Analysis of microbial diversity in Shenqu with different fermentation times by PCR DGGE B B A d TQ1 L A a A R A A A A K M P S M I S n a e e o d S b h 1 u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1[.]
Trang 1Pleasecitethisarticleinpressas:LiuT,etal.AnalysisofmicrobialdiversityinShenquwithdifferentfermentationtimesbyPCR-DGGE.Braz J
h tt p : / / w w w b j m i c r o b i o l c o m b r /
Tengfei Liu, Tianzhu Jia∗, Jiangning Chen, Xiaoyu Liu, Minjie Zhao, Pengpeng Liu
Q1
Liaoning University of Traditional Chinese Medicine, College of Pharmacy, Key Laboratory of Processing Theory Analysis of State
Administration of Traditional Chinese Medicine, Dalian, China
a r t i c l e i n f o
Article history:
Received16September2014
Accepted8December2015
Availableonlinexxx
AssociateEditor:WelingtonLuizde
Araújo
Keywords:
Microbialdiversity
PCR-DGGE
Shenqu
Molecularcloning
a b s t r a c t
ShenquisafermentedproductthatiswidelyusedintraditionalChinesemedicine(TCM)
totreatindigestion;however,themicrobialstrainsinthefermentationprocessarestill unknown.TheaimofthisstudywastoinvestigatemicrobialdiversityinShenquusing dif-ferentfermentationtimeperiods.DGGE(polymerasechainreaction-denaturinggradientgel electrophoresis)profilesindicatedthatastrainofPediococcus acidilactici(band9)isthe pre-dominantbacteriaduringfermentationandthatthepredominantfungiwereuncultured
Rhizopus, Aspergillus oryzae,andRhizopus oryzae.Inaddition,pathogenicbacteria,suchas
Enterobacter cloacae, Klebsiella oxytoca, Erwinia billingiae,andPantoea vaganweredetectedin Shenqu.DGGEanalysisshowedthatbacterialandfungaldiversitydeclinedoverthecourse
offermentation.Thisdeterminationofthepredominantbacterialandfungalstrains respon-sibleforfermentationmaycontributetofurtherShenquresearch,suchasoptimizationof thefermentationprocess
©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://
creativecommons.org/licenses/by-nc-nd/4.0/)
Introduction
Shenqu,alsoknownasLiushenqu,iscommonlyusedin
Chi-nese medicine clinics to protect the stomach and spleen
and stimulates appetite and digestion Current research
effortshaverevealedthatsomedigestiveenzymes(amylase
enzymes, protease enzymes, glucoamylase), vitamins and
othersubstancesplayamainroleinstimulatingappetiteand
digestion.1Resistancetheoryistheearliestworktomention
Shenqu.Shenquistraditionallyprocessedasfollows:wheat
bran,flour,ricebeanpowder(Vigna umbellata[Thunb.]Ohwi
∗ Corresponding author.
and Ohashi),and bitter apricot seedpowder (Prunus mand-shurica [Maxim.]Koehne) are blended ina particular ratio VariousChinesemedicinedecoctionsarethenadded, includ-ingPolygonum pubescens(Blume),Xanthium sibiricum(Patr.),and
Artemisia annua(L.).Themixtureisthenkneadedanddivided intobricks,whichareputintoamold.Finally,thebricksare coveredwithadhesive-bondedclothand placedinaboxat constanttemperatureandhumidity.Afterafewdaysof fer-mentation,theproductiscutintosmalllumpsanddriedat
alowtemperature.ThequalityoftheresultingShenqucan varyduetodifferencesintheamountofthemixedbacteria and fungithat arepresent duringfermentation.Itisworth
http://dx.doi.org/10.1016/j.bjm.2017.01.002
1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 30 31 32 33 34 35 36 37 38 39
Trang 2notingthatthefungusAspergillus flavusproducesaflatoxin,a
carcinogen,duringfermentation.Thisisoneofthereasons
whyShenquis notincludedinthe ChinesePharmacopeia
However,thecurrenttheoreticalsupportendorsesShenqufor
stimulatingappetiteanddigestion.abetterunderstandingof
themicrobesinvolvedinShenqufermentationmayleadto
improvedmethodsoffermentation
There are two main types of methods for assessing
bacterial diversity, traditional culture-dependent methods
andculture-independentmethods.Thusfar,studiesonthe
microbial diversity of Shenqu have been mainly based on
traditionalculture-dependentmethods,2–4suchasPCR-SSCP
(singlestrandconformationpolymorphism)5andDGGE.6
PCR-DGGE (polymerase chain reaction-denaturing gradient gel
electrophoresis)is aculture-independent method designed
toanalyze the geneticdiversity in asample It overcomes
thedisadvantagesofculture-dependentmethods,7makingit
acommon toolfor molecularbiological investigations into
microbialcommunities.PCR-DGGEhasbeenusedwidelyto
analyzemicrobialcommunitystructureacrossdifferentfields,
suchas food microbiology, oralmicrobiology, soil
microor-ganisms,environmentalmicrobiology,andotherareas.8–11In
thisstudy,weused culture-independentPCR-DGGEand TA
cloningtodeterminethemicrobialdiversityofShenquacross
differentfermentationperiods.Theaimofthisstudywasto
investigateeubacteriamicrobialdiversityduringfermentation
andidentifyseveraldominantfermentationbacteriaand
fun-gus
Shenqu sample collection
Shenqufermentationparameterswere based onour
previ-ousstudyandresponsesurfacemethodology.12Rawmaterials
were crushed in a grinder Fourteen grams of Polygonum
pubescens (Blume), Xanthium sibiricum (Patr.) and Artemisia
annua(L.)weremixedwithwateranddecoctedfor1hat32◦C
and75%relativehumidityandthenmixedwith60gofflour,
140gofwheatbran,8gofbitterapricot,and5.2gofricebean
Eightsampleswereprocessedanddesignatedas1–8for
fer-mentationforvaryinglengthsoftime,representingdays1–8,
respectively.EachShenqusample,ofapproximately100g,was
collectedduringdays1–8.Allsampleswerecollectedina ster-ileenvironment,transferredtosterilepolyethylenebagsand storedat−70◦Cuntiltheywereanalyzed.
DNA extraction
FivegramsofeachShenqusampleweresuspendedin50mL
of phosphate buffered saline (PBS, 0.1mol/L, pH 8.0) and shakenfor10min.Themixedsuspensionwascentrifugedat 10,000×gfor10minandwashedthreetimesusingthesame PBS buffer.TotalgenomicDNAwasextractedfromthe pel-letsusingaONE-4-ALLGenomicDNAMini-PrepsKit(Sangon Biotech, Shanghai, China) according to the manufacturer’s instructions.Thesamplesweregroundusingliquidnitrogen andlysisbuffer,thenrapidlythawedinawater-bathat65◦C foranhour.Thesampleswereshakenevery10minduring lysis.ThecrudeDNAwaselectrophoreticallyanalyzedon1.2% (w/v)agarosegels;sampleswerethenkeptinaclean0.5-mL microcentrifugetubeandstoredat−20◦C.
PCR amplification
All primersusedinthisstudyarelisted inTable1 General bacterial16SrRNAgeneprimers338Fand518Rwereusedto assessbacterialdiversity.Atouch-downPCRtechniquewas employedinordertoincreasesensitivity.Thethermalcycling conditions were as follows: 5min denaturation at 95◦C;5 cyclesof30sat94◦C,30sat62◦C(witheachcyclereduced
by2◦C),and90sat72◦C;25cyclesof30sat94◦C,30sat50◦C, and90sat72◦C;andfinalextensionfor10minat72◦C.AGC clamp(5-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCA CGGGGGG-3)wasattachedtothe5endofprimer338Ffor theDGGEanalysis
AnestedPCRtechniquewasemployedinordertoincrease sensitivity PCRamplificationofgeneralbacterial18S rRNA wasperformedusinguniversalgeneprimersNS1andFR1in thefirststep,followedbynestedPCRusingNS1andGC-Fung Thethermalcyclingconditionswereasfollows:5min dena-turationat95◦C;30cyclesof30sat94◦C,30sat50◦C,and
90sat72◦C;andfinalextensionfor10minat72◦C.PCR prod-uctsfromthefirststepweredilutedwith10timestheamount
ofddH2Oandservedasthetemplateforthesecondroundof nestedPCR
Table 1 – Primers used in this study.
Fungi
FirstPCR
round
SecondPCR
round
F,forwardprimer;R,reverseprimer
a Primerwitha41-bpGCclamp(CGCCCGGGGCGCGCCCCGGGGCGGGGCGGGGGCGCGGGGGG)
b Primerwitha40-bpGCclamp(CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 80
81
82
83 84 85 86 87 88 89 90 91 92 93 94
95
96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
Trang 3Pleasecitethisarticleinpressas:LiuT,etal.AnalysisofmicrobialdiversityinShenquwithdifferentfermentationtimesbyPCR-DGGE.Braz J
DGGE analysis
ThePCRproductsofbacteriaandfungiwereanalyzedusing
DGGE and the D-code Universal Mutation Detection
Sys-tem (Bio-rad, USA) For assessing bacterial diversity, 10%
of the polyacrylamide gradient (acrylamide:bisacrylamide,
37.5:1)wasused.Theoptimalseparationwasachievedbya
40–70%denaturantgradient.Forassessingfungaldiversity,8%
polyacrylamideand25–40%denaturantgradientwereused
Electrophoresiswasthenperformedfor1hat60Vand15h
at100V(60◦C).Afterelectrophoresis,gelswerestainedwith
SYBRGreenI(MolecularProbes,BBI,Candia)for30min.The
gelswereobserved,andphotographsweretakenusingaKETA
GseriesImageSystem(Wletch,USA)
Sequencing of DGGE bands
Representativebands were excisedfromgels withasterile
blade.Thegelpiecesweregroundusingtissue-grinding
pes-tles(Sangon,Shanghai,China)andthenincubatedovernight
at4◦CinTEbuffer(pH8.0).TheDNAsolutionwithTEwas
thenamplifiedwithprimerswithnoGCclamp.PurifiedPCR
productswereligatedintoapUCm-Tvectorandthen
trans-formedinto Trans5␣ChemicallyCompetent Cells(Transgen
Biotech,Beijing,China).Individualwhitecolonieswere
ampli-fiedwithPCRusingtheprimersM13-4716andM13-48(Sangon,
Shanghai, China) Samples were then sent to a
sequenc-ingcompanyforsequencing(Sangon,Shanghai,China).The
resultinggenesequenceswerealigned withthose inaGen
Bankwiththe Blastprogramtoidentifythe closestknown
relatives
Statistical analyses
Quantity Onesoftware (Bio-rad,USA) was usedto analyze the DGGE profiles and perform cluster analysis Statistical analysisofthedatasetswasperformedusingMATLAB2013a software(Mathworks,USA).TheShannon–Wienerindexwas determinedbytherelativeintensityofbands
Results
Bacterial and fungal community diversity
TheDGGEprofileforthebacterialcommunityoffermenting ShenquisshowninFig.1.Notably,thebacterialcommunity differed over the courseof fermentation, whilethe fungal community did notdiffer Diversity indicesof microbesin ShenquwerecalculatedbasedontheDGGEprofile.The bac-terialdiversityindicesover8daysoffermentationwereas follows:day1,21bands,Shannon–Wienerindex2.38;day2,23 bands,index2.56;day3,13bands,index2.07;day4,13bands, index2.05;day5,18bands,index2.19;day6,18bands,index 2.15;day7,19bands,index2.35;andday8,7bands,index1.52 Thefungaldiversityindicesoverthe8dayswereasfollows: day1,8bands,Shannon–Wienerindex1.69;day2,10bands, Shannon–Wienerindex1.92;day3,4bands,Shannon–Wiener index1.36;day4,8bands,Shannon–Wienerindex1.77;day
5, 7 bands, Shannon–Wiener index 1.77; day 6, 7 bands, Shannon–Wienerindex1.35;day7,7bands,Shannon–Wiener index1.59;andday8,7bands,Shannon–Wienerindex1.71 Thespeciesrichnessvariedovertheeightsamples,andmost bandswereobservedinthesamplefromday2(Fig.1AandB) Thesamplefromday2alsohadthehighestShannon–Wiener indices(2.56and1.92)ofthePCR-DGGEprofiles
1d 2d 3d 4d 5d 6d 7d 8d 1d 2d 3d 4d 5d 6d 7d 8d
8
7
9
2 3
4 5
6
1
2
3 12
11
Fig 1 – Touchdown PCR-DGGE and nested PCR-DGGE profile of bacterial community diversity of Shenqu from the 16s rDNA
Q5
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147 148 149 150 151
152
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
Trang 4Bacterial and fungal diversity after varying durations of
fermentation
ThesequencingofbacterialDGGEbandshighlightedthe
pres-enceofvariousbacterialstrains,includingEnterobacter cloacae
(band 1, 100% identity to NCBI accessionKM408606),
Kleb-siella oxytoca(bands2and10,100%identitytoKM408607and
KM408615),Erwinia billingiae(bands 3and 11,100%identity
toKM408608 and KM408615), Escherichia hermannii(band 4,
99%identitytoKM408609),Paenibacillus polymyxa(band5,99%
identitytoKM408610),Pantoea vagans(band6,100%identity
to KM408611), Acinetobacter baumannii (band 7, 100%
iden-titytoKM408612),Desulfotomaculum thermocisternum(band8,
100%identitytoKM408613),P acidilactici(band9,99%identity
toKM408614),and Citrobacter koseri(band 12,100% identity
toKM408617) (Fig 1A).Notably, P acidilactici (band 9, 100%
identityto KM408614))was detected throughoutthe entire
fermentationprocess
The sequencing of fungal DGGE bands highlighted the
presenceofthreestrains:unculturedRhizopus(band1,100%
identitytoNCBIaccessionKM408618),Aspergillus oryzae(band
2,100%identitytoKM408619), andRhizopus oryzae(band3,
100%identitytoKM408620)(Fig.1B).Again,onespecies,the
unculturedRhizopus (band1),was detectedthroughoutthe
entirefermentationprocess,followedbyband2,3(A oryzae,
R oryzae).
Discussion
Inthis study,PCR-DGGE wasappliedtoanalyzethe
micro-bial communitystructure oftheTCM supplement Shenqu
Shenquisanaturalculturemediumcontainingvarious
nutri-ents.Conventionalculturemethodsareunabletoreflectits
fullnutritional contents Therefore, our study adopted the
culture-independentmethodofPCR-DGGEtoinvestigatethe
bacterialandfungalcommunitystructureofShenqu.The
bac-terialDGGEfingerprintsshowedthatthePediococcus acidilactici
strain(band9,Fig.1A)wasthepredominantbacterialspecies
presentduringfermentation.Likewise,thepredominant
fun-gusduringfermentationwas unculturedRhizopus,followed
byA oryzae,andR oryzae.FromBerger’sbacterial
identifica-tionmanualandrelatedliterature,17–19 weknow thatthese
bacteriacanproduceamylase,proteaseenzymessuchas
glu-coamylase,anddigestiveenzymes.Theseproductsarelikely
tobeassociatedwiththeappetitestimulatinganddigestive
functionsofShenqu
Thesequencingresultsshowedthatthebacterial
commu-nityincluded10typesofpathogenicbacteria,includingseven
E cloacaestrains,K oxytoca,20E billingiae,andP vagan.21This
studyconfirmedthatpathogenicbacteriaexistinthe
tradi-tionalChinesemedicineShenqu.Theexistenceofpathogenic
bacteria is likely to affect the quality of various batches
of Shenqu compared with batches of Shenqu that have
undergonepurebred fermentation22,6 alsoinvestigatedthe
microbialcommunityofShenqubyPCR-DGGEandfoundthat
thedominantmicrobesbelongedtothegeneraEnterobacter,
Pediococcus, Pseudomonas, Mucor,andSaccharomyces,whichare
resultsthataresomewhatdifferentfromours.Thisoutcome
isprobablyduetothedifferentproportionsofingredientsand fermentationparametersusedinthetwostudies
Inconclusion,theaimofthisstudywastoinvestigatethe microbesofShenquovervaryingdurationsoffermentation
byPCR-DGGE.TheresultsrevealedthatP acidilactici, A oryzae,
andR oryzaewerethepredominantmicrobespresent.These resultsmay contributetofurtherstudyofShenqu,suchas studies focusingonoptimizingthefermentationprocessor purebredfermentationofShenqu.Onlybypurifyingthe pre-dominant microbesof Shenquwill webe able toexamine themicrobialbiologicaltransformationsthatoccurinShenqu Thus,inthisstudy,wesuggestthatPCR-DGGEshouldbe con-sideredasapreliminarytoolforinvestigatingthemicrobial community structureofShenqu.Becauseoftechnical defi-cienciesofthePCR-DGGEmethod,however,someelementsof themicrobialcommunitymayinevitablygoundetected.Other newtechnologies,suchasT-RLFP,MLSTandhigh-throughput sequencing,couldthereforebeadoptedforfurtherstudies
Theauthorsdeclarenoconflictsofinterest
Acknowledgments
ThisworkwasfinanciallysupportedbytheNationalScience Q3
andTechnologyMajorProjectsConstructionoftheIncubator (Benxi)BaseofNationalInnovationDrugsinLiaoningProvince (20102X09401-304-105A)
r e f e r e n c e s
1.ZhangLY,JiangGY,WangF.Comparisonofdigestiveenzyme Q4
activitiesandtheeffectongastrointestinalmotilityofmice betweenunprocessedandprocessedLiushenqu.Chin J Clin Pharm.2008;20(3):3
2.ChengYX,ZhangJ,QiCC,ZhouL,ShiXY.Optimizationof submergedfermentationtechnologyforMassaMedicata FermentatabyAspergillus sydowii Chin J Exp Trad Med Form.
2013;19(19):42–45
3.WangQH,SuY,WangLH,etal.Studyonisolationand identificationoffungiinmedicatedleaven.Chin J Exp Trad Med Form.2014;20(7):122–126
4.WuJY,LiY,WangDX,ShiXY.Investigationpure fermentationandstrainsseparationofLiushenqu.Chin J Exp Trad Med Form.2013;19(16):12–14
5.ChenJ,JiaoX,YangC.FungalcompositioninMassa MedicataFermentatabasedonculturedependentmethod
anindependentPCR-SSCPtechnique.Chin J Chin Mater Med.
2014;39(21):4169–4173
6.XuY,XieYB,ZhangX-R.Monitoringofthebacterialand fungalbiodiversityanddynamicsduringMassaMedicata Fermentatafermentation.Appl Microbiol Biotechnol.
2013;97:9647–9655
7.MuyzerG,SmallaK.Applicationofdenaturinggradientgel electrophoresis(DGGE)andtemperaturegradientgel electrophoresis(TGGE)inmicrobialecology.Antonie Van Leeuwenhoek.1998;73(1):127–141
8.MarianthiS,AthanasiosK,AlexG,MariaK,YiannisK
EffectivesurvivalofimmobilizedLactobacillus caseiduring ripeningandheattreatmentofprobioticdry-fermented
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
246
247 248 249 250
251
252
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
Trang 5Pleasecitethisarticleinpressas:LiuT,etal.AnalysisofmicrobialdiversityinShenquwithdifferentfermentationtimesbyPCR-DGGE.Braz J
sausagesandinvestigationofthemicrobialdynamics.Meat
Sci.2014;96:948–955
9.DePaulaVA,DeCarvalhoFD,CavalcanteFS,etal.Clinical
signsandbacterialcommunitiesofdeciduousnecroticroot
canalsdetectedbyPCR-DGGEanalysis:researchassociation
Arch Oral Biol.2014;59(8):848–854
10.JonathanL,RichardV,LouiseD.Anewframeworkto
accuratelyquantifysoilbacterialcommunitydiversityfrom
DGGE.Microb Ecol.2013;66(3):647–658
11.ZhongX,RimetF,JacquetS.Seasonalvariationsin
PCR-DGGEfingerprintedvirusesinfectingphytoplanktonin
largeanddeepperi-alpinelakes.Ecol Res.2014;29:271–287
12.LiuT,GaoH,LiuX.Optimizationoffermentationtechniques
ofMassaMedicataFermentatabyresponsesurface
methodology.J Chin Med Mater.2014;37(10):1757–1761
13.MuyzerG,DewaalEC,UitterlindenAG.Profilingofcomplex
microbial-populationsbydenaturinggradient
gel-electrophoresisanalysisofpolymerasechain
reaction-amplifiedgenes-codingfor16sribosomal-RNA
Appl Environ Microb.1993;59:695–700
14.VainioEJ,HantulaJ.Directanalysisofwood-inhabitingfungi
usingdenaturinggradientgelelectrophoresisofamplified
ribosomalDNA.Mycol Res.2000;104:927–936
15.MayLA,SmileyB,SchmidtMG.Comparativedenaturing
gradientgelelectrophoresisanalysisoffungalcommunities
associatedwithwholeplantcornsilage.Can J Microbiol.
2001;47:829–841
16.BonitoG,IsikhuemhenOS,VilgalysR.Identificationoffungi associatedwithmunicipalcompostusingDNA-based techniques.Bioresour Technol.2010;101:1021–1027
17.BanwoK,SanniA,TanH.Functionalpropertiesof Pediococcusspeciesisolatedfromtraditionalfermented cerealgruelandmilkinNigeria.Food Biotechnol.
2013;27(1):14–38
18.HunterAJ.Independentduplicationsof␣-amylasein differentstrainsofAspergillus oryzae Fungal Genetics Biol.
2011;48(4):438–444
19.DengYF,LiS,XuQ,GaoM,HuangH.Productionoffumaric acidbysimultaneoussaccharificationandfermentationof starchymaterialswith2-deoxyglucose-resistantmutant strainsofRhizopus oryzae Bioresource Technol.
2012;107:363–367
20.AntonioB,MariannaC,RiangelaG,MilenaS,MariaRC
CharacterizationandimplicationsofEnterobactercloacae strains,isolatedfromItaliantableolivesBellaDiCerignola.J Food Sci.2010;75(1):M53–M60
21.TimK,TheresaAL,VirginiaOS,CarolAI,TheoHMS,BrionD Characterizationofthebiosyntheticoperonforthe
antibacterialpeptideherbicolininPantoea vagansbiocontrol strainC9-1andincidenceinPantoeaspecies.Appl Environ Microbiol.2012;78(12):4412–4419
22.GaoH,JiaTZ.Comparativeresearchonqualityofvarious Shenqufermentatedwithdifferentpureinoculation.Chin J Chin Mater Med.2008;33(20):2323–2325
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334