Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron source J A n A a m p © t K 1 t r i d 7 e P h 1 C ARTICLE IN PRESS+Model TUSC[.]
Trang 1Journal of Taibah University for Science xxx (2016) xxx–xxx
ScienceDirect
Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241 Am/Be neutron source
J.G Fantidis
Department of Electrical Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
Received 4 April 2016; received in revised form 15 August 2016; accepted 2 October 2016
Abstract
Thepresentworkexaminestwodifferentgeometricconfigurationsandthreedifferentliningmaterialsthataresuitableforthermal neutronradiographypurposesbasedona241Am/Beneutronsource.Thesamesourcewasalsousedforfastneutronradiography Appropriatecollimatorsweresimulatedforeachoftheradiographymodes,comparingtheeffectivenessofCadmium,Gadolinium, andBoralasliningmaterialsforthermalneutronradiographyandevaluatingtheefficiencyofIronandTungstenasinteriorwall materialsofthecollimatorinthecaseoffastneutronradiography.Thepresentedfacilitieshavebeensimulatedforawiderangeof parametervaluestocharacterizeneutronradiographyusingtheMCNP4BMonteCarlocode
©2016TheAuthors.ProductionandhostingbyElsevierB.V.onbehalfofTaibahUniversity.Thisisanopenaccessarticleunder theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords: Monte Carlo simulations; Thermal neutron radiography; Fast neutron radiography;241Am/Be
1 Introduction
E-mail address:fantidis@yahoo.gr
Peer review under responsibility of Taibah University.
http://dx.doi.org/10.1016/j.jtusci.2016.10.002
1658-3655 © 2016 The Authors Production and hosting by Elsevier B.V on behalf of Taibah University This is an open access article under the
CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
Trang 22.1 Neutron source
location)
Fig 1 Normalized neutron spectrum for 241 Am/Be.
2.2 Thermal neutron radiography design
and
u g=L f D
Trang 3Fig 2 First geometric configuration for the thermal NR considered
facility (not to scale).
θ=tan−1 I
2L
(3)
collimator
n
Fig 3 Second geometric configuration for the thermal NR considered facility (not to scale).
2.3 Fast neutron radiography design
Trang 4Fig 4 Aperture geometry and collimator design for fast NR (not to
scale).
3 Results and discussion
3.1 Thermal NR
lining
respectively
Trang 5Table 1
Thermal NR calculated parameters for differentL/Dvalues for the first geometrical configuration.
L(cm) L/D D0 (cm) θ( ◦) U g(cm) Gadoliniumlining Cadmiumlining Borallining
f th(n cm −2s−1) TNC(%) f
th(n cm −2s−1) TNC(%) f
th(n cm −2s−1) TNC(%)
Table 2
Thermal NR calculated parameters for differentL/Dvalues for the second geometrical configuration.
L(cm) L/D D0 (cm) θ( ◦) U g(cm) Gadoliniumlining Cadmiumlining Borallining
f th(n cm −2s−1) TNC(%) f th(ncm−2s−1) TNC(%) f th(ncm−2s−1) TNC(%)
Table 3
Thermal NR calculated parameters for differentL/Dvalues the second geometrical configuration with 5, 10 and 15 cm single sapphire filter.
L(cm) L/D Without Sapphire filter With 5 cm Sapphire filter With 10 cm Sapphire filte With 15 cm Sapphire filter
f th(n cm −2s−1) TNC(%) f
th(n cm −2s−1) TNC(%) f
th(n cm −2s−1) TNC(%) f
th(n cm −2s−1) TNC(%)
Trang 6D0
U g
L f
L f
L f
F F
2 s
1 )
f F
F F
2 s
1 )
4 Conclusions
Acknowledgments
Trang 7[1] D Goers, M Holzapfel, W Scheifele, E Lehmann, P Vontobel,
P Novák, In situ neutron radiography of lithium-ion batteries: the
gas evolution on graphite electrodes during the charging, J Power
Sources 130 (2004) 221–226.
[2] L.G.I Bennett, T.R Chalovich, W.J Lewis, Comparison of
neu-tron radiography with other non-destructive techniques for the
inspection of CF188 flight control surfaces, IEEE Trans Nucl.
Sci 52 (2005) 334–337.
[3] J.E Eberhardt, S Rainey, R.J Stevens, B.D Sowerby, J.R.
Tickner, Fast neutron radiography scanner for the detection of
contraband in air cargo containers, Appl Radiat Isot 63 (2005)
179–188.
[4] B.D Sowerby, J.R Tickner, Recent advances in fast neutron
radiography for cargo inspection, Nucl Instrum Methods A 580
(2007) 799–802.
[5] P Vaz, Neutron transport simulation, Radiat Phys Chem 78
(2009) 829–842.
[6] L.D Poulikakos, M Sedighi Gilani, D Derome, I Jerjen, P
Von-tobel, Time resolved analysis of water drainage in porous asphalt
concrete using neutron radiography, Appl Radiat Isot 77 (2013)
5–13.
[7] W.A el Bar, I.M Imbaby, A.K Hussein, Development and
characterization of a neutron tomography system for a research
reactor, J Taibah Univ Sci 10 (2016) 195–204.
[8] J.G Fantidis, G.E Nicolaou, N.F Tsagas, Optimization study
of a transportable neutron radiography unit based on a
com-pact neutron generator, Nucl Instrum Methods A 618 (2010)
331–335.
[9] J.F Briesmeister, MCNP4B MCNPTM – A General Monte Carlo
N-particle Transport Code, Version 4B LA-12625-M Manual,
1997.
[10] G MacGillivray, Imaging with neutrons: the other penetrating
radiation, Proc SPIE 4142 (2000) 48.
[11] A.X da Silva, V.R Crispim, Study of a neutron radiography
sys-tem using 252 Cf neutron source, Radiat Phys Chem 61 (2001)
515–517.
[12] H Jafari, S.A.H Feghhi, Design and simulation of neutron radio-graphy system based on 241 Am–Be source, Radiat Phys Chem.
81 (2012) 506–511.
[13] J.G Fantidis, D.V Bandekas, N Vordos, The replace-ment of research reactors with a compact proton Linac for neutron radiography, Radiat Phys Chem 86 (2013) 74–78.
[14] V.V Verbinski, H Weber, R.E Sund, Prompt gamma rays from
235 U(n, f), 239 Pu and spontaneous fission of 252 Cf, Phys Rev C
7 (3) (1973) 1173.
[15] U Pujala, et al., Radiat Prot Environ 34 (4) (2011) 262.
[16] A.A Naqvi, M.M Nagadi, Performance comparison of an
241 Am-Be neutron source-based PGNAA setup with the KFUPM PGNAA setup, J Radioanal Nucl Chem 260 (3) (2004) 641–646.
[17] G.M MacGillivray, Neutron Radiography Collimator Design Nray Services Inc, RR#1 Petawawa, Ontario, Canada Available at: http://stephenwclarke.com/nsi/nray/images/collimatordesign pdf
[18] M.R Hawkesworth, Neutron radiography: equipment and meth-ods, At Energy Rev 15 (1977) 169–220.
[19] J.G Fantidis, G.E Nicolaou, N.F Tsagas, A transportable neu-tron radiography system, J Radioanal Nucl Chem 284 (2010) 479–484.
[20] J.G Fantidis, D.V Bandekas, C Potolias, N Vordos, Fast and thermal neutron radiographies based on a compact neutron gen-erator, J Theor Appl Phys 6 (2012) 20.
[21] H Berger, F Iddings, Neutron Radiography, A State-of-the-Art Report, Nondestuctive Testing Information Analysis Center, 1998.
[22] E.M.A Hussein, Handbook on Radiation Probing, Gauging, Imaging and Analysis Volume II Applications and Design, Kluwer Academic Publishers, 2004.
[23] D.F.R Mildner, G.P Lamaze, Neutron transmission of single-crystal sapphire, J Appl Crystallogr 31 (1998) 835–840.