Angular analysis of B→J/ψK1 Towards a model independent determination of the photon polarization with B→K1γ Physics Letters B 763 (2016) 66–71 Contents lists available at ScienceDirect Physics Letters[.]
Trang 1Contents lists available atScienceDirect
www.elsevier.com/locate/physletb
E Koua, ∗ , A Le Yaouancb, A Tayduganovc
aLaboratoire de l’Accélérateur Linéaire, Univ Paris-Sud, CNRS/IN2P3 (UMR 8607), Université Paris-Saclay, 91898 Orsay Cédex, France
bLaboratoire de Physique Théorique, CNRS/Univ Paris-Sud 11 (UMR 8627), 91405 Orsay, France
cCPPM, Aix-Marseille Université, CNRS/IN2P3 and Aix Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288, Marseille, France
Article history:
Received 16 May 2016
Received in revised form 3 October 2016
Accepted 12 October 2016
Available online 14 October 2016
Editor: B Grinstein
Weproposeamodelindependentextractionofthehadronicinformationneededtodeterminethephoton polarizationoftheb→sγ processbythemethodutilizingtheB→K1γ→Kπ π γ angulardistribution
We show that exactly the same hadronicinformation can beobtained by using the B→ J /ψ K1→
J /ψ Kπ πchannel,whichleadstoamuchhigherprecision
©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3
1 Introduction
The circular polarization of the photon in the b→sγ
pro-cesshasaunique sensitivitytonewphysics,namelytothe
right-handedchargedcurrent(seee.g [1–3]) Whileitisavery
funda-mentalobservable,the experimentaldetermination ofthephoton
polarizationwasnotachievedatahighprecisionintheprevious B
factory experiments.Therefore,thisisa veryimportantchallenge
forLHCb aswell asforthe upgradeof B factory,Belle II
experi-ment.Varioustheoreticalideastomeasurethephotonpolarization
havebeenproposed (pioneeredby[4–8] andfollowedby [9–12])
and many experimental efforts are currently on-going [13,14]
Since the photon polarization measurement determines the
Wil-son coefficient C ( )
7 ,itwill havean importantconsequencetothe
globalfitaswell[15]
Recently the LHCb Collaboration has presented an interesting
result [16] on the so-called up-down asymmetry of the B →
Kπ π γ decay,originallyproposedin[7,8].Theup-down
asymme-try,which isthedifference ofthenumberofeventswithphoton
emittedabove andbelowthe Kπ π decayplane inthe Kπ π
ref-erenceframe, can indeedprovide theinformation onthe photon
polarization The basic idea isto determine the photon
polariza-tion by measuring the K1 polarization, which is correlated with
the photon polarization, through its angular distribution in the
B→Kπ π γ decay
TodeterminethephotonpolarizationfromtheLHCbresult,we
need the detailedprediction of the K1→Kπ π strong decay.In
* Corresponding author.
E-mail address:kou@lal.in2p3.fr (E Kou).
our previous works[9,17],we have obtainedthisinformation by usingtheotherexperimentalresults,mainlytheisobarmodel de-scriptionfrom theACCMOR Collaboration[18],complemented by thetheoretical modelcomputation usingthe3P0 model[19].The
B→K1(1270) γ →Kπ π γ channel, different from the K1(1400)
channel, requiresvarious unconventionaltreatmentsand unfortu-nately, our conclusion is that there are certain uncertainties re-mainingtodescribethischannel.Themaindifficultiesare(see[17]
forthedetaileddiscussions):
•theexistenceoftwointermediateprocesses,K1(1270) →K∗π
and K1(1270) →Kρ, withthe latter beingjust on the edge
ofthe Kρphase spaceandhavinghoweveralargebranching ratio.Quasi-thresholdeffectsmustbetakenintoaccount;
•furthermore,aswe found, thefinal estimationofphoton po-larizationisalsosensitivetothecontributionofthe K1(1270)
decaychannelswithscalarisobars,K1(1270) →K( π π )S−wave
orK1(1270) → (Kπ )S−waveπ,whicharenotwelldetermined, neitherbyexperimentnorbytheory
These problemsmustbe solved inthe futurewithmoredetailed analysisof K1 resonances,whichareproducedfrom B, τ or J/ψ
decays
In this article, we rather propose a model independent ap-proachtocircumventtheproblem.Inallthepreviousworks,onlya partialangulardistributionwasconsidered,i.e.takingintoaccount onlyone θ angle.We showinthisarticlethatwithamore com-pleteangulardescription,theinformationontheK1decayneeded for photon polarization determination can be extracted directly from B→Kπ π + γ decay.Thatis,usingtheanglesinvolvingnot
http://dx.doi.org/10.1016/j.physletb.2016.10.013
0370-2693/©2016 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) Funded by SCOAP 3
Trang 2onlythecosθ likedistributionwhichyieldstheup-down
asymme-try,butalsotheazimuthalangleφdependence,wecanobtainthe
fullhadronicinformationwithoutthe isobarmodeldescriptionof
theresonances
Infact,withthelimitedstatisticsavailable forB→Kπ π + γ,
thismethodiscurrentlydifficult.Ontheother hand,itturns out
that we can obtain the samehadronic information fromanother
channelB→Kπ π + J/ψwheretwoordersofmagnitudeshigher
statistics,withrespecttothephotonchannel,isavailable[20].We
showthat thefullangulardistributionmeasurement allowsusto
separate the B decay and K1 decay partsso that we can extract
thesamehadronicinformationfromtheB→Kπ π + J/ψdecay
Forthemoment,forasimplerillustrationoftheapproach,we
considerthecaseofonly one K1 resonance,which maybe
prac-tically supported by the fact that B→K1(1270) γ seems largely
dominantoverB→K1(1400) γ [14,16,21,22]
Therestofthearticleisorganized asfollows:insection2,we
introducethe kinematicalvariables includingthe θ andφ angles
whichare crucial forourwork In section 3,we write down the
decayamplitudesofB→K1J/ψand B→K1γ withK1 decaying
toKπ π.Insection4,wederivetheangulardistributionsforthese
decays.Then,wedemonstrateinsection5thatthehadronic
infor-mationweneedtodeterminethephotonpolarizationinB→K1γ
can be obtained directly from the measurement of angular
co-efficients in B→K1J/ψ and/or B→K1γ, and we conclude in
section6
2 Kinematics ofB+→V K+
1 →V K+π+π− decay(V = J/ψ, γ)
Inthissection,wedescribeall thedefinitionsofthe
kinemati-calvariables(see Fig 1).WeuseB+→V K+
1 →V K+π+π−decay
asanexample butone canobtain thesimilar formulaeforother
charge combinations.Throughoutthis article,we work inthe K1
restframe.Wecan movetotheconventional B restframeorany
other frame simply by a Lorentz transformation First, we assign
thethreemomentaas
π+( p1) , π−( p2) , K+( p3) (1)
Now,we define a standard orthogonal frame, with respect to
thespindirectionofK1,orV =J/ψ, γ.First,theO z isdefinedas
e z= p V
|p V| =
−p B
Wedefinetheaxisperpendiculartothe Kπ π decayplanebyn:
n= p1× p2
Then,the O y is chosenasnormaltothe O z and V = J/ψ, γ
di-rectionby
e y= p V× n
Finally, O x is then chosen as the normal to O y and O z: e x=
e y× e z
Onealsodefinesapolarangleθ,ofn with respecttothee z:
cosθ = e z· n (5)
Letusheresetaconditionforθ as
e x· n=sinθ >0, 0< θ < π (6)
Now we rotateex onto the Kπ π decayplane anddefine the
resultase
x whichcanbewrittenas
e= e y× n (7)
Fig 1 Kinematics of the B→K1(→K π π ) V decay.
Wecanthendefineasecondorthogonalframe,whichisbasedon the K1 decay plane, e,ey,n. Defining φ1,2 to be the azimuthal anglefromthee
x axisinthis(x,y)decayplane,thecomponents
ofthepionsthreemomenta,
p1,2= |p1,2|(cosφ1,2e
x+sinφ1,2e y) , (8)
canbeexpressedintermsofθ,φ1,2 inthestandardframeas:
( p1,2)x= |p1,2|cosθcosφ1,2, ( p1,2)y= |p1,2|sinφ1,2, ( p1,2)z= −|p1,2|sinθcosφ1,2.
(9)
Theadvantageisthattheanglesθ,φ1,2 areconnecteddirectly withthedecayplane.We notethatthelinearcombinationofthe
φ1,2 angles,
isafunctiontheDalitzvariablesdefinedby
s= (p K1)2
s13= (p1+p3)2= (p K1−p2)2,
s23= (p2+p3)2= (p K1−p1)2,
s12= (p1+p2)2= (p K1−p3)2.
(11)
In the K1 rest frame, p K1 =0 and |p1,2,3| can be expressed in termsofs23,s13,s12respectively.Sinceonlytwoofthemare inde-pendent,wechooses23,s13forsymmetry.Thentherelativeangle betweenthethreemomentaofthetwopions
cosδ = p1· p2
|p1||p2| =
|p3|2− |p1|2− |p2|2
2|p1||p2| , (12)
isexpressibleintermsofs, s13,s23.Thesameholdsfortheother relativeanglesbetweenthethreemomenta.1 Thismeansthat the
Kπ π systemisrigidoncethemassesofthetwo Kπ subsystems havebeenchosen.Itisstillallowed torotatehowever:ifthe nor-mal isfixed by a definite θ, there remains a freerotation of the rigid Kπ π systemaround n in the decay plane We choose the angledefiningthisrotationas:
1 We have furthermore 0< δ < π, (sinδ >0), because the anglesφ1 ,φ2 are mea-sured in the plane oriented by the normaln= p × p /|p × p |.
Trang 3φ ≡ φ1+ φ2
Inthisway,the angleφ in thereference [7]isnow fixed,which
allowstoperformdefinitecalculations Notethat ourdefinitionis
justonepossibleamongmanyotherswhilewehavefoundit
con-venientbecauseitsimplifiesthecalculations
Then,re-expressingφ1,2 as
φ1,2= φ ∓ δ
2,
onecangetthecomponentsofp1,2 inEq.(9),expressedinterms
ofφandtheDalitzvariables
3 The decay amplitudes and rates
Thefourbodydecayratecan bewrittenastheproductofthe
decay ratesof B→K 1s z V s z and K 1s z →Kπ π summed over the
differentV polarizations:
d V( ) ≡d B→K1V→ (Kπ π )V)s (14)
s z
(2π )4
2M B
MV
s z(B→K 1s z V→ (Kπ π )V)s 2
(2π )3dsd2d3,
wheres z isthepolarizationofV = J/ψ, γ:
s z=0, ±1 (for V= J/ψ ), s z= ±1 (for V = γ ) (15)
WefollowthePDGconvention, i.e.
d2= 1
(2π)5
|p∗
V|
2M B,
ψ d3=
1
32(2π)8
1
in the previous section Here, B can be B±, B0 or B0 Denoting
theamplitude of B→K1( )V asAs z( )andof K1( ) →Kπ π as
μ
K 1szJμ,onecanwrite:
MV
s z(B→K 1s z V→ (Kπ π )V)s= A
V
s z( ) × ( μ
K 1szJμ( 13, 23)s) ( −m2K
1) +im K1 K1( ) .
(16)
Inthefollowing,weconsideronlythedominantK1=K1(1270)for
simplicity,though itcanbereadilyextendedtoincludeK1(1400)
The propagator of the K1, which is parametrized hereas Breit–
Wignerfunction,isintroduced inordertousetheKπ π invariant
mass m K π π ≡ √s as thevarying K1 mass The K1 restframe is
meantastheactual Kπ π system.Thisisnotaconvention,butan
assumption onthe off-shellextrapolationof amplitudes,partially
justified by unitarity Note that this implies that the Dalitz plot
(13,s23)dependsons aswell
InEq.(16),thefullkinematicalvariabledependenceofJ isleft
implicitbutitcan be displayed withhelpoftwo formfactors as
C1,2[9]:
Jμ( 13, 23)s≡ C1( , 13, 23)p1μ− C2( , 13, 23)p2μ. (17)
Theseformfactorscouldbemadeexplicitinaquasi-two-body
ap-proach to the K1 decay [17] Here, on the contrary, we want to
determinetheminamodelindependentwaybyusingthe
experi-mentaldatatoavoidtheambiguitiesdescribedintheintroduction
4 Angular distribution
Now, we define the probability density function (PDF) for a
given value of s. First, the different transverse (s z= ±) andthe
longitudinal(s z=0)polarizationsofV statedonotinterfere,thus
thedecayrateiswrittenas2:
2 ForV=J /ψ, we integrate over the J /ψdecay angle here so that the
interfer-ence term disappears.
d B→K1V→ (Kπ π )V)s
ds13ds23d(cosθ )dφ
= (2π )4
2M B
(2π )3ds 1
(2π )5
|p∗
V|
2M B
32(2π )8s
1
( −m2K
1) +im K1 K1( )
2
s z
| AV
s z( ) |2
K 1sz· JK1(13, 23)s 2
,
(18)
where p∗
V isthethreemomentumof V inthe B referenceframe, while the K1 polarization vector K1 and J K1 are definedin the
K1 reference frame Therefore, the θ and φ dependence is con-tained inthe factor
K 1sz· JK1(13,s23)s 2
.Note that inEq.(18),
we have to add all charge combinations, K+
1 →K+π+π− and
1 →K0π+π0 forK+
1 and K10→K+π0π− and K10→K0π+π−
forK0 (andsimilarforthechargeconjugations)
ThePDFWV(13,s23,cosθ, φ)sisobtainedfromEq.(18)andis normalizedas:
ds13
ds23
d(cosθ )
dφ WV( 13, 23,cosθ, φ)s=1. (19)
Thus,thePDFcanbewrittenintermsofthesquareddecay ampli-tudes,whicharethefunctionsofthekinematicalvariablesweare interestedin,withouttheirrelevantpre-factors:
WV( 13, 23,cosθ, φ)s=
s z| AV
s z( ) |2
K 1sz· JK1(13, 23)s 2
ds13
ds23
d(cosθ )
dφ
s z| AV
s z( ) |2
K 1sz · JK1( 13, 23)s 2
(20)
NextwemakeexplicittheangulardistributionofWV usingthe definitionofthecoordinatesystemandanglesgiveninsection2:
WV( 13, 23,cosθ, φ)s
≡a V+ (a V1 +a2Vcos 2φ +a3Vsin 2φ)sin2θ +b Vcosθ , (21)
wheretheangularcoefficientsdependontheDalitzvariablesand fixedvalueofs.Theycanbewrittenas:
a V( , 13, 23) =N s Vξa V
|c1|2+ |c2|2−2Re(c1c∗
2)cosδ
, (22)
a1V( , 13, 23) =N s Vξa V i
|c1|2+ |c2|2−2Re(c1c∗
2)cosδ
, (23)
a2V( , 13, 23) =N s Vξa V
i
( |c1|2+ |c2|2)cosδ −2Re(c1c∗
2)
, (24)
a3V( , 13, 23) =N s Vξa V
i
( |c1|2− |c2|2)sinδ
b V( , 13, 23) = −N s Vξb V
2Im(c1c∗
wherethefactorN V s >0 isthenormalizationfactor,whichisequal
totheinverseofthedenominatorofEq.(20) The ξ’s representthe B→K1 V decay,and thus,depend only
ons
ξa V( ) ≡ | AV+( ) |2+ | AV−( ) |2
ξa V
i( ) ≡ −(| AV+( ) |2+ | AV−( ) |2) +2| AV( ) |2
ξb V( ) ≡ | AV+( ) |2− | AV−( ) |2
(27)
Trang 4Infact,for V = γ,thelongitudinalamplitude vanishes (Aγ
0 =0), which simplifies the above expressions, giving as a result aγ =
−2a γ1
Thecoefficientsc1 ,2 are relatedto theformfactorsinEq.(17)
as:
c1( , 13, 23) = C1( , 13, 23) |p1|,
c2( , 13, 23) = C2( , 13, 23) |p2| ,
wherewewroteexplicitlytheDalitzvariablesdependence.The
an-gleδ(with0< δ < π)isdefinedas
cosδ = p1· p2
|p1||p2| .
Letusalso remindthat all therelevantkinematicalvariables can
beexpressedintermsoftheDalitzvariables:
|p1,2|2=E21,2−m21,2, p1· p2=E1E2−s12−m21−m22
2 ,
E1,2=s−s23,13+m
2
1,2
2√
s .
5 Photon polarization: relating theB→K1γ andB→K1J/ψ
amplitudes
The photon polarization in the B→K1γ process which we
wanttodetermineisdefinedasfollowing:
Pγ ≡ | A
γ
+( ) |2− | Aγ−( ) |2
Strictly speaking, Pγ is differentfrom the “polarization
parame-ter”
λγ ≡ |C+|2− |C−|2
where C± represents only the short-distance b→sγ decay, i.e
C+/C− m s b )/m b ( for B(B)decays,whiletheamplitude Aγ
±( )
iswrittenastheproductofC±andthehadronicformfactorT1(0)
whichcontains the long-distance effect.Now, when we consider
onlyone K1 finalstate,weexpectasingleformfactorforboth±
polarization,i.e.Aγ
±( ) ∝T1(0) Thus,the long-distancepart
theso-calledcharmloopcontributionsdeviatetheformfactorsfor
the±polarization, whichinducesasmalldifference betweenPγ
andλγ Wewillcomebacktothisissuelater-on Notethat Pγ is
±( )forradiative
decays We will also discuss on a possible s-dependence of Pγ
later-on
NowusingEq.(27),onecanfind
Pγ = ξ
γ
b
Weshownowthatthiscanbedeterminedfromthemeasurement
ofangularcoefficients of B→K1γ and B→K1J/ψ, i.e.a V,a V
i,
ourmainfinding,is:
Pγ = ξ
γ
b
ξa γ = ∓b γ( , 13, 23)
a γ( , 13, 23)
1−
a V2( s13,23)
a V
1( s13,23)
2
−
a V
3( s13,23)
a V
1( s13,23)
Letusbrieflyderivethisequation.First,weobtainξa γ via:
ξa γ= a γ( , 13, 23)
N γ s
|c1|2+ |c2|2−2Re(c1c∗
Theterminthesquarebracketsinthedenominatoriscommonfor
V= J/ψ, γ andcanbeobtainedforgivenpointof( ,s13,s23)as
|c1|2+ |c2|2−2Re(c1c∗
2)cosδ =a V( , 13, 23)
N V sξa V( ) =a V1( , 13, 23)
N s Vξa V i( ) .
(33)
Next,wedetermineξb γ fromtheexperimentalmeasurementof
bγ( ,s13,s23):
ξb γ= − b γ( , 13, 23)
N γ s
2 Im(c1c∗
Nowweobtainthedenominatorfactor2Im( 1c∗
2)sinδ.Bywriting
Im(c1c∗
2) = ± |c1|2|c2|2− [Re(c1c∗
2) ]2,
we findthat we need toobtain independentlythese twofactors,
|c1|2|c2|2 andRe(1c∗
2), fromtheaboveequations.Then, by using Eqs.(23)–(25),wefind
2 Im(c1c∗
N s Vξa V i( )
× (a V1( , 13, 23))2− (a2V( , 13, 23))2− (a3V( , 13, 23))2
(35)
Finally,thesignambiguityremains, whichcannotberesolved
atthispoint
NowbyinsertingEqs.(32)–(35)intoEq.(30),wecanobtainthe polarizationwhichwewanttodetermineasEq.(31)
ThemainresultinEq.(31)implies:
• The photon polarization in B→K1γ can be obtained from the measurement of the angular coefficients aγ( ,s13,s23),
bγ( ,s13,s23)whichcanbemeasured onlywiththestandard cosθ distribution, together with the coefficientsa V1,2,3( ,s13,
s23)whichrequirestheazimuthalangleφdistribution.The ad-vantageisthatthelattercoefficientscanbemeasuredequally
by using either B→ J/ψK1 or B→K1γ decays Therefore,
we can take advantage of the much higher statistics of the
J/ψprocess
• Thefinalresultsdependonlyontheratiooftheangular coef-ficientssothatthereisnoneedforthenormalization
• The photon polarization Pγ does not depend on s nor any Dalitz variables (sub-dominant effects which could induce
ex-pressioninEq.(31)isconstantatanypointofthe( ,s13,s23)
plane.Whenweusethe J/ψtodeterminethedenominatorof thisterm,wesimplyneedtomappointbypointontheDalitz plane
• Concerningthe sign ambiguity, inpractice, we maymeasure theabsolutevalueofthepolarization parameter| Pγ|.Inthis way,weareleftwiththesignambiguityofoverallsignofPγ
butwecanneglectthesignvariationofbγ/aγ termsincePγ
mustbeconstantinthe( ,s13,s23)plane
Weshouldmakeabriefcommentonthes-dependenceofPγ
Althoughit issub-dominant, acontamination fromthe K1(1400)
resonancecould causethe s-dependence.Also,the largewidthof
Trang 5theK1(1270)itselfinducingan s-dependencecannotbe
impossi-ble[23].However, forbothcases,thes-dependencewouldappear
onlyat farthe K1 pole.Therefore, instudyingthe amplitudesin
the vicinityof the peak,we expect thefinal s-dependenceto be
verymoderate
Asstressedearlier,thepolarizationPγ differsinprinciplefrom
andisnotincludedthereforeintheC±coefficients.Theevaluation
ofthiseffectisverydifficult.Ithasbeen discussedquantitatively
onlyinthesimplercasesB→K∗γ andB→K∗l+l−whererather
differentevaluationshavebeenproposed:onebeingaparametric
oneinthe1/m b expansion[24],anotherbeingthroughQCD sum
rules [25,26].Inour paper[1], we havetried todiscussthe
con-nectionbetweenthetwoevaluations.Ontheother hand,an
eval-uationofcharm contributionsto B→K1γ hasnot beendoneso
far Since theshort-distance contributions, includingnew physics
effects,shouldbethesameforB→K∗γ andB→K1γ,an
obser-vation ofdifferentphotonpolarizations betweenthesetwo
chan-nelsshouldbeattributedtothelong-distanceeffect,inparticular,
to thecharm contributions Therefore,such an observationcould
provideanimportantkeytounderstandthecharmloop
contribu-tions
Before closingthe section, let us discussthe reliability ofthe
method.Ourargumentbelowisonlyqualitativesincefora
quan-titative discussion, detailed Monte Carlo simulations would be
needed B→ J/ψKπ π has been studied by the Belle
Collab-oration [20] In order to separate B→ J/ψK1 event from the
J/ψKπ π spectrum, a careful resonance study has to be done,
namelyvetoingothercharmoniumchannelssuchasB→ ψ(2S)K1
as well as the exotic resonances which decay into J/ψ π π, i.e
B→X(3872)K or B→Y(4260)K Nearly 2.5×103 events are
identified as B→ J/ψK1 in [20] Approximately 20(100) times
more events are expected at Belle II with 10(50)ab−1 of data,
whichwillalloweasilytoextractdetailedDalitzandangular
distri-butionsof K1 decays.Thereforetheerrorsexpectedinthesecond
part ofEq (31) (those written interms of a V i) would be nearly
negligible
ThemainuncertaintywillcomefromthefirstpartofEq.(31),
i.e.theratiooftheangularcoefficientofB→K1γ,bγ( ,s13,s23)/
aγ( ,s13,s23).IntherecentanalysisofBabar[14],about2.5×103
B+→K+π+π−γ events are reconstructed, among which 60%
are known to come from B+→K+
1(1270) γ Thus, with Belle II with10(50)ab−1 ofdata,weexpect 5(25) ×103 B→K1(1270) γ
events With LHCb run one data (3 fb−1
), 1.4× 104 B+ →
K+π+π−γ eventsarereconstructed,whichextrapolateto∼2.2×
104 events for B+→K+
1(1270) γ at the end of LHCb run II (8 fb−1).Withthissizeofdata,wecaneasilymakeoverahundred
ofbinsontheDalitzplane,whichcanbefurtheroptimizedby
us-ing the known decay property of K1(1270) This naive estimate
tellsthatwecanhaveorderof10MeVresolutionon π π andKπ
invariantmass,whichcanleadtoahighenoughsensitivitytoPγ
6 Conclusions
The angular distribution in the polar angle θ of the B →
Kresγ →Kπ π γ processhasrecentlybeenmeasuredbytheLHCb
Collaboration[16].Amongvarious kaonicresonances Kres,alarge
B→K1(1270) γ contribution has beenidentified, confirming the
previous result [14,21,22] The extraction of the b→sγ photon
polarization from this datarequires a detailedknowledge of the
K1 decays,inparticular, theimaginarypartoftheproductofthe
twoformfactors,Im( 1c∗
2).Theimaginarypartis,ingeneral,very sensitive tothe resonancestructure ofthe decaywhilethere are
manyuncertaintiesintheresonancedecaystructureofK1(1270),
especially due to i) the limited phase space for the main decay
channel K1(1270) → ρK resultinginstrongdistortioneffects,ii) a possible K1(1270) → κπ contributions, neither well determined experimentallynortheoreticallytractable
Inorderto circumventthisproblem, wepropose a determina-tion of the strong interaction factor Im( 1c∗
2) independent of an isobarmodelfortheK1decay.ThismethodrequirestheDalitzplot
oftheangularcoefficientsincludingbothpolarandazimuthal an-gles.Inthisarticle,wehaveshownthatthesameDalitzplot anal-ysis can be also obtained through the B→ J/ψK1→ J/ψKπ π
channel.TheB decaypartofthesetwochannelsareverydifferent whilewe foundthat wehaveenoughobservablestoseparate the
de-tailedMonteCarlostudies,inparticularbyevaluatingthebinning effect
Acknowledgements
We would like to thank François Le Diberder for many dis-cussions, inparticular, on the feasibility of the method We also acknowledge Patrick Roudeau, Akimasa Ishikawa and Yoshimasa Onofordiscussions TheworkofA.T.hasbeencarriedout thanks
the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “In-vestissements d’Avenir” Frenchgovernmentprogram managed by theANR
References
[1] D Becirevic, E Kou, A Le Yaouanc, A Tayduganov, J High Energy Phys 1208 (2012) 090, http://dx.doi.org/10.1007/JHEP08(2012)090 , arXiv:1206.1502 [hep-ph].
[2] E Kou, C.D Lu, F.S Yu, J High Energy Phys 1312 (2013) 102, http://dx.doi.org/ 10.1007/JHEP12(2013)102 , arXiv:1305.3173 [hep-ph].
[3] N Haba, H Ishida, T Nakaya, Y Shimizu, R Takahashi, J High Energy Phys.
1503 (2015) 160, http://dx.doi.org/10.1007/JHEP03(2015)160 , arXiv:1501.00668 [hep-ph].
[4] D Atwood, M Gronau, A Soni, Phys Rev Lett 79 (1997) 185, http://dx.doi.org/ 10.1103/PhysRevLett.79.185 , arXiv:hep-ph/9704272.
[5] D Atwood, T Gershon, M Hazumi, A Soni, Phys Rev D 71 (2005) 076003,
http://dx.doi.org/10.1103/PhysRevD.71.076003 , arXiv:hep-ph/0410036 [6] D Atwood, T Gershon, M Hazumi, A Soni, arXiv:hep-ph/0701021.
[7] M Gronau, Y Grossman, D Pirjol, A Ryd, Phys Rev Lett 88 (2002) 051802,
http://dx.doi.org/10.1103/PhysRevLett.88.051802 , arXiv:hep-ph/0107254 [8] M Gronau, D Pirjol, Phys Rev D 66 (2002) 054008, http://dx.doi.org/10.1103/ PhysRevD.66.054008 , arXiv:hep-ph/0205065.
[9] E Kou, A Le Yaouanc, A Tayduganov, Phys Rev D 83 (2011) 094007, http://dx doi.org/10.1103/PhysRevD.83.094007 , arXiv:1011.6593 [hep-ph].
[10] F Bishara, D.J Robinson, J High Energy Phys 1509 (2015) 013, http://dx.doi org/10.1007/JHEP09(2015)013 , arXiv:1505.00376 [hep-ph].
[11] F Muheim, Y Xie, R Zwicky, Phys Lett B 664 (2008) 174, http://dx.doi.org/ 10.1016/j.physletb.2008.05.032 , arXiv:0802.0876 [hep-ph].
[12] L Oliver, J.-C Raynal, R Sinha, Phys Rev D 82 (2010) 117502, http://dx.doi org/10.1103/PhysRevD.82.117502 , arXiv:1007.3632 [hep-ph].
[13] B Aubert, et al., BaBar Collaboration, Phys Rev D 78 (2008) 071102, http://dx doi.org/10.1103/PhysRevD.78.071102 , arXiv:0807.3103 [hep-ex];
Y Ushiroda, et al., Belle Collaboration, Phys Rev D 74 (2006) 111104, http://dx doi.org/10.1103/PhysRevD.74.111104 , arXiv:hep-ex/0608017;
J Li, et al., Belle Collaboration, Phys Rev Lett 101 (2008) 251601, http://dx.doi org/10.1103/PhysRevLett.101.251601 , arXiv:0806.1980 [hep-ex];
R Aaij, et al., LHCb Collaboration, J High Energy Phys 1504 (2015) 064, http:// dx.doi.org/10.1007/JHEP04(2015)064 , arXiv:1501.03038 [hep-ex];
R Aaij, et al., LHCb Collaboration, arXiv:1609.02032 [hep-ex].
[14] P del Amo Sanchez, et al., BaBar Collaboration, Phys Rev D 93 (5) (2016)
052013, http://dx.doi.org/10.1103/PhysRevD.93.052013 , arXiv:1512.03579 [hep-ex].
[15] S Descotes-Genon, D Ghosh, J Matias, M Ramon, J High Energy Phys 1106 (2011) 099, http://dx.doi.org/10.1007/JHEP06(2011)099 , arXiv:1104.3342 [hep-ph];
D Becirevic, A Tayduganov, Nucl Phys B 868 (2013) 368, http://dx.doi.org/ 10.1016/j.nuclphysb.2012.11.016 , arXiv:1207.4004 [hep-ph];
D Becirevic, E Schneider, Nucl Phys B 854 (2012) 321, http://dx.doi.org/ 10.1016/j.nuclphysb.2011.09.004 , arXiv:1106.3283 [hep-ph];
S Jäger, J Martin Camalich, Phys Rev D 93 (1) (2016) 014028, http://dx.doi org/10.1103/PhysRevD.93.014028 , arXiv:1412.3183 [hep-ph].
Trang 6[16] R Aaij, et al., LHCb Collaboration, Phys Rev Lett 112 (16) (2014) 161801,
http://dx.doi.org/10.1103/PhysRevLett.112.161801 , arXiv:1402.6852 [hep-ex].
[17] A Tayduganov, E Kou, A Le Yaouanc, Phys Rev D 85 (2012) 074011, http://
dx.doi.org/10.1103/PhysRevD.85.074011 , arXiv:1111.6307 [hep-ph].
[18] C Daum, et al., ACCMOR Collaboration, Nucl Phys B 187 (1981) 1, http://dx.
doi.org/10.1016/0550-3213(81)90114-0
[19] A Le Yaouanc, L Oliver, O Pene, J.C Raynal, Phys Rev D 8 (1973) 2223, http://
dx.doi.org/10.1103/PhysRevD.8.2223
[20] H Guler, et al., Belle Collaboration, Phys Rev D 83 (2011) 032005, http://dx.
doi.org/10.1103/PhysRevD.83.032005 , arXiv:1009.5256 [hep-ex].
[21] H Yang, et al., Belle Collaboration, Phys Rev Lett 94 (2005) 111802, http://
dx.doi.org/10.1103/PhysRevLett.94.111802 , arXiv:hep-ex/0412039.
[22] B Aubert, et al., BaBar Collaboration, Phys Rev Lett 98 (2007) 211804, Er-ratum: Phys Rev Lett 100 (2008) 189903, Erratum: Phys Rev Lett 100 (2008) 199905, http://dx.doi.org/10.1103/PhysRevLett.100.189903 , arXiv:hep-ex/0507031.
[23] R Aaij, et al., LHCb Collaboration, Phys Rev D 92 (3) (2015) 032002, http:// dx.doi.org/10.1103/PhysRevD.92.032002 , arXiv:1505.01710 [hep-ex].
[24] B Grinstein, Y Grossman, Z Ligeti, D Pirjol, Phys Rev D 71 (2005) 011504,
http://dx.doi.org/10.1103/PhysRevD.71.011504 , arXiv:hep-ph/0412019 [25] A Khodjamirian, R Ruckl, G Stoll, D Wyler, Phys Lett B 402 (1997) 167,
http://dx.doi.org/10.1016/S0370-2693(97)00431-0 , arXiv:hep-ph/9702318 [26] P Ball, R Zwicky, Phys Lett B 642 (2006) 478, http://dx.doi.org/10.1016/ j.physletb.2006.10.013 , arXiv:hep-ph/0609037.
... isobarmodelfortheK1decay.ThismethodrequirestheDalitzplotoftheangularcoefficientsincludingbothpolarandazimuthal an-gles.Inthisarticle,wehaveshownthatthesameDalitzplot anal-ysis can be also obtained through the B→... b→sγ photon
polarization from this datarequires a detailedknowledge of the
K1 decays,inparticular, theimaginarypartoftheproductofthe
twoformfactors,Im(...
Thus,thePDFcanbewrittenintermsofthesquareddecay ampli-tudes,whicharethefunctionsofthekinematicalvariablesweare interestedin,withouttheirrelevantpre-factors:
WV(