A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non vanishing effects of mutations JID CRASS1 AID 5846 /FLA Doctopic Mathematical analysis [m3G;[.]
Trang 1Contents lists available atScienceDirect
C R Acad Sci Paris, Ser I
www.sciencedirect.com
Mathematical analysis/Partial differential equations
Méthode de Hamilton–Jacobi pour décrire des équilibres évolutifs dans les
environnements hétérogènes avec des mutations non évanescentes
Sylvain Gandona, Sepideh Mirrahimib
aCentre d’écologie fonctionnelle et évolutive (CEFE), UMR CNRS 5175, 34293 Montpellier cedex 5, France
bCNRS, Institut de mathématiques (UMR CNRS 5219), Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex, France
a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 October 2016
Accepted after revision 7 December 2016
Available online xxxx
Presented by Hạm Brézis
In this note, we characterize the solution to a system of elliptic integro-differential equationsdescribingaphenotypicallystructuredpopulationsubjecttomutation,selection, and migration Generalizing an approach based on the Hamilton–Jacobi equations, we identify the dominant terms of the solution when the mutation term is small (but nonzero).Thismethodwasinitiallyused,fordifferentproblemsarisenfromevolutionary biology,toidentifytheasymptoticsolutions,whilethemutationsvanish,asasumofDirac masses.AkeypointisauniquenesspropertyrelatedtotheweakKAMtheory.Thismethod allowsustogofurtherthantheGaussianapproximationcommonlyusedbybiologists,and
isanattempttofillthegapbetweenthetheoriesofadaptivedynamicsand quantitative genetics
©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess
articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
r é s u m é
Danscettenote,nousétudions unsystèmed’équationsintégro-différentielleselliptiques, décrivantunepopulationstructuréepartraitphénotypiquesoumisềdesmutations,àla sélection età desmigrations Nous généralisons uneapproche baséesur deséquations
de Hamilton–Jacobi pour détérminer les termes dominants de la solution lorsque les effetsdesmutationssontpetits(maisnonnuls).Cetteméthodeétaitinitialementutilisée, pour différents problèmes venant de la biologie évolutive, pour identifier les solutions asymptotiques, lorsqueles effetsdes mutationstendent vers0,sous formede sommes
de massesdeDirac Un point-cléest unepropriétéd’unicité en rapportavec lathéorie
deKAMfaible.Cetteméthodenouspermetd’allerau-delàdesapproximationsgaussiennes
E-mail addresses:sylvain.gandon@cefe.cnrs.fr (S Gandon), sepideh.mirrahimi@math.univ-toulouse.fr (S Mirrahimi).
http://dx.doi.org/10.1016/j.crma.2016.12.001
1631-073X/©2016 Académie des sciences Published by Elsevier Masson SAS This is an open access article under the CC BY-NC-ND license
Trang 2habituellementutilisées parles biologistes,etcontribueainsi àrelier lesthéories dela dynamiqueadaptativeetdelagénétiquequantitative
©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess
articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
During the last decade, an approach basedon Hamilton–Jacobi equationswithconstraints hasbeen developedto de-scribetheasymptoticevolutionarydynamicsofphenotypicallystructured populations,inthelimitofvanishingmutations Mathematicalmodelingofsuchphenomenaleadstoparabolic(orellipticforthesteadycase)integro-differentialequations, whose solutions tend, asthe diffusion term vanishes, toward a sum ofDirac masses, corresponding to dominant traits TheseasymptoticsolutionscanbedescribedusingtheHamilton–Jacobiapproach.Thereisalargeliteratureonthismethod
Wereferto[4,17,13]fortheestablishmentofthebasis ofthisapproachforproblemsfromevolutionarybiology.Notethat relatedtoolswerealreadyusedinthecaseoflocalequations(forinstanceKPPtypeequations)todescribethepropagation phenomena(see,forinstance,[8,5])
In almost all the previous works, the Hamilton–Jacobi approach has been used to describe the limit of the solution, corresponding to thepopulation’s phenotypical distribution, asthe mutations steps vanish.However, from thebiological pointofview,itissometimesmorerelevanttoconsidernon-vanishingmutationsteps.Arecentwork[16]haspointedout that such toolscan alsobeused, forasimplemodel withhomogeneousenvironment, tocharacterizethe solution,while mutationstepsaresmall,butnonzero.Inthisnote,weshowhowsuchresultscanbeobtainedinamorecomplexsituation withaheterogeneousenvironment
Ourpurposeinthisnoteistostudythesolutionstothefollowingsystem,forz∈ R,
⎧
⎪
⎨
⎪
⎩
− ε2n
ε ,1(z) =n ε ,1(z)R1(z,N ε ,1) +m2n ε ,2(z) −m1n ε ,1(z),
− ε2n
ε ,2(z) =n ε ,2(z)R2(z,N ε ,2) +m1n ε ,1(z) −m2n ε ,2(z),
N ε , i=
R
n ε , i(z)dz, for i=1,2,
(1)
with
R i(z,N i) =r i−g i(z− θi)2− κi N i, withθ1= −θandθ2= θ. (2)
Thissystemrepresentstheequilibriumofaphenotypicallystructuredpopulationundermutation,selectionandmigration betweentwohabitats.Formoredetailsonthemodelingandthebiologicalmotivations,seeSection2
Notethattheasymptoticbehavior,as ε →0 andalongsubsequences,ofthesolutionstothissystem,underthe assump-tion m i>0,fori=1,2,andforboundeddomains, was alreadystudiedin[14].Inthe presentwork,we gofurther than the asymptoticlimit along subsequences,andwe obtain uniqueness ofthelimit andidentify thedominant termsofthe solutionwhen εissmallbutnonzero
The main elements of the method: Todescribethesolutionsnε ,( ),weuseaWKBansatz
n ε , i(z) = √1
2π εexp
u ε , i(z)
ε
.
Notethat afirstapproximation,whichiscommonlyusedinthetheoryof‘quantitativegenetics’(atheoryinevolutionary biologythatinvestigatestheevolutionofcontinuouslyvaryingtraits, see[18],chapter7),isaGaussiandistributionofthe form:
n ε , i(z) = N i
√
2π εσ exp
−(z−z∗)2
ε σ2
2π εexp
2σ2(z−z∗)2+ εlogN i
σ
Here,wetrytogofurtherthanthisaprioriGaussianassumptionandtoapproximatedirectlyuε ,.Tothisend,wewritean expansionforuε , intermsof ε:
We provethatu1=u2=u istheuniqueviscositysolutiontoaHamilton–Jacobiequationwithconstraint.Theuniqueness
oftheviscositysolutiontosuchHamilton–Jacobi equationwithconstraintisrelatedtotheuniquenessoftheEvolutionary Stable Strategy(ESS),seeSection 3foradefinitionandfortheresultontheuniquenessoftheESS,andtotheweakKAM theory[7].Insection4,wecomputeexplicitlyu,whichindeedsatisfies
max
R u(z) =0,
Trang 3withthemaximumpointsattainedatoneortwopoints corresponding totheESSpoints oftheproblem.We thennotice that,whileu( ) <0,nε ,( )isexponentiallysmall.Therefore,onlythe valuesof v i and w i atthepoints closeto thezero levelsetofu matter,i.e.theESSpoints.Insection5,we providethemainelementstocomputeformally v i andhenceits second-orderTaylorexpansionaroundtheESSpointsandthevalueofw iatthosepoints.Then,weshow,insection6,that theseapproximationstogetherwithafourth-orderTaylorexpansionofu aroundtheESSpointsareenoughtoapproximate themomentsofthepopulation’sdistributionwithanerrorintheorderof ε2
Themathematicaldetailsofourresultswillbeprovidedin[12].Thebiologicalapplicationswillbedetailedin[15]
2 Model and motivation
Thesolutionto(1)correspondstothesteadysolutiontothefollowingsystem,for(t z ∈ R+× R,
⎧
⎪
⎨
⎪
⎩
∂t n i(t,z) − ε2∂2
∂ 2n i(t,z) =n i(t,z)R i(z,N i(t)) +m j n j(t,z) −m i n i(t,z), i=1,2, j=2,1,
N i(t) =
R
Thissystemrepresentsthedynamicsofapopulationthatisstructuredbyaphenotypicaltrait z,andlivesintwohabitats
Wedenotebyn i(t z thedensityofthephenotypicaldistributioninhabitati,andbyN ithetotalpopulation’ssizeinhabitat
i.ThegrowthrateR i( ,N i)isgivenby(2),wherer irepresentsthemaximumintrinsicgrowthrate,g iisthestrengthofthe selection,θi istheoptimaltrait inhabitati,and κi representstheintensityofthecompetition.The constantsm i arethe migrationratesbetweenthehabitats.Inthisnoteweassumethatthereispositivemigrationrateinbothdirections,i.e
However,thesourceandsinkcase,whereforinstancem2=0,canalsobeanalyzedusingsimilartools.Wereferto[15]for theanalysisofthiscase.Weadditionallyassumethat
Thisguaranteesthatthepopulationdoesnotgetextinct
Such phenomena havealready beenstudied by severalapproaches A first class of resultsare basedon the adaptive dynamics approach,where one considers that the mutations are very rare,so that the population hastime to attain its equilibrium betweentwo mutations and hencethe population’s distribution has discrete support (one or two points in
a two-habitat model)[11,2,6] Asecond class ofresults isbased on an approachknown as‘quantitative genetics’,which allowsmorefrequentmutationsanddoesnotseparatetheevolutionaryandtheecologicaltimescales.Amainassumption
inthisclassofworksisthat oneconsiders thatthepopulation’s distributionisa Gaussian[9,19] or,totake intoaccount thepossibilityofdimorphicpopulations,asumofoneortwoGaussiandistributions[20,3]
Inourwork,asinthequantitativegeneticsframework,wealsoconsidercontinuousphenotypicaldistributions.However,
we do not assume anya prioriGaussian assumption We compute directlythe population’s distribution andinthisway
wecorrectthepreviousapproximations.Tothisend,wealsoprovidesomeresultsintheframeworkofadaptivedynamics and, in particular, we generalize previous results on the identification of the ESS to the caseof nonsymmetric habitats Furthermore,ourworkmakesaconnectionbetweenthetwoapproachesofadaptivedynamicsandquantitativegenetics
3 The adaptive dynamics framework
In thissection, we introduce some notions fromthe theory ofadaptive dynamics that we will be using in the next sections[11].Wealsoprovideourmainresultinthisframework
Effective fitness Theeffectivefitness W( ;N1,N2)isthelargesteigenvalueofthefollowingmatrix:
A (z;N1,N2) =
R1(z;N1) −m1 m2
m1 R2(z;N2) −m2
Thisindeed corresponds tothe effective growthrateassociated withtrait z in the whole metapopulationwhen thetotal populationsizesaregivenby(N1,N2)
Demographic equilibrium Considerasetofpoints = {z1, · · ·z m}.Thedemographicequilibriumcorrespondingtothis setisgivenby(n1( ),n2( )),withthetotalpopulationsizes (N1,N2),suchthat
n i(z) =
m
j=1
αi , jδ(z−z j), N i=
m
j=1
αi , j, W(z j,N1,N2) =0,
andsuchthat( α , α )TistherighteigenvectorassociatedwiththelargesteigenvalueW( ,N ,N ) =0 ofA(z ;N ,N )
Trang 4Evolutionary stable strategy Asetofpoints∗= {z∗
1, · · · ,z∗
m}iscalledanevolutionarystablestrategy(ESS)if
W(z,N∗
1,N∗
2) =0, for z∈ Aand, W(z,N∗
1,N∗
2) ≤0, for z∈ / A,
where(N∗
1,N∗
2)arethetotalpopulationsizescorrespondingtothedemographicequilibriumassociatedwiththeset∗.
Since,thereareonlytwohabitatsforwhichweexpectthatatmosttwodistincttraitscoexistattheevolutionarystable equilibrium.Weproveindeedthefollowing
Theorem 3.1.Assume(5)–(6) There exists a unique set of points∗which is an evolutionary stable strategy. Such set has at most two
elements.
We call anevolutionary stablestrategy whichhasone (respectively two)element(s), amonomorphic (respectively di-morphic)ESS Wecanindeedgiveacriterion tohavemonomorphicordimorphicESS,andwe canidentifythedimorphic ESSinthegeneralcase(see[12]formoredetails)
4 How to compute the zero-order termsu i
The identification of thezero-order terms u i is based onthe following result Note that the part(ii) of the theorem belowisavariantofTheorem1.1in[14]
Theorem 4.1.Assume(5)–(6).
(i) As ε →0,(nε ,1,nε ,2)converges to(n∗
1,n∗
2), the demographic equilibrium of the unique ESS of the model Moreover, as ε →0, Nε ,
converges to N∗
i , the total population size in patch i corresponding to this demographic equilibrium.
(ii) As ε →0, both sequences(uε ,)ε , for i=1,2, converge along subsequences and locally uniformly inRto a continuous function
u∈C( R), such that u is a viscosity solution to the following equation
−|u|2=W(z,N∗
1,N∗
2), inR,
max
Moreover, we have the following condition on the zero-level set of u:
supp n∗
1=supp n∗
2⊂ {z|u(z) =0} ⊂ {z|W(z,N∗
1,N∗
2) =0}.
(iii) There exists constants(λi, νi), for i=1,2, which can be determined explicitly from m1, m2, g1, g2, κ1, κ2andθ, such that, under the condition
we have
supp n∗
1=supp n∗
2= {z|u(z) =0} = {z|W(z,N∗
1,N∗
The solution to(8)–(10)is unique, and hence the whole sequence(uε ,)ε converges locally uniformly inRto u.
Note thata Hamilton–Jacobiequation oftype (8)ingeneralmightadmit severalviscositysolutions.Here,the unique-ness isobtainedthanks to (10)andaproperty fromtheweak KAMtheory,whichis thefact that viscositysolutionsare completelydeterminedby onevaluetakenoneachstaticclassoftheAubryset([10],Chapter5and[1]).Inwhatfollows,
weassumethat(9)andhence(10)alwayshold.Wethengiveanexplicitformulaforu consideringtwocases
(i) Monomorphic ESS We considerthe casewhere thereexists a unique monomorphic ESS z∗ andwhere the
corre-spondingdemographicequilibriumisgivenby(N∗
1δ(z∗),N∗
2δ(z∗)).Then u isgivenby
u(z) = −
z
z∗
−W(x;N∗
1,N∗
(ii) Dimorphic ESS WenextconsiderthecasewherethereexistsauniquedimorphicESS( ∗
a,z∗
b)withthedemographic equilibrium:n i= νa ,δ(z−z∗
a) + νb ,δ(z−z∗
b),and νa , + νb , =N∗
i.Thenu isgivenby
u(z) =max
− |
z
z∗
−W(x;N∗
1,N∗
2)dx|, −|
z
z∗
−W(x;N∗
1,N∗
2)dx| .
Trang 55 How to compute the next-order terms
Inthissection, wegive themain elements tocompute formally v i andthevalue of w i atthe ESSpoint, withv i and
w i thecorrectorsintroducedby(3),inthecaseofamonomorphicpopulation.Forthedetailsofthecomputationsforboth monomorphicanddimorphicpopulations,werefertheinterestedreaderto[12]
Weconsiderthecaseofmonomorphicpopulationwherethedemographicequilibriumcorresponding tothe monomor-phicESSisgivenby(N∗
1δ(z−z∗),N∗
2δ(z−z∗)).Onecancompute,using(11),aTaylorexpansionoforder4 aroundtheESS
pointz∗:
u(z) = −A
2(z−z∗)2+B(z−z∗)3+C(z−z∗)4+O(z−z∗)5.
Toprovideanapproximationofthemomentsofthepopulation’sdistribution,wehavetocompute constants D i,E iand F i
suchthat
v i(z) =v i(z∗) +D i(z−z∗) +E i(z−z∗)2+O(z−z∗)3, w i(z∗) =F i.
Afirst elementof thecomputationsis obtainedbyreplacing thefunctionsu, v i andw i bythe aboveapproximationsto compute Nε , = Rnε ,( )dz.Thisleadsto
v i(z∗) =log
N∗
i
√
A
, N ε , i=N∗
i + εK∗
i +O( ε2), with K∗
i =N∗
i
3C
A2+E i
A +F i
.
Notealsothatwriting(1)intermsofuε , weobtain
⎧
⎪
⎪
− εu
ε ,1(z) = |u
ε ,1|2+R1(z,N ε ,1) +m2expu ε ,2−u ε ,1
ε
−m1,
− εu
ε ,2(z) = |u
ε ,2|2+R2(z,N ε ,2) +m1expu ε ,1−u ε ,2
ε
−m2.
(12)
Asecondelementisobtainedbykeepingthezero-ordertermsinthefirstlineof(12)andusing(8)toobtain
v2(z) −v1(z) =log
m2
W(z,N∗
1,N∗
2) −R1(z,N∗
1) +m1
Thelastelementisderivedfromkeepingthetermsoforder εin(12),whichleadsto
−u=2uv
i− κi K∗
Thefunctionsv iandthecoefficientsD i,E iandF icanbecomputedbycombiningtheaboveelements
6 Approximation of the moments
Theaboveapproximationsofu, v iand w i aroundtheESSpoints allowustoestimate themomentsofthepopulation’s distribution.Inthemonomorphiccasetheseapproximationsaregivenbelow:
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
N ε , i=
n ε , i(z)dz=N∗
i(1 + ε (F i+E i
A +3C
A2)) +O( ε2),
με , i= 1
N ε , i
zn ε , i(z)dz=z∗+ ε (3B
A2+ D i
A) +O( ε2),
σε2, i= 1
N ε , i
(z− με , i)2n ε , i(z)dz= ε
A+O( ε2),
s ε , i= 1
σ3
ε , i N ε , i
(z− με , i)3n ε , i(z)dz=6B
A3
√
ε +O( ε3).
One can obtain similar approximations inthe case ofdimorphic ESS Tocompute theabove integrals,replacing the ap-proximation(3)intheintegrals,a naturalchangeofvariableistotake z−z∗= √ εy.Therefore,eachterm z−z∗ canbe
considered asoforder√
εinthe integration.Thisis why,toobtain afirst-order approximationof theintegralsinterms
of ε,itisenough tohave afourth-order approximationof u( ),a second-orderapproximation of v i( ),anda zero-order approximationofw i( ),intermsofz around z∗.
Acknowledgements
S Mirrahimi has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 639638), and from the French ANR projects KIBORD ANR-13-BS01-0004andMODEVOLANR-13-JS01-0009
Trang 6[1] G Contreras, Action potential and weak KAM solutions, Calc Var Partial Differ Equ 13 (4) (2001) 427–458.
[2] T Day, Competition and the effect of spatial resource heterogeneity on evolutionary diversification, Amer Nat 155 (6) (2000) 790–803.
[3] F Débarre, O Ronce, S Gandon, Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environ-ments, J Evol Biol 26 (2013) 1185–1202.
[4] O Diekmann, P.-E Jabin, S Mischler, B Perthame, The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach, Theor Popul Biol 67 (4) (2005) 257–271.
[5] L.C Evans, P.E Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ Math J 38 (1) (1989) 141–172.
[6] C Fabre, S Méléard, E Porcher, C Teplitsky, A Robert, Evolution of a structured population in a heterogeneous environment, preprint.
[7] A Fathi, Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, vol 88, Cambridge University Press, Cambridge,
UK, 2016.
[8] M Freidlin, Geometric optics approach to reaction–diffusion equations, SIAM J Appl Math 46 (1986) 222–232.
[9] A Hendry, T Day, E.B Taylor, Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests, Evolution 55 (3) (2001) 459–466.
[10] P.-L Lions, Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, vol 69, Pitman Advanced Publishing Program, Boston,
MA, USA, 1982.
[11] G Meszéna, I Czibula, S Geritz, Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation, J Biol Syst 5 (02) (1997) 265–284.
[12] S Mirrahimi, A Hamilton–Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, forthcoming.
[13] S Mirrahimi, Concentration Phenomena in PDEs from Biology, PhD thesis, Université Pierre-et-Marie-Curie, Paris-6, 2011.
[14] S Mirrahimi, Migration and adaptation of a population between patches, Discrete Contin Dyn Syst., Ser B 18 (3) (2013) 753–768.
[15] S Mirrahimi, S Gandon, The equilibrium between selection, mutation and migration in spatially heterogeneous environments, forthcoming.
[16] S Mirrahimi, J.-M Roquejoffre, Uniqueness in a class of Hamilton–Jacobi equations with constraints, C R Acad Sci Paris, Ser I 353 (2015) 489–494.
[17] B Perthame, G Barles, Dirac concentrations in Lotka–Volterra parabolic PDEs, Indiana Univ Math J 57 (7) (2008) 3275–3301.
[18] S.H Rice, Evolutionary Theory: Mathematical and Conceptual Foundations, Sinauer Associates, Inc., 2004.
[19] O Ronce, M Kirkpatrick, When sources become sinks: migration meltdown in heterogeneous habitats, Evolution 55 (8) (2001) 1520–1531.
[20] S Yeaman, F Guillaume, Predicting adaptation under migration load: the role of genetic skew, Evolution 63 (11) (2009) 2926–2938.
... for allopatric and parapatric speciation, J Biol Syst (02) (1997) 265–284.[12] S Mirrahimi, A Hamilton–Jacobi approach to characterize the evolutionary equilibria in heterogeneous. .. Jabin, S Mischler, B Perthame, The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach, Theor Popul Biol 67 (4) (2005) 257–271.
[5] L.C Evans,... fromtheweak KAMtheory,whichis thefact that viscositysolutionsare completelydeterminedby onevaluetakenoneachstaticclassoftheAubryset([10],Chapter 5and[ 1]).Inwhatfollows,
weassumethat(9)andhence(10)alwayshold.Wethengiveanexplicitformulaforu