A study on the density shoulder formation in the SOL of H mode plasmas ARTICLE IN PRESS JID NME [m5G; December 23, 2016;6 53 ] Nuclear Materials and Energy 0 0 0 (2016) 1–5 Contents lists available at[.]
Trang 1journalhomepage:www.elsevier.com/locate/nme
plasmas
D Carraleroa,∗, J Madsenb, S.A Artenea,c, M Bernerta, G Birkenmeiera,c, T Eicha,
G Fuchertd, F Laggnera, V Naulinb, P Manzc, N Vianelloe,f, E Wolfruma, the EUROfusion
MST1 team1, the ASDEX Upgrade Teama
a Max Planck Institute for Plasma Physics, Boltzmannstr 2, 85748 Garching, Germany
b Aalto University, Espoo, Finland
c Physik-Department E28, Technische Universität München, Garching, Germany
d Max Planck Institute for Plasma Physics, Greifswald, Germany
e Consorzio RFX, Padova, Italy
f Ecole Polytechnique Fédérale de Lausanne, Swiss Plasma Center (SPC), Lausanne, Switzerland
a r t i c l e i n f o
Article history:
Received 15 July 2016
Revised 20 October 2016
Accepted 18 November 2016
Available online xxx
PSI-20 keywords:
ASDEX-Upgrade
Detachment
Edge plasma
Intermittent transport
H-mode
a b s t r a c t
Theterm“shoulderformation” referstoanincreaseofthedensitydecaylengthinthescrape-off layer (SOL)observedinmanytokamaksduringL-modeoperationwhenadensitythresholdisreached.Recent experimentsinASDEXUpgrade(AUG)andJET haveshownthattheshoulderformswhenthedivertor collisionality inthe divertorelectricallydisconnects filamentsfromthe wall.Thisleadstoatransition fromthesheathlimitedtotheinertialregimeandtoanenhancementofradialparticletransport,ingood agreementwithanalyticalmodels.Inthepresentwork,thevalidityofsuchamechanismisinvestigated
inthemorereactor-relevantH-moderegime.Forthis,acolddivertorH-modescenario isdevelopedin AUGusingdifferent levelsofDpuffing and Nseeding,inwhichinter-ELMfilaments and SOLdensity profilesaremeasured.Thebasicrelationbetweenfilamentsizeanddivertorcollisionalityisstillvalidin H-modeplasmas,albeitanadditionalcondition relatedtothegasfueling ratehasbeen foundforthe formationoftheshoulder
© 2016TheAuthors.PublishedbyElsevierLtd ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
The next generation of magnetic confinement fusion devices
willneedtosolvetheproblemofextremeheatandparticlefluxes
on Plasma-Facing Components (PFC),which will almost certainly
stretchavailablematerialstotheirtechnicallimitsonpowerloads
anderosionlevels[1].Inparticular,thepredictionofparticleand
heat fluxesontothemain vesselcomponentswillrequirethe
de-velopment ofaworkingmodelforperpendicular transportinthe
far Scrape-off Layer (SOL), including the propagation of
filamen-tary structures [2] Recent work carried out in ASDEX Upgrade
(AUG) [3] advanced in this direction by confirming
experimen-tallythepredictionsofanalyticalmodels forfilamentpropagation
[4-6],whichexplainedthebroadeningofL-modeSOLdensity
pro-∗ Corresponding author
E-mail address: daniel.carralero@ipp.mpg.de (D Carralero)
1 See http://www.euro-fusionscipub.org/mst1
filesobservedinmanytokamaks(sometimesreferred toas “den-sityshoulder”)[7,8]intermsofafilamentregimetransition.Itwas shownhowtheparameterregulatingshoulderformationisthe ef-fective divertorcollisionality, div [5] When thisparameter, rep-resentingtheproductofcharacteristicparalleltransport timeand theion-electroncollisionfrequencyinthedivertorregion,becomes
div>1,filamentselectricallydisconnectfromthewallthus tran-sitioningfromthesheathlimited[4]totheinertialregime[6].This greatlyenhancesradialtransport
According to these findings, baseline scenarios for ITER and DEMOwouldfeaturefullydevelopeddensityshoulders,asthe es-timatedvaluesofdivwillgreatlyexceedthat threshold[9].This couldbeofgreatpracticalimportance,sinceitcouldsubstantially increasetheparticlefluxarrivingatthefirstwall,aswell as con-tributeto spreadparticleandpowerfluxesonthedivertortarget Botheffectswouldhaverelevant consequencesforthe sputtering yieldfromthePFCsofbothregions,thuschangingthelifetimesof severalcomponents.However, so farthe regime transitionmodel
http://dx.doi.org/10.1016/j.nme.2016.11.016
2352-1791/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Pleasecitethisarticleas:D.Carraleroetal.,AstudyonthedensityshoulderformationintheSOLofH-modeplasmas,NuclearMaterials
Trang 2de-vices will operatein H-mode Therefore, it is necessaryto prove
that shoulder formation does also happen in H-mode, and if so,
thatthesamemechanismfoundinL-mode applies.Regardingthe
firstquestion,severalexamplesofan H-modeshoulderformation
canbe foundintheliterature[10,11],butnosystematicstudyhas
beenrealizedsofar.Besides,thisproblemmustbeseparatedfrom
ELM-relatedtransport,whichusuallydominatestheSOLofpresent
daymachinesoperatingin H-mode,asITERandespeciallyDEMO
willmostlikelyfeaturesubstantially reducedlevelsofELM
activ-ity[12].Inthepresentwork,wepresenttheresultsofaseriesof
experimentscarriedoutonAUGwiththeaimofinducinga
shoul-derformation duringinter-ELM H-mode periodsin orderto
vali-datethefilament transitionmodelbymeasuring theevolution of
filamentsanddivduringtheprocess
2 Experiments
In order to evaluate the filament transitionmodel, the
evolu-tion offilament characteristics and SOL densityprofiles required
tobemeasured whilediv wasvariedacross theL-mode
thresh-old (div[0.1, 10]) in an otherwise stationary H-mode plasma
Thus,anewscenariowasdevelopedusingthesamemagnetic
ge-ometry(LSNedgeoptimizedconfiguration)andplasmaparameters
(BT=−2.5T,Ip=800kA,q95=4.85)asinL-modedischargesused
inthepreviouswork[3].SufficientECHandNBIpowerwasadded
toaccesstheH-mode,while keepingthetotalheatingpowerlow
enoughtoallowmidplanemanipulator(MPM)measurementswith
amultipinprobeheadastheoneusedinpreviousL-mode
exper-iments[3].Mainparametersoftheconsidereddischargesare
pre-sentedinTable1.Giventhepowerlimitation, thisscenariois far
fromLFSdivertordetachmenthencenitrogenseedingwasrequired
toobtainacold,collisionaldivertor.Inordertodisentanglethe
ef-fectsofnitrogenanddeuteriumfuelingonthedivvalues,
differ-entfuelingratesforbothgases(NrateandDrate)wereused,roughly
dividingthe data set in four scenarios:A) low power discharges
withlow Nrate andDrate values; B)dischargesincludingboth NBI
andECH heating, strong nitrogen seeding and a low Drate; C) A
dischargeinwhichdiv>1isachievedonlybymeansofastrong
densityfueling with no nitrogen; D) discharges with full power,
andbothhighNrate andDrate values
A typical dischargeis presentedin Fig.1, wherethree phases
can be distinguished: first, only 300kW of ECRH heating power
isused toestablish a referenceL-mode Next,full NBIandECRH
power is injected and H-mode withtype-I ELMs is accessed
Fi-nally,thedivscaniscarriedout byincreasingNrate and/orDrate
Thisendsthe type-I ELMsandreplaces them withsmaller, more
frequent ones Also, the divertor temperature is reduced, bring-ing theLFS divertorto differentlevelsof detachment.Duringthe whole discharge, divertor conditions and midplane density pro-files are measured, respectively, by a set of divertor fixed Lang-muirprobes [13] andthelithium beamdiagnostic [14].Also, the evolution of the main plasmadensity is moniteredusing a line-integrated interferometer measurement covering the region out-sidetheρ>0.875fluxsurface[15].diviscalculatedasexplained
in[3],usingdivertortargetvaluesofne andTeanda 1/5fraction
ofπRq95 asthecharacteristicparallellength(where Risthe ma-jorradiusofAUG,andq95isthesafetyfactorneartheseparatrix) Additionally,theprobeheadintheMPMprovidesthe perpendicu-larsizeandvelocityoffilamentsbycorrelatingionsaturation cur-rentmeasurements inpoloidally andradiallyseparated pins[15]
Ascanbe seeninFig.1,theMPMisplungedmultipletimes dur-ingthedischarge,coveringeachphase,andseveralvaluesofdiv
3 Analysis and results
3.1 ELM conditional averaging
In H-mode plasmas, ELMs introduce a newlevel of complex-ityinthepresentanalysis:inL-mode,fluctuationsdonot substan-tiallyalter thebackgroundconditionsofthe SOL,andboth diver-torconditionsandmidplanedensityprofilescanbemeasured sep-arately However, the ejection of ELMs inH-mode creates a ma-jorandintermittentperturbationacrossthewholeSOL.Therefore, the ELM cycle has to be taken into account when defining the turbulent characteristics oftransport Withthis aim,the H-mode phaseofeachdischargeisdividedin250mswindows(which pro-vide a sufficient numberof events) andELMs are detected using the thermoelectric current to the divertor, Idiv [16] This current
is mainly caused by the temperature difference between the in-nerandouterdivertor.Sincetheinner targetistypicallycold,Idiv
isagoodmeasureofthetemperatureintheouter divertorandit
isthusroutinely usedforthedetectionofELMs inAUG.Then di-vertorLangmuirprobesandlithiumbeammeasurements are syn-chronizedwithIdivinordertoobtainaconditionallyaveraged evo-lutionof divand midplanene profilesasa function oft−tE,max, where tE,max is the time of the maximum Idiv value Finally, for eachwindow, pre-ELM(t−tE,max=−2ms)densityand collisional-ityvaluesare taken,asrepresentativeoftheinter-ELMconditions
[17] The fraction of the ELM cycle corresponding to such inter-ELMstateincreasesasthesizeofELMsisreduced,goingtypically fromaround20% fortype-IELMs toover65% forthesmallELMs found at the endof the discharges This method is not applica-ble forMPM data, forwhich only the limited intervalsin which
Trang 3Fig 1 The three phases on a typical discharge Top) Edge line integrated density N edge (blue) and heating power (P ECH in green, P NBI in red) are shown along with the radial position of the MPM (black) Middle) Divertor thermoelectric current (indicative of ELM activity), divertor T e and div in the ρ= 1.02–1.04 area of the target in blue, red and green, respectively Bottom) Deuterium fueling and N seeding rates D rate (blue) and N rate (green) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig 2 Experimental results a) Several inter-ELM Lithium beam density profiles during the two H-mode phases of the discharge Separatrix and far SOL e-folding lengths
λn,sep and λn,far are indicated b) Parameter diagram, where the collisionality and D rate of each discharge are displayed c) Evolution of inter-ELM λn,far with div for the whole set of discharges The shaded area represents the range of L-mode values shown in [3] The color code in all plots corresponds to the four scenarios A-D presented in Table 1 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the manipulatorisinserted areavailable Inthiscase, Idiv isused
to separate “inter-ELM” probe data from “close to an ELM” data
(i.e., 3ms>t−tE,max>−2ms) Then, filament conditional analysis
isperformedon“inter-ELMdata” usinga2.5σthreshold,asin
pre-viouswork[15]
3.2 Shoulder formation
AccordingtothemodelvalidinL-mode,inthosedischargesin
which theDrate and/or Nrate are highenough to achievediv>1,
a shoulder formationshouldbe observed bythe endofthethird
phase (high collisionality H-mode) In Fig 2a, some inter-ELM
density profiles are presented at the beginning of the H-mode
(t=3.75s,dashedlines)andattheendofthethirdphase(t=6s,
solidlines).Ascanbeseen,discharges#33056and#33059exhibit
a clearflattening at theend ofthe discharge, while inthe other
two caseslittleornoflatteningcanbe seeninthesameinterval
In ordertoquantify thiseffect,two e-foldinglengthsare defined
on theprofiles: First,λn,far,representingthe gradient ofthe
pro-file inthe farSOL,isfitted intheradial rangeρp[1,1.04] This
parameter is equivalentto theλn used inprevious worksto
de-tecttheshoulderformation[3,15].Second,λn,sep,representingthe
evolution around theseparatrix, is fittedin the range ρp[0.98,
1.01] Also, div is calculated using the fixed divertor probes in
therangeρp [1.02,1.04].InFig.2b,theevolutionofdivthrough thedischargeisrepresentedasafunctionofDrateinthefour sce-nariosdescribed inSection 2 The samecolor codeis used asin
Table 1 (respectively, blue/green/black/red for scenarios A-D) As can be seen, independently of the levels of Drate only scenarios withhighNrateclearlysurpassthediv>1threshold.Instead,the low Nrate, lowDrate scenario remains clearlyunderthethreshold, andthe one with no nitrogen surpasses slightly div=1 by the endof thedischarge The differences betweenthe fourscenarios canbeseeninFig.2c,wheretherelationbetweeninter-ELMdiv andλn,farisshownusingthesamecolorcodeoverashaded back-groundrepresentingthetrendfoundinL-modeexperiments Con-sideringthe point cluster as a whole, a behavior similar to that
ofL-mode isfound, with λn,far rising when div>1, even if the increaseisnotassharpandtheλn,farvaluesarenotashigh How-ever,whenthefourscenariosareconsideredindividually,aclearer trend is found: discharges from scenario A display low levels of
div anddonot accessthe highertransport regime Thesame is validessentiallyforscenarioC,albeitslightlyhigherdiv(andthus
λn,far) valuesareachieved.Instead,alldischargesfromscenarioD develop a clearshoulder,achievinga significant increase inλn,far
athighervaluesofdiv.Interestingly,dischargesinscenarioB, dis-playingsimilardiv valuesasthose inscenarioD, fail toachieve highλn,farvalues
Trang 4Fig 3 Inter-ELM filament size a) As a function of line integrated edge density b)
As a function of div Shaded area corresponds to L-mode values from [3] Color in-
dicates L/H-mode (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
3.3 Filament characteristics
The main resultsfromaconditional analysisofMPM dataare
shownin Fig.3:theevolution ofthefilament sizewiththeedge
line-integrateddensityshowstwothresholdsabovewhichthesize
increases sharply: the first one, observed in the L-mode phase,
takes place around Nedge=2× 1019m−3, and coincides with the
L-modeshoulder formation detected previously for300kW
oper-ation [3] The second, observed in H-mode, is observed around
Nedge=3.75× 1019m−3, and would correspond to an equivalent
thresholdforH-mode.Instead,whenthesamedatapointsare
rep-resentedasafunctionofdivinFig.3b,thetwothresholdsmerge
arounddiv=1,ingoodagreementwiththeexpectationsfromthe
filamentmodel,andsuggestingthatthesamedisconnection
mech-anism applies in H-mode Still, as with the shoulder formation,
thetransitionisnot asclearastheonefoundinL-mode.Besides
that,some propertiesofthefilamentschangewhengoing fromL
toH-mode:first,ascanbe seeninFig.3,pre-transitionfilaments
tendto be larger insize in H-mode.Also, the relative amplitude
offilaments(expressed as theratio betweenthe standard
devia-tionandthemeanvaluesofionsaturationpins,σ/μ)isincreased
by30%inH-mode(fromσ/μ∼ 0.35−0.4toσ/μ∼ 0.45−0.55).This
effectis mostly due to the reduction in densityin the SOL, and
disappearswhenσ/Nedgeisusedinstead.Finally,thedetection
fre-quencyisreducedfordiv<1,withtypicalvaluesintherangeof
fd[2000,2500] −1 andfd[1000,1500] −1 forLandH-mode,
re-spectively.Awordofcaution isinorderhere,asfd ismostlikely
not onlyaffected by the SOLconditions butalso by thefilament
generation frequency,which can be expectedto change
substan-tiallywiththeformationoftheH-modepedestal
3.4 Near SOL evolution
Besides theevolution ofλn,far,therelation ofthedensity
gra-dientattheseparatrixwiththeprocessofshoulderformationhas
beenobserved: AsshowninFig.4,bycomparingλn,far andλn,sep
inthe dataset, it could be concluded that they are uncorrelated,
andthusλn,sep is neithercorrelated withthe div parameter
re-sponsibleforshoulderformation.Instead,λn,sepseemstobeclearly
correlatedtoDrate indischargeswithvariablelevelsofgasfueling
(nosuchrelationisfoundbetweenNrate andλn,sep,though).Also,
theλn,sepvalueisproportionaltotheELMfrequency
4 Discussion and conclusions
The firstconclusioncouldbe thataphenomenon analogousto
the well documented L-mode shoulder formation can be found
when a density threshold is surpassed under certain conditions
tor Asthe datainFig.2 reveal,thishappensfordischargeswith low Drate, indicating the existence of a second threshold for the shoulder,relatedtothedeuteriumpuffinglevel.Thisisnotrelated
tothefuelingofthemainplasma:ascanbeseeninFig.5a,ahigh
Nedgedoesnottriggertheshoulderformationeither,sinceScenario
B reachesthesamerangeofedge densitiesasScenarioD There-fore,the mechanism relatingfueling and shoulder formation can probably be found in the SOL One possible explanation forthis wouldbethattheshoulderformationrequiresahighrecyclingrate
atthemainwallontopoftheincreasedconvectivetransport[18] Thiswouldbeingoodagreementwithrecentexperimentswhich show how far-SOL ion temperatures drop after the shoulder for-mation[19,20],suggestingthatalargefractionoftheionsinitdo not come fromthe confinedplasma butfromionization of recy-cledneutrals.In such acase, a minimumlevelofneutraldensity
inthefarSOLcould berequiredtostart theprocess,thus requir-ing a minimumvalue of Drate The precise determination ofthis secondthresholdandtheidentificationoftheunderlyingphysical mechanismwillbethesubjectofforthcomingwork
Asecond conclusionwouldbethat asimilar regimetransition seems totake placeasin L-mode,since thefilament sizeis sub-stantially increased when high collisionality disconnects the SOL from the wall Also, the relation between transition in the fila-mentdynamicsandshoulderformationseemstoholdinH-mode,
as they both sharethe same div and Nedge thresholds A more directcomparisoncan be seeninFig.5b,where thesizesof fila-mentsmeasuredduringsome dischargesfromFig.2areshown.A generalcorrelation betweenfilamentsize andλn,far appears, sug-gestingarelationbetweenincreasedfilamentarytransportandthe flattening of the profiles This correlation would also mean that largefilamentsonly appearwhenashoulder isformed However, filament anddensitydataare not both available inall cases(not all dischargeshadthe MPMequippedwiththe rightprobehead, probedataislimitedtothereciprocations,etc.), sogiventhe lim-ited amountofdata andthelarge errorbars inthefilament size calculation,no conclusivestatementcan bemadeyet.The clarifi-cationofthissubjectwillalsobeaddressedinforthcomingworks Finally, the density gradient length around the separatrix has been found to be largely independent ofthe collisionalityat the divertor, but correlated to Drate and proportional to the ejection frequencyofELMs The evolutionofλn,sep withDrate andNrate is consistent withrecentstudies onthe high-fieldsidehighdensity (HFHSD)regioninAUG[21,22].Thisregion,whichtendstoflatten thedensity gradientatthe separatrix,forms asDrate isincreased (whichwouldcorrespondinFig.4atotheincreaseofλn,sepwhen goingfromScenarioAtoBandfromBtoC)andhasbeenproven
tobestronglyreducedwithnitrogenseeding(whichwould corre-spondinFig.4atothereductionofλn,sepfromScenarioCtoD) Summarizing, the formation of a shoulder has been observed
in inter-ELM H-mode plasmas The general link between shoul-der formationandfilamenttransitionalsoseems toremainvalid Collisionality remains the necessary condition for the shoulder formation, but deuterium fueling seems to play an additional role These results allow the extension of the general shoulder
Trang 5Fig 4 Inter-ELM separatrix density e-folding length, λn,sep a) as a function of λn,far b) as a function of puffing rate D rate c) As a function of ELM frequency Color code as in Fig 2 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig 5 a) Relation between filament size and λn,far b) Scaling of λn,far with edge
line integrated density, N edge Same set of discharges and color code as in Fig 2
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
formation mechanism validated in L-mode to H-mode plasmas
withtheintroductionofafewnewelements.Futureworkwill
ad-dress the interplayof filamentary transport andneutral
penetra-tionintheSOLinordertoclarifytheprecisemechanismrelating
Drate withλn,far.Thisis anecessarystep onthewaytoa general
scalingoftheSOLwidth,capableofimprovingcurrentpredictions
forITERandDEMOoperation
Acknowledgments
This work hasbeen carried out within the framework of the
EUROfusion Consortium and has received funding from the
Eu-ratom research and training programme 2014–2018 under grant
agreement No 633053 The views and opinionsexpressed herein
donotnecessarilyreflectthoseoftheEuropeanCommission
References
[1] A Loarte , M Sugihara , M Shimada , et al , 22nd IAEA Fusion Energy Conference,
2008 [2] S.I Krasheninnikov , Phys Lett A 238 (2001) 368–370 [3] D Carralero , P Manz , L Aho-Mantila , et al , Phys Rev Lett 115 (2015) 215002 [4] S.I Krasheninnikov , D.A D’Ippolito , J.R Myra , J Plasma Phys 74 (2008) 679717 [5] J.R Myra , D.A Russell , D.A D ´Ippolito , Phys Plasmas 13 (2006) 112502 [6] O.E Garcia , R.A Pitts , J Horacek , et al , J Nucl Mater 363–365 (2007) 575–580
[7] B LaBombard , R.L Boivin , M Greenwald , et al , Phys Plasmas 8 (2001) 2107 [8] D.L Rudakov , J.A Boedo , R.A Moyer , et al , Nucl Fusion 45 (2005) 1589–1599 [9] D Carralero , H.W Müller , M Groth , et al , J Nucl Mater 463 (2015) 123–127 [10] H.W Müller , M Bernert , D Carralero , et al , J Nucl Mater 463 (0) (2015) 739–743
[11] H.J Sun , E Wolfrum , T Eich , et al , Plasma Phys Control Fusion 57 (12) (2015)
125011 [12] R.P Wenninger , M Bernert , T Eich , et al , Nucl Fusion 54 (2014) 114003 [13] M Weinlich , A Carlson , Contrib Plasma Phys 36 (S) (1996) 53–60 [14] M Willensdorfer , G Birkenmeier , R Fischer , et al , Plasma Phys Control Fusion
56 (2014) 025008 [15] D Carralero , G Birkenmeier , H.W Müller , et al , Nucl Fusion 54 (2014) 123005 [16] A Kallenbach , R Dux , J.C Fuchs , et al , Plasma Phys Control Fusion 52 (2010)
055002 [17] A Burckhart , E Wolfrum , R Fischer , et al , Plasma Phys Control Fusion 52 (2010) 105010
[18] B Lipschultz , D Whyte , B LaBombard ,Plasma Phys Control Fusion 47 (2005) 1559–1578
[19] D Carralero , H.J Sun , S.A Artene , et al , 42th EPS Conference on Plasma Physics, Lisbon, Portugal, 2015
[20] S.Y Allan , S Elmore , G Fishpool , et al , Plasma Phys Control Fusion 58 (2016)
045014 [21] S Potzel , M Wischmeier , M Bernert , J Nucl Mat 463 (2015) 541–545 [22] F Reimold , M Wischmeier , S Potzel , et al , J Nucl Mat Energy (2016)