1. Trang chủ
  2. » Tất cả

Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241ambe neutron source

7 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron source
Tác giả J.G. Fantidis
Trường học Eastern Macedonia And Thrace Institute Of Technology
Chuyên ngành Electrical Engineering
Thể loại Journal article
Năm xuất bản 2016
Thành phố Medina
Định dạng
Số trang 7
Dung lượng 748,37 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron source J A n A a m p © t K 1 t r i d 7 e P h 1 C ARTICLE IN PRESS+Model TUSC[.]

Trang 1

Journal of Taibah University for Science xxx (2016) xxx–xxx

ScienceDirect

Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241 Am/Be neutron source

J.G Fantidis

Department of Electrical Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece

Received 4 April 2016; received in revised form 15 August 2016; accepted 2 October 2016

Abstract

Thepresentworkexaminestwodifferentgeometricconfigurationsandthreedifferentliningmaterialsthataresuitableforthermal neutronradiographypurposesbasedona241Am/Beneutronsource.Thesamesourcewasalsousedforfastneutronradiography Appropriatecollimatorsweresimulatedforeachoftheradiographymodes,comparingtheeffectivenessofCadmium,Gadolinium, andBoralasliningmaterialsforthermalneutronradiographyandevaluatingtheefficiencyofIronandTungstenasinteriorwall materialsofthecollimatorinthecaseoffastneutronradiography.Thepresentedfacilitieshavebeensimulatedforawiderangeof parametervaluestocharacterizeneutronradiographyusingtheMCNP4BMonteCarlocode

©2016TheAuthors.ProductionandhostingbyElsevierB.V.onbehalfofTaibahUniversity.Thisisanopenaccessarticleunder theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Monte Carlo simulations; Thermal neutron radiography; Fast neutron radiography;241Am/Be

1 Introduction

E-mail address:fantidis@yahoo.gr

Peer review under responsibility of Taibah University.

http://dx.doi.org/10.1016/j.jtusci.2016.10.002

1658-3655 © 2016 The Authors Production and hosting by Elsevier B.V on behalf of Taibah University This is an open access article under the

CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

Trang 2

2.1 Neutron source

location)

Fig 1 Normalized neutron spectrum for 241 Am/Be.

2.2 Thermal neutron radiography design

and

u g=L f D

Trang 3

Fig 2 First geometric configuration for the thermal NR considered

facility (not to scale).

θ=tan−1 I

2L



(3)

collimator

n

Fig 3 Second geometric configuration for the thermal NR considered facility (not to scale).

2.3 Fast neutron radiography design

Trang 4

Fig 4 Aperture geometry and collimator design for fast NR (not to

scale).

3 Results and discussion

3.1 Thermal NR

lining

respectively

Trang 5

Table 1

Thermal NR calculated parameters for differentL/Dvalues for the first geometrical configuration.

L(cm) L/D D0 (cm) θ( ◦) U g(cm) Gadoliniumlining Cadmiumlining Borallining

f th(n cm −2s−1) TNC(%) f

th(n cm −2s−1) TNC(%) f

th(n cm −2s−1) TNC(%)

Table 2

Thermal NR calculated parameters for differentL/Dvalues for the second geometrical configuration.

L(cm) L/D D0 (cm) θ( ◦) U g(cm) Gadoliniumlining Cadmiumlining Borallining

f th(n cm −2s−1) TNC(%) f th(ncm−2s−1) TNC(%) f th(ncm−2s−1) TNC(%)

Table 3

Thermal NR calculated parameters for differentL/Dvalues the second geometrical configuration with 5, 10 and 15 cm single sapphire filter.

L(cm) L/D Without Sapphire filter With 5 cm Sapphire filter With 10 cm Sapphire filte With 15 cm Sapphire filter

f th(n cm −2s−1) TNC(%) f

th(n cm −2s−1) TNC(%) f

th(n cm −2s−1) TNC(%) f

th(n cm −2s−1) TNC(%)

Trang 6

D0

U g

L f

L f

L f

F F

2 s

1 )

f F

F F

2 s

1 )

4 Conclusions

Acknowledgments

Trang 7

[1] D Goers, M Holzapfel, W Scheifele, E Lehmann, P Vontobel,

P Novák, In situ neutron radiography of lithium-ion batteries: the

gas evolution on graphite electrodes during the charging, J Power

Sources 130 (2004) 221–226.

[2] L.G.I Bennett, T.R Chalovich, W.J Lewis, Comparison of

neu-tron radiography with other non-destructive techniques for the

inspection of CF188 flight control surfaces, IEEE Trans Nucl.

Sci 52 (2005) 334–337.

[3] J.E Eberhardt, S Rainey, R.J Stevens, B.D Sowerby, J.R.

Tickner, Fast neutron radiography scanner for the detection of

contraband in air cargo containers, Appl Radiat Isot 63 (2005)

179–188.

[4] B.D Sowerby, J.R Tickner, Recent advances in fast neutron

radiography for cargo inspection, Nucl Instrum Methods A 580

(2007) 799–802.

[5] P Vaz, Neutron transport simulation, Radiat Phys Chem 78

(2009) 829–842.

[6] L.D Poulikakos, M Sedighi Gilani, D Derome, I Jerjen, P

Von-tobel, Time resolved analysis of water drainage in porous asphalt

concrete using neutron radiography, Appl Radiat Isot 77 (2013)

5–13.

[7] W.A el Bar, I.M Imbaby, A.K Hussein, Development and

characterization of a neutron tomography system for a research

reactor, J Taibah Univ Sci 10 (2016) 195–204.

[8] J.G Fantidis, G.E Nicolaou, N.F Tsagas, Optimization study

of a transportable neutron radiography unit based on a

com-pact neutron generator, Nucl Instrum Methods A 618 (2010)

331–335.

[9] J.F Briesmeister, MCNP4B MCNPTM – A General Monte Carlo

N-particle Transport Code, Version 4B LA-12625-M Manual,

1997.

[10] G MacGillivray, Imaging with neutrons: the other penetrating

radiation, Proc SPIE 4142 (2000) 48.

[11] A.X da Silva, V.R Crispim, Study of a neutron radiography

sys-tem using 252 Cf neutron source, Radiat Phys Chem 61 (2001)

515–517.

[12] H Jafari, S.A.H Feghhi, Design and simulation of neutron radio-graphy system based on 241 Am–Be source, Radiat Phys Chem.

81 (2012) 506–511.

[13] J.G Fantidis, D.V Bandekas, N Vordos, The replace-ment of research reactors with a compact proton Linac for neutron radiography, Radiat Phys Chem 86 (2013) 74–78.

[14] V.V Verbinski, H Weber, R.E Sund, Prompt gamma rays from

235 U(n, f), 239 Pu and spontaneous fission of 252 Cf, Phys Rev C

7 (3) (1973) 1173.

[15] U Pujala, et al., Radiat Prot Environ 34 (4) (2011) 262.

[16] A.A Naqvi, M.M Nagadi, Performance comparison of an

241 Am-Be neutron source-based PGNAA setup with the KFUPM PGNAA setup, J Radioanal Nucl Chem 260 (3) (2004) 641–646.

[17] G.M MacGillivray, Neutron Radiography Collimator Design Nray Services Inc, RR#1 Petawawa, Ontario, Canada Available at: http://stephenwclarke.com/nsi/nray/images/collimatordesign pdf

[18] M.R Hawkesworth, Neutron radiography: equipment and meth-ods, At Energy Rev 15 (1977) 169–220.

[19] J.G Fantidis, G.E Nicolaou, N.F Tsagas, A transportable neu-tron radiography system, J Radioanal Nucl Chem 284 (2010) 479–484.

[20] J.G Fantidis, D.V Bandekas, C Potolias, N Vordos, Fast and thermal neutron radiographies based on a compact neutron gen-erator, J Theor Appl Phys 6 (2012) 20.

[21] H Berger, F Iddings, Neutron Radiography, A State-of-the-Art Report, Nondestuctive Testing Information Analysis Center, 1998.

[22] E.M.A Hussein, Handbook on Radiation Probing, Gauging, Imaging and Analysis Volume II Applications and Design, Kluwer Academic Publishers, 2004.

[23] D.F.R Mildner, G.P Lamaze, Neutron transmission of single-crystal sapphire, J Appl Crystallogr 31 (1998) 835–840.

Ngày đăng: 19/11/2022, 11:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm