Statistics, Data Mining, and Machine Learning in Astronomy Index 1/ f process, 458 1/ f 2 process, 458 α value, 150 absolute deviation, 79 ACF, see correlation functions, autocorrelation active learni[.]
Trang 11/f process, 458
1/f2process, 458
α value, 150
absolute deviation, 79
ACF, see correlation functions,
autocorrelation
active learning, 49
Advances in Machine Learning
and Data Mining for
Astronomy (WSAS), 10, 46,
47, 49, 275, 278, 280, 317
Aikake information criterion
(AIC), 134, 352, 406, 432, 442
aliasing, 412
All of Nonparametric Statistics
and All of Statistics: A Concise
Course in Statistical Inference
(Wass10), 9, 69, 85, 123, 128,
134, 199, 243, 251, 254
analytic function, 6
angular frequency, 408
AR(1) process, 464
ARIMA, see autoregressive
models
arithmetic mean, 78; clipped, 94;
standard error of, 83
ARMA, see autoregressive
models
Arnoldi decomposition, 309
associated set, 168
AstroML, 511; installing, 37
astronomical flux
measurements, 15
atmospheric seeing, 410
autocorrelation function, see
correlation functions,
autocorrelation
autocovariance function, 459
Auton Lab, 11
autoregressive models, 461–463;
ARIMA, 463, 465; ARMA,
463, 465; linear, 462
bagging, see bootstrap
aggregating band limited, 412 bandwidth, 378
Bar89, see Statistics: A Guide to the Use of Statistical Methods
in the Physical Sciences
Bayes classifier, 369 Bayes’; rule, 73, 369; theorem,
177, 368 Bayes, Thomas, 175
BayesCosmo, see Bayesian Methods in Cosmology
Bayesian blocks, 442, 451, 465 Bayesian inference, 175
—Bayes factor, 187, 225
—Bayes’ theorem, see Bayes’
theorem
—classifier, 369
—conjugate priors, 184
—consistency principle, 181
—credible region, 179, 185
—empirical methods, 184, 368
—flat prior, 181
—global likelihood, 187
—hieararchical model, 184
—hyperparameters, 184
—hypothesis testing, 180, 188
—improper prior, 181
—indifference principle, 181
—informative priors, 180
—Jeffreys’ odds ratio scale, 187
—MAP estimate, 179
—marginal likelihood, 186
—marginal posterior pdf, 185
—marginalization, 179, 185
—Markov chain Monte Carlo, 230
—maximum entropy principle, 181
—model odds ratio, 186, 225
—model selection, 186, 223
—nonuniform priors, 191
—nuisance parameters, 177, 185
—numerical methods, 229
—Occam’s razor, 189
—parameter estimation, 196; binomial distribution, 206; Cauchy distribution, 208; effects of binning, 215; Gaussian distribution, 196; outlier rejection, 219; signal and background, 213; uniform distribution, 211
—posterior mean, 179
—prior, 176, 177
—prior predictive probability, 178
—priors, 180
—scale-invariant prior, 181
—uninformative priors, 180 Bayesian information criterion (BIC), 134, 190, 352, 406,
432, 442
Bayesian Logical Data Analysis for the Physical Sciences
(Greg05), 9, 105, 182,
184, 231, 232, 243, 408, 413
Bayesian method, 4
Bayesian Methods in Cosmology
(BayesCosmo), 10, 231 Bayesian models, 46 beam convolution, 410 Bernoulli’s theorem, 105 Bessel’s correction, 82 bias, 7, 82
BIC, see Bayesian information
criterion (BIC)
“big O” notation, 44, 45 Boškovi´c, Rudjer, 345 boosted decision tree, 394 boosting, 393, 398, 399 bootstrap, 140, 391 bootstrap aggregating (bagging), 144
Trang 2Brownian motion, 458
burst signal, 453
c statistic, 147
CAR(1) process, 463, 464
Center for Astrostatistics at
Penn State University, 11
central limit theorem, 105
Cepheid variables, 403, 426
chirp signal, 406, 453
class labels, 135
classification, 8, 145, 368;
Benjamini and Hochberg
method, 147; binomial
logistic regression, 381;
boundary, 146; c statistic,
147; comparison of methods,
397; completeness, 145;
contamination, 145; decision
tree, 399; discriminative, 367,
380, 385, 397; efficiency, 147;
expectation maximization,
see expectation
maximi-zation; false discovery rate,
147; Gaussian Bayes, 374;
Gaussian naive Bayes, 372,
373, 395; generative, see
generative classification;
GMM Bayes classifier, 377,
398; k-nearest-neighbor, 399;
logistic regression, 381, 398,
399; loss, see loss function;
naive Bayes, 136, 371, 372,
399; nearest-neighbor, 378,
399; periodic light curves,
427, 443; RR Lyrae stars, 380;
sensitivity, 147; simple, 145;
supervised, 4, 365, 443;
unsupervised, 3, 250, 365, 443
cluster finding, 249
clustering, 3, 270; K -means,
270; “friends-of-friends”, 275;
comparison of methods, 281;
dendogram, 274; hierarchical,
274; max-radius
minimization, 271; mean
shift, 271; minimum
spanning tree, 275;
unsupervised, 250
clusters of galaxies, 4
Cochran’s theorem, 200
cocktail party problem, 313
code management tools, 13;
CVS, 13; Git, 13; GitHub, 13 color–magnitude diagram, 22 comparable set, 168
completeness, 368, 372, 395 completeness vs purity, 8 compressed sensing, 303 conditional density distribution, 379 conditional independence, 376 confidence estimation, 123 contamination, 368, 372 contingency table, 75 convolution, 407; convolving pattern, 410; of two functions, 409, 410; theorem,
409, 410, 419 coordinate gradient descent, 336
correlation coefficient, 109, 115;
Kendall’s, 116; Pearson’s, 109, 115; population, 109; sample, 109; Spearman’s, 116 correlation functions, 277, 456;
autocorrelation, 407, 456–458, 460, 461;
covariance, 460;
cross-correlation, 460;
discrete correlation, 460;
Edelson and Krolik’s discrete correlation function, 461;
evenly sampled data, 460;
n-point, 278; slot
autocorrelation, 460;
two-point, 277 cosine window, 416 cost function, 131 covariance, 46, 108, 456 covariance matrix, 294 credible region, 179 cross-matching, 47, 54 cross-validation, 144, 164, 352,
355, 379, 390, 392, 398 cross-validation error, 336 cross-validation score, 254
ctypes, see Python/wrapping
compiled code cumulative distribution function, 6
curse of dimensionality, 59, 289
cython, see Python/wrapping
compiled code
damped random walk, 463, 464
data structures; cone trees, 62; cover trees, 62
Data Analysis: A Bayesian Tutorial (Siv06), 9, 181, 182,
208 data cloning, 120, 264 data compression, 299 data mining, 3, 8 data set tools, 14
—fetch_dr7_quasar, 23, 24, 396
—fetch_imaging_sample, 14,
18, 19, 269
—fetch_LINEAR_sample, 29,
440, 442, 443
—fetch_moving_objects, 30, 31, 34
—fetch_sdss_S82standards, 27,
28, 32, 33, 269
—fetch_sdss_specgals, 22, 23,
167, 280, 390, 392, 395
—fetch_sdss_spectrum, 19–21,
425, 426
—fetch_sdss_sspp, 25, 26, 34,
261, 272, 274, 396
—plotting, 31; all-sky distributions, 35; basemap, 37; contour, 32; density, 32; Hammer–Aitoff projection,
35, 36; HEALPix, 37; high dimension, 33; Lambert azimuthal equal-area projection, 36; Mercator projection, 35; Mollweide projection, 36
data sets
—LIGO “Big Dog” data, 16,
416, 417
—LINEAR, 27, 29, 403, 438,
440, 442, 443, 445, 446, 448, 449
—RR Lyrae stars, 365, 372, 374, 376–378, 380, 382, 384–388,
395, 396, 426
—SDSS galaxy data, 21, 23, 167,
280, 390, 392, 395
—SDSS imaging data, 16, 269
—SDSS moving objects, 30, 31, 34
—SDSS photometric redshift data, 394, 395
Trang 3—SDSS quasar data, 23, 24, 366,
396
—SDSS spectroscopic data, 19,
21, 291, 298–300, 304, 425,
426
—SDSS stars, 25, 26, 32, 34, 425,
426
—SDSS stellar data, 261, 272,
274, 366, 396
—SDSS Stripe 82, 26; standard
stars, 26, 28, 32, 33, 269, 365;
simulated supernovas, 5, 325,
328
data smoothing, 249
data structures; kd-tree, 58, 60;
B-tree, 51, 53; ball-tree, 60,
62; cosine trees, 62;
maximum margin trees, 62;
multidimensional tree, 53;
oct-tree, 57; orthogonal
search trees, 62; partition, 59;
quad-tree, 57–59; trees, 47,
51, 386
data types, 43; categorical, 8, 43;
circular variables, 43;
continuous, 43; nominal, 43;
ordinal, 43; ranked variables,
43
data whitening, 298
decision boundary, 370, 380,
386, 397
decision tree, 386, 388, 389, 398,
399
declination, 16, 18
deconvolution, 407; of noisy
data, 410
degree of freedom, 98
δ Scu, 446
density estimation, 3, 249, 367,
371; Bayesian blocks, 259;
comparison of methods, 281;
deconvolution KDE, 256;
extreme deconvolution, 264;
Gaussian mixtures, 259;
kernel (KDE), 48, 251; kernel
cross-validation, 254;
nearest-neighbor, 257;
nonparametric, 250; number
of components, 264;
parametric, 259
descriptive statistics, 78
DFT, see Fourier analysis,
discrete Fourier transform Dickey–Fuller statistic, 463 differential distribution function, 5
digital filtering, 421 Dijkstra algorithm, 311 dimensionality, 8 dimensionality reduction, 289;
comparison of methods, 316 discriminant function, 369, 375,
384, 395
discriminative classification, see
classification distance metrics, 61 distribution functions, 85
—χ2, 96
—Bernoulli, 89, 381
—beta, 101
—binomial, 89
—bivariate, 108; Gaussian, 109
—Cauchy, 92, 459
—exponential, 95
—Fisher’s F , 100
—gamma, 102
—Gauss error, 88
—Gaussian, 87; convolution, 88;
Fourier transform, 88
—Hinkley, 94
—Laplace, 95
—Lilliefors, 158
—Lorentzian, 92
—multinomial, 90
—multivariate, 108; Gaussian,
372, 373; normal, 87; Poisson,
91; Student’s t, 99; uniform,
85; Weibull, 103 DR7 Quasar Catalog, 366 dynamic programming, 47, 228 Eddington–Malmquist bias, 191 Edgeworth series, 160
efficiency, 395 eigenspectra, 298 eigenvalue decomposition, 294
empirical Bayes, see Bayesian
inference empirical pdf, 6–8 ensemble learning, 391, 398 entropy, 389
Epanechnikov kernel, 255, 273 error bar, 7
error distribution, 7, 8
error rate, 367 estimator, 82
—asymptotically normal, 83
—bias of, 82
—consistent, 82
—efficiency, 83
—Huber, 345
—Landy–Szalay, 279
—luminosity function, 166
—Lynden-Bell’s C−, 168
—maximum a posteriori (MAP), 179
—maximum likelihood, 124, 125; censored data, 129; confidence interval, 128; heteroscedastic Gaussian, 129; homoscedastic Gaussian, 126; properties, 127;
truncated data, 129;
minimum variance unbiased, 83; robust, 83; Schmidt’s
1/Vmax, 168; unbiased, 82; uncertainty, 82; variance of, 82
Euler’s formula, 409 expectation maximization (EM), 46, 136, 204, 223, 260, 374
expectation value, 78 exploratory data analysis, 4, 249 extreme deconvolution, 264
f2py, see Python/wrapping
compiled code false alarm probability, 437 false discovery rate, 147 false negative, 145, 368 false positive, 145, 368 false-positive rate, 405 FastICA, 315
FB2012, see Modern Statistical Methods for Astronomy With
R Applications FFT, see Fourier analysis, fast
Fourier transform fingerprint database, 418 finite sample size, 7 Fisher’s linear discriminant (FLD), 375
fitting, 4 flicker noise, 458 Floyd–Warshall, 311
Trang 4flux measurements,
astronomical, 15
Fourier analysis, 406
—band limit, 521
—Bayesian viewpoint, 433
—discrete analog of PSD, 412
—discrete Fourier transform
(DFT), 410, 521
—fast Fourier transform (FFT),
408, 415, 521; aliasing, 522; in
Python, 500, 523; ordering of
frequencies, 522
—Fourier integrals, 410
—Fourier terms, 465
—Fourier transform, 459;
approximation via FFT, 521;
inverse discrete Fourier
transform , 411; inverse
Fourier transform, 422;
irregular sampling window,
414; regularly spaced Fourier
transform, 414; RR Lyrae
light curves, 406; transform
of a pdf, 409; truncated
Fourier series, 442; window
function, 414
Freedman–Diaconis rule, 164
frequentist paradigm, 123
function transforms, 48
functions; beta, 100;
characteristic, 105;
correlation, see correlation
functions; gamma, 97, 101;
Gauss error, 88; Huber loss,
345; kernel, 251; likelihood,
125; marginal probability, 72;
probability density, 71;
regression, 334; selection, 166
GalaxyZoo, 367
Galton, Francis, 321
Gardner, Martin, 74
Gauss–Markov theorem, 332
Gaussian distribution, see
distribution functions
Gaussian mixture model
(GMM), 46, 259, 377
Gaussian mixtures, 134, 374,
400, 446, 447
Gaussian process regression, 48
generative classification, 367,
368, 397
geometric random walk, 462 Gini coefficient, 154, 389
GMM Bayes classification, see
classification goodness of fit, 132 Gram–Charlier series, 81, 160 graphical models, 46
Greg05, see Bayesian Logical Data Analysis for the Physical Sciences
Guttman–Kaiser criterion, 302 Hadoop, 44
Hanning, 416 hashing and hash functions, 51 Hertzsprung–Russell diagram, 25
Hess diagram, 32 heteroscedastic errors, 460, 465 hidden variables, 135
high-pass filtering, 424 histograms, 6, 163; Bayesian blocks, 228; comparison of methods, 226; errors, 165;
Freedman–Diaconis rule, 164; Knuth’s method, 225;
optimal choice of bin size, 6;
Scott’s rule, 164 homoscedastic errors, 7, 460;
Gaussian, 405, 427
HTF09, see The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Hubble, Edwin, 365 hypersphere, 290 hypothesis testing, 77, 123, 144,
370, 404; multiple, 146 independent component analysis (ICA), 313 inference, 4
—Bayesian, see Bayesian
inference
—classical, 71
—statistical, 123; types of, 123 information content, 389 information gain, 389
Information Theory, Inference, and Learning Algorithms, 10
installing AstroML, 37 interpolation, 412, 501
interquartile range, 81 intrinsic dimension, 63 IsoMap, 311
isometric mapping, 311 IVOA (International Virtual Observatory Alliance), 11 jackknife, 140
Jay03, see Probability Theory: The Logic of Science
Jeffreys, Harold, 175
K nearest neighbors, see
clustering Kaiser’s rule, 302 Kalman filters, 465 Karhunen–Loéve transform, 292
Karpathia, 130 kernel density estimation, 49,
see density estimation
kernel discriminant analysis,
377, 378, 398, 399 kernel regression, 48, 338, 379 knowledge discovery, 3 Kullback–Leibler divergence,
183, 389 kurtosis, 79 Lagrangian multipliers, 182, 294 Landy–Szalay estimator, 279 Laplace smoothing, 372 Laplace, Pierre Simon, 175 Laser Interferometric Gravitational Observatory (LIGO), 16, 403, 415 LASSO regression, 48, 335 learning curves, 356 leptokurtic, 80 LEV diagram, 302 Levenberg–Marquardt algorithm, 341 light curves, 5, 404
LIGO, see Laser Interferometric
Gravitational Observatory likelihood, 125
LINEAR, 16 linear algebraic problems, 46
LINEAR data set, see data sets
linear discriminant analysis (LDA), 374, 376, 381, 398 locality, 47
Trang 5locally linear embedding (LLE),
3, 307
locally linear regression, 339
location parameter, 78
logistic regression, see
classification
loss function, 345, 367
lossy compression, 303
low signal-to-noise, 465
low-pass filters, 422
lowess method, 340
luminosity distribution, 4
luminosity functions; 1/Vmax
method, 168; C−method,
168; Bayesian approach, 172;
estimation, 166
Lup93, see Statistics in Theory
and Practice
Lutz–Kelker bias, 191
Lynden-Bell’s C−method, 168
machine learning, 3, 4, 8
magic functions, 51
magnitudes, 515; astronomical,
78; standard systems, 516
Mahalanobis distance, 374, 379
Malmquist bias, 191
manifold learning, 47, 306;
weaknesses, 312
MAP, 429, 441
MapReduce, 49
Markov chain Monte Carlo
(MCMC), 46, 231, 451, 453,
454; detailed balance
condition, 231;emcee
package, 235;
Metropolis–Hastings
algorithm, 231, 340; PyMC
package, 233
Markov chains, 465
matched filters, 418, 452, 454,
465
maximum likelihood, see
estimator
maximum likelihood
estimation, 371
McGrayne, Sharon Bertsch, 175
mean, 46
mean deviation, 81
mean integrated square error
(MISE), 131
median, 79; standard error, 84
memoization, 47 Miller, George, 365 minimum component filtering, 424
minimum detectable amplitude, 405
minimum variance bound, 83 misclassification rate, 367
mixtures of Gaussians, see
Gaussian mixture model (GMM)
mode, 79 model comparison, 133 model parameters, 8 model selection, 77, 398, 452
models; Bayesian, 46; Gaussian
mixtures, see Gaussian
mixture model (GMM);
hieararchical Bayesian, 184;
non-Gaussian mixtures, 140;
state-space, 465
Modern Statistical Methods for Astronomy With R
Applications (FB2012), 10,
437, 458, 463 Monte Carlo, 229; samples, 119 Monty Hall problem, 73 morphological classification of galaxies, 365
multidimensional color space, 4 multidimensional scaling framework (MDS), 311 multiple harmonic model, 438
MythBusters, 74 N-body problems, 46, 53
Nadaraya–Watson regression, 338
naive Bayes, see Bayesian
inference nearest neighbor, 47, 49;
all-nearest-neighbor search, 54; approximate methods, 63;
bichromatic case, 54;
monochromatic case, 54;
nearest-neighbor distance, 57; nearest-neighbor search, 53
neural networks, 398–400
no free lunch theorem, 397 nonlinear regression, 340
nonnegative matrix factorization (NMF), 305 nonparametric bootstrap resampling, 437 nonparametric method, 6 nonparametric models, 4, 6 nonuniformly sampled data, 414
null hypothesis, 144 number of neighbors, 379
Numerical Recipes: The Art of Scientific Computing
(NumRec), 8, 50, 120, 135,
141, 151, 156, 162, 408, 415,
418, 422, 424, 435, 436
NumRec, see Numerical Recipes: The Art of Scientific
Computing
Nyquist; frequency, 415, 436, 522; limit, 422;
Nyquist–Shannon theorem, 412; sampling theorem, 412, 521
O(N), 45
Occam’s razor, 189 online learning, 48 optical curve, 448 optimization, 46, 501 Ornstein–Uhlenbeck process, 463
outliers, 80, 83 overfitting, 380, 391
p value, 144
parallel computing, 49 parallelism, 49 parameter estimation, 406, 452; deterministic models, 406 parametric methods, 6, 398 Pareto distribution, 459 Parseval’s theorem, 409
Pattern Recognition and Machine Learning, 10
pdf, 5 periodic models, 405 periodic time series, 426 periodic variability, 465 periodicity, 434 periodograms, 430, 441, 444, 448; definition of, 430; generalized Lomb–Scargle,
Trang 6438; Lomb–Scargle
periodogram, 426, 430,
434–436, 438, 442, 444, 449,
465; noise, 431
phased light curves, 441, 442
photometric redshifts, 366, 390
pink noise, 409, 458
platykurtic, 80
point estimation, 123
population pdf, 6, 7
population statistics, 78
power spectrum, 407, 409, 430,
454; estimation, 415
Practical Statistics for
Astronomers (WJ03), 9, 69,
424
precision, see efficiency
prediction, 4
principal axes, 111
principal component analysis
(PCA), 3, 49, 292, 444;
missing data, 302
principal component
regression, 337
probability, 69
—axioms, 69; Cox, 71;
Kolmogorov, 70; conditional,
70, 72; density function, 71;
law of total, 71, 72; notation,
69; random variable, 5; sum
rule, 70
probability density, 368
probability density functions, 5,
6
probability distribution, 5, 43
probability mass function, 5
Probability Theory: The Logic of
Science (Jay03), 9, 71, 182
programming languages
—Python, 471
—C, 507
—C++, 507
—Fortran, 37, 507
—IDL, 37
—Python, 12
—R, 10
—SQL (Structured Query
Language), 14–16, 44, 50, 53,
519; where, 17
projection pursuit, 3, 314
PSD, see power spectrum
Python
—AstroML, see AstroML
—further references, 508
—installation, 474
—introduction, 471
—IPython, 473, 486;
documentation, 487; magic functions, 488
—Matplotlib, 473, 494
—NumPy, 472, 488, 498;
efficient coding, 503;
scientific computing, 472;
SciPy, 472, 498; tutorial, 474;
wrapping compiled code, 506
quadratic discriminant analysis (QDA), 375, 376, 398 quadratic programming, 383 quantile, 79; function, 6;
standard error, 84 quartile, 81 quasar, 5 quasar variability, 458, 460, 463, 464
quicksort, 51 random forests, 391, 398, 399 random number generation, 119
random walk, 449, 458, 462, 463 rank error, 63
Rayleigh test, 448
RDBMS, see Relational
Database Management System
recall, see completeness, 368 recall rate, 147
receiver operating characteristic (ROC) curve, 147, 395 red noise, 409, 458 regression, 4, 321
—Bayesian outlier methods, 346
—comparison of methods, 361
—cross-validation, 355; K -fold,
360; leave-one-out, 360;
random subset, 360; twofold, 360; design matrix, 327;
formulation, 322; Gaussian basis functions, 331; Gaussian process, 349; Gaussian
vs Poissonian likelihood, 215; Kendall method, 345;
kernel, 338; LASSO, 335; learning curves, 356; least absolute value, 345; least angle, 336; linear models, 325; local polynomial, 340; locally linear, 339; M estimators, 345; maximum likelihood solution, 327; method of least squares, 326; multivariate, 329; nonlinear, 340;
overfitting, 352; polynomial, 330; principal component, 337; regularization, 332; ridge, 333; robust to outliers, 344; sigma clipping, 345; Theil–Sen method, 345; toward the mean, 150; uncertainties in the data, 342; underfitting, 352
regression function, 369 regularization, 332; LASSO regression, 335; ridge regression, 333; Tikhonov, 333
Relational Database Management System, 44 relative error, 63
resolution, 412 responsibility, 136 ridge regression, 333 ridge regularization, 384 right ascension, 16, 18 risk, 367
robustness, 80 runtime, 45 sample contamination, 405
sample selection, 4 sample size, 8 sample statistics, 78, 81 sampling, 49; window, 414; window function, 414 Savitzky–Golay filter, 424 scale parameter, 78 scatter, 7
SciDB, 44 Scott’s rule, 164 scree plot, 298 SDSS “Great Wall”, 250, 255, 275
searching and sorting, 50, 51
Trang 7SEGUE Stellar Parameters
Catalog, 366
selection effects, 166
selection function, 8
self-similar classes, 5
sensitivity, see completeness
Shannon interpolation formula,
412
shape parameter, 78
Sheldon, Erin, 13
significance level, 144
Simon, Herbert, 365
sinc-shifting, 412
sine wave, 415
single harmonic model, 405,
427, 433, 435, 438, 465
single-valued quantity, 7
singular value decomposition,
295, 337
singular vectors, 295
Siv06, see Data Analysis: A
Bayesian Tutorial
skewness, 79
Sloan Digital Sky Survey
(SDSS), 15, 250
—Catalog Archive Server
(CAS), 15; CASJobs, 17;
PhotoObjAll, 17; PhotoTag,
17; Schema Browser, 17
—Data Release 7, 15
—Data Release 8, 22
—Data Release 9, 25
—flags, 17
—magnitudes; model
magnitudes, 17; Petrosian
magnitudes, 22; PSF
magnitudes, 17; object types,
17; SEGUE Stellar Parameters
Pipeline, 25; spectroscopic
follow-up, 15; Stripe 82, 15,
32, 372
Sobolev space, 163
software packages; Python, 471;
AstroML, 12, 511; AstroPy,
13; AstroPython, 13; Chaco,
473; CosmoloPy, 13; esutil,
13; HealPy, 13; IPython, 14,
52, 473; Kapteyn, 13; Markov
chain Monte Carlo, 13;
Matplotlib, 12, 473; MayaVi,
473; NetworkX, 473;
Numerical Python, 12, 18,
472; Pandas, 473; PyMC, 13;
Python, 12; Scientific Python,
12, 472; Scikit-learn, 12, 473;
Scikits-image, 473;
Statsmodels, 473; SymPy, 473;
urllib2, 20 sorting, 51 specific flux, 515 spectral window function, 414
spherical coordinate systems, 35 spherical harmonics, 37 standard deviation, 7, 79 state-space models, 465 stationary signal, 452 statistically independent, 8
Statistics in Theory and Practice
(Lup93), 9, 37, 69, 81, 84, 85,
105, 117, 118, 127, 141–143,
176, 208
Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Bar89), 9,
69 stochastic programming, 48 stochastic time series, 458 stochastic variability, 455 streaming, 48
structure function, 458, 460 sufficient statistics, 199 sum of sinusoids, 406
supervised classification, see
classification supervised learning, 4 support vector machines, 48,
382, 384, 398, 399 support vectors, 382
SWIG, see Python/wrapping
compiled code
SX Phe, 446 telescope diffraction pattern, 410
temporal correlation, 404 tests; Anderson–Darling, 154,
157; F , 162; Fasano and
Franceschini, 156;
Kolmogorov–Smirnov, 151;
Kuiper, 152;
Mann–Whitney–Wilcoxon, 155; non-Gaussianity, 157;
nonparametric, 151;
parametric, 160; power, 145;
Shapiro–Wilk, 158; t, 161; U , 155; Welch’s t, 162; Wilcoxon
rank-sum, 155; Wilcoxon signed-rank, 155
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(HTF09), 9, 134, 136, 137,
141, 147, 181
“The magical number 7± 2”, 365
The Visual Display of Quantitative Information, 31
time series, 403, 406, 458; comparison of methods, 465 top-hat, 416
total least squares, 343 training sample, 5 tree traversal patterns, 378 tricubic kernel, 340 trigonometric basis functions, 417
Two Micron All Sky Survey (2MASS), 15
Type I and II errors, 145, 368 uncertainty distribution, 7 uneven sampling, 465 unevenly sampled data, 460, 461 uniformly sampled data, 410
unsupervised classification, see
classification
unsupervised clustering, see
clustering unsupervised learning, 4 Utopia, 130
variability, 404 variable
—categorical, 371
—continuous, 372
—random, 71; continuous, 71; discrete, 71; independent, 71; independent identically distributed, 71;
transformation, 77 variance, 46, 79; of a well-sampled time series, 405
variogram, 458 vectorized, 55
Trang 8Voronoi tessellation, 379
vos Savant, Marilyn, 74
Wass10, see All of
Nonparametric Statistics and
All of Statistics: A Concise
Course in Statistical Inference
wavelets, 418, 454; Daubechies,
418; discrete wavelet
transform (DWT), 418; Haar,
418; Mexican hat, 418;
Morlet, 418; PyWavelets, 418;
wavelet PSD, 418, 419
weave, see Python/wrapping
compiled code Welch’s method, 416 whitening, 298 Whittaker–Shannon, 412 width parameter, 78 Wiener filter, 422, 423
Wiener–Khinchin theorem,
457, 461, 463
WJ03, see Practical Statistics for Astronomers
WMAP cosmology, 170
WSAS, see Advances in Machine Learning and Data Mining for Astronomy
zero-one loss, 367