3x x1 2 2m2 m 3
Bài 2: Tìm các giá trị của tham số m để phương trình x2 4x3m 2 0 (m là tham số) có hai nghiệm phân biệt x , x thỏa mãn 1 2 x1 2x2 1
Bài 3: Tìm các giá trị của tham số m để phương trình x2 2(m 1)x m2 3 0 (m là tham số) có hai nghiệm phân biệt x , x1 2 thỏa mãn | x | | x | 101 2
Bài 4: Cho phương trình 2x2 (2m 1)x m 1 0 (m là tham số) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m
Bài 5: Cho phương trình x2 2(2m 1)x 3 4m0 (m là tham số) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m
Bài 6: Áp dụng hệ thức Vi-ét để nhẩm nghiệm phương trình sau: 3x2 12x 9 0
Bài 7: Áp dụng hệ thức Vi-ét để nhẩm nghiệm phương trình sau:
2
2021x 2022x 1 0
Bài 8: Tìm hai số thực biết tổng của chúng là 14 và tích của chúng là 13