Association between dietary pattern and cardiometabolic risk in children and adolescents a systematic review Q1 Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 A[.]
Trang 1JPED 476 1 -9
ARTICLE IN PRESS
+Model
www.jped.com.br
REVIEW ARTICLE
Q1
aUniversidade Federal de Vic ¸osa (UFV), Programa de Pós-Graduac ¸ão em Ciência da Nutric ¸ão, Vic ¸osa, MG, Brazil
bUniversidade Federal de Vic ¸osa (UFV), Departamento de Nutric ¸ão e Saúde, Vic ¸osa, MG, Brazil
KEYWORDS
Dietary;
Patterns;
Cardiovascular;
Children;
Adolescent
Abstract
Objective: Toevaluatetheassociationbetweendietarypatternsandcardiometabolicrisk fac-torsinchildrenandadolescents
Data source:ThisarticlefollowedtherecommendationsofPRISMA,whichaimstoguidereview publicationsinthehealtharea.Thearticlesearchstrategyincludedsearchesintheelectronic databases MEDLINEviaPubMed,Scopus,andLILACS.Therewasnodatelimitationfor
publi-Q2
cations.ThedescriptorswereusedinEnglishaccordingtoMeSHandinPortugueseaccording
to DeCS.Onlyarticles ondietarypatternsextracted by thea posteriori methodology were included Thequestiontobeansweredwas:how muchcanan‘‘unhealthy’’dietarypattern influencebiochemicalandinflammatorymarkersinthispopulation?
Data synthesis: The studies showed an association between dietary patterns and car-diometabolic alterations.The patternswerecharacterized asunhealthywhen associated to theconsumptionofultraprocessedproducts,poorinfiberandrichinsodium,fat,andrefined carbohydrates.Despitetheassociations,inseveralstudies,thestrengthofthisassociationfor someriskmarkerswasreducedorlostafteradjustingforconfoundingvariables
Conclusion: Therewasapositiveassociationbetween‘‘unhealthy’’dietarypatternsand car-diometabolicalterationsinchildrenandadolescents.Someunconfirmedassociationsmaybe relatedtothedifficultyofassessingfoodconsumption.Nevertheless,studiesinvolvingdietary patternsandtheirassociationwithriskfactorsshouldbeperformedinchildrenandadolescents, aimingatinterventionsandearlychangesindietaryhabitsconsideredtobeinadequate
©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradePediatria.Thisis
anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/)
夽 Pleasecitethisarticleas:RochaNP,MilagresLC,LongoGZ,LongoGZ,RibeiroAQ,NovaesJF.Associationbetweendietarypatternand cardiometabolic risk in children and adolescents: a systematic review J Pediatr (Rio J) 2017 http://dx.doi.org/10.1016/j.jped.2017.01.002
∗Correspondingauthor.
E-mail:narunarocha@hotmail.com (N.P Rocha).
http://dx.doi.org/10.1016/j.jped.2017.01.002
0021-7557/© 2017 Published by Elsevier Editora Ltda on behalf of Sociedade Brasileira de Pediatria This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Trang 2Alimentac¸ão;
Padrões;
Cardiovascular;
Crianc¸as;
Adolescente
Associac ¸ão entre padrão alimentar e risco cardiometabólico em crianc ¸as e adolescentes: uma revisão sistemática
Resumo
Objetivo: Avaliaraassociac¸ãoencontradanosestudosentrepadrãoalimentarefatoresderisco cardiometabólicosemcrianc¸aseadolescentes
Fonte dos dados: Esteartigo seguiu as recomendac¸ões doPRISMA, que objetiva orientaras publicac¸õesderevisãonaáreadasaúde.Aestratégiadebuscadosartigosincluiupesquisasnas baseseletrônicasMedlineviaPubMed,ScopuseLilacs.Nãohouvedatalimitedepublicac¸ão
OsdescritoresforamusadoseminglêsdeacordocomMeSHeemportuguêssegundoosDeCS Apenasartigosdepadrãoalimentarextraídospelametodologiaa posterioriforamincluídos.A perguntaaserrespondidafoi:quantoumpadrãoalimentar‘‘nãosaudável’’podeinfluenciar nosmarcadoresbioquímicoseinflamatóriosdessapopulac¸ão
Síntese dos dados: Osestudosdemonstraram haverassociac¸ãoentreospadrõesalimentares
ealterac¸ões cardiometabólicas.Ospadrõeseramcaracterizadoscomonãosaudáveis marca-dospeloconsumodeprodutosultraprocessados,pobresem fibrasericosemsódio,gordura
ecarboidratosrefinados.Apesardasassociac¸ões,emváriosestudos,aforc¸adessaassociac¸ão paraalgunsmarcadoresderiscoerareduzidaouperdidaapósosajustesparaasvariáveisde confusão
Conclusão: Houve associac¸ão positiva entre os padrões alimentares ‘‘não saudáveis’’ e as alterac¸õescardiometabólicasemcrianc¸aseadolescentes.Algumasassociac¸õesnãoconfirmadas podemestarrelacionadasàprópriadificuldadedeavaliaroconsumoalimentar.Apesardisso, estudosenvolvendoapadrõesalimentaresesuaassociac¸ãoafatoresderiscodevemser realiza-dosemcrianc¸aseadolescentesobjetivandointervenc¸õesemodificac¸õesprecocesnoshábitos alimentarestidoscomonãoadequados
©2017PublicadoporElsevierEditoraLtda.emnomedeSociedadeBrasileiradePediatria.Este
´umartigoOpenAccesssobumalicenc¸aCCBY-NC-ND(http://creativecommons.org/licenses/ by-nc-nd/4.0/)
Introduction
Overweightinchildhoodandadolescenceisamajorconcern
worldwide.1,2Littleisknownaboutthecomplicationsthat
early-onsetobesitycancauseinthelongterm.3,4Giventhe
uncertainties,manyassociationshavebeenmadetobetter
understandtheconsequencesofoverweightandobesityfor
theonsetofcardiometaboliccomplicationsinearlylife.1,5
Some established associations between the genesis of
obesityandalterationsincardiovascularriskmarkers -such
asinflammatory cytokines, C-reactive protein, traditional
biochemical parameters (total cholesterol, triglycerides,
glucose,insulin), diet, and physical activity - have been
evaluatedinstudieswithadultsandmuchisalreadyknown
aboutthedirectionoftheserelations.4,6However,itcanbe
observedthat thesestudies arenot verycommon in
chil-dren andadolescents, andmore consistent informationis
stillnecessary about the behaviorof cardiometabolicand
inflammatoryriskfactorsinthisperiod.3,5
Dietisanimportant,modifiableriskfactorintheetiology
of diseases, given the increasing number of
epidemiolog-ical studies that address its relation with the onset of
chronic diseases.7 -9 The methodology of identification of
thedietarypatternofspecificpopulationshasbeenwidely
usedinobservationalstudies,andhasbeenusefulto
iden-tifytheassociation betweendietandcardiometabolicrisk
factors.8,10,11
Dietary patterns can better inform about diet-disease
associations than the assessment of isolated foods or
nutrients, because they consider the total dietary intake andthe interrelationshipsbetween many foodsand nutri-ents,aswellastheirsynergisticeffects.7,9Theyhavebeen widely used due to the understanding that nutrients are rarelyconsumedinisolation, andthatnutrient-only inves-tigations underestimatethe possibleinteractions between nutrientsorbetweenfoodsandotherdietcomponents.8
The identification ofdietary patternsconsidered tobe unhealthymayberelatedtochangesin bodycomposition and biochemicalandinflammatory parametersin children and adolescents.7,10 Consideringthat childhoodis aphase during which eating habits are formed, the adoption of healthy eatingpracticesinthis periodcanhave favorable consequencesfortherestoflife
Inthissense,theaimofthissystematicreviewarticlewas
toevaluatetheassociationfoundbetweendietarypatterns andcardiometabolicrisk factorsin studiesofchildrenand adolescents.Thehypothesiswasthatunhealthydietary pat-ternsareassociatedwithalterationsintheserisk markers
intheassessedgroup
Methods
The systematic review was carried out according to the recommendationsofPreferredReportingItemsfor System-atic Reviews and Meta-Analyses (PRISMA), which aims to guidesystematic reviewsand meta-analysesin thehealth area.12Thearticlesearchstrategyincludedsearchesinthe
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
107
108 109 110 111 112
Trang 3JPED 476 1 -9
ARTICLE IN PRESS
+Model
electronicdatabasesMEDLINE(NationalLibraryofMedicine,
USA) via PubMed, Scopus, LILACS (Latin American and
CaribbeanLiteratureinHealthSciences),and SciELO
(Sci-entificElectronicLibraryOnline),withnopublicationdate
limitations
Articleidentificationandselectioninalldatabaseswere
simultaneously performed by two researchers during a
three-monthperiodbetweenFebruaryandApril2016.The
words used as descriptors were: diet, dietary, patterns,
risk,cardiovascular,biomarkers,children,adolescent,and
health.ThedescriptorswereusedinEnglishaccordingtothe
MedicalSubjectHeadings(MeSH)andinPortuguese
accord-ing to the Descriptors in Health Sciences (in Portuguese,
DescritoresemCiênciasdaSaúde[DeCS])
The searches in the databases were performed using
the keywords withBoolean operators represented by the
connector terms AND, OR, and NOT Thus, the following
combinationswereused:dietarypatternsANDriskAND
car-diovascularANDadolescent;dietarypatternsANDriskAND
cardiovascularANDchildren;dietarypatternsAND
biomark-ers AND cardiovascular AND adolescent; dietary patterns
ANDbiomarkers ANDcardiovascular ANDchildren; dietary
patterns AND health AND cardiovascular AND adolescent;
dietarypatterns ANDhealth ANDcardiovascular AND
chil-dren;dietANDriskANDcardiovascularANDadolescent;diet
ANDriskANDcardiovascularANDchildren.These
combina-tionswerealsousedforthetermsORandNOT,respectively,
inallsearcheddatabases
The review searchedforstudies thatevaluateddietary
patternsusingthea posteriorimethodologyonly,whichuses
multivariateanalysistechniques toextractthepatterns,13
andthatassociatedthepatternfoundwithcardiometabolic
riskfactorsinchildrenand/oradolescents.Thearticlesthat
consideredonlyfoodpatternidentificationorthatonly
asso-ciatedthepatternwithanthropometricmeasurementswere
notincluded, asthe objectivewastodetect howmucha
foodpatternclassifiedas‘‘unhealthy’’couldinfluencethe
biochemicalandinflammatorymarkersinthispopulation
As non-inclusion criteria, the authors highlight studies
conductedwithadults,pregnantwomen,childrenunder2
yearsofage,reviewarticles,experts’comments,andthose
publishedinlanguagesotherthanPortugueseandEnglish
Article selection and identification in the databases
were independently andsystematically performed by two
researchers, who carried out the initial identification
through the titles of the publications found by the
descriptorsand, later, by the abstracts obtainedby
elec-tronicsearch.After theselection ofpublications bytitles
and abstracts, a new assessment was made by the two
researchers,whoconsensuallydeterminedthestudiestobe
readin fulland includedin thereview.The referencesof
theselectedstudieswereassessed,aimingtoincludeother
articlesofpotentialinterest
Results
Atotalof364articleswereidentifiedonthistopic.Ofthe
50publicationsselectedforreadingoftheabstractandof
thefulltext,onlysevenarticlesmettheestablishedcriteria
forthissystematicreview,andtwowerefoundthroughthe
referencesofthefirstselectedarticles(Fig.1)
Themaincharacteristicsofthestudies,suchaslocation, yearofpublication,design,ageoftheparticipants, statisti-calanalysisusedforfoodpatternderivation,andtheother assessedvariables,aredescribedinTable1.Thearticles dif-ferregardingthetypeofdesignandintermsofthesample age,withmost(78%)beingcross-sectionalstudies
Table 2 shows the identified confounding factors that wereincludedintheregressionmodels,theidentifiedfood patternsnamedaccordingtothedefinitionofeachauthor, andthe main results of the articles Confounding factors were described because they are important for the nec-essary adjustments in statistical analyses to increase the accuracyoftheassociation strength.Inmostpublications, the authors performed the analyses divided into models adjustedfirstforgenderandageandthenforothervariables that could influence the characteristics of the food pat-ternandtheassociationwithcardiometabolicriskmarkers, suchasparentallevelofschooling,levelofphysicalactivity, income,pubertalstage,andtotalenergyintake.10,14,15
Duringthereadingofthearticles,theauthorsdescribed the difficulty of approaching the association between dietary patterns and cardiometabolic risk factors in the group of children and adolescents, since there is little information available on the effects of dietary patterns
oncardiometabolicalterationsinthepediatricgroup.9,10,16
However,itisimportanttoevaluatetheassociationbetween dietarypatternsandchronicnoncommunicablediseasesin childhood and adolescence, since cardiometabolic alter-ationscan influence thecurrent and futurehealth ofthis group.17
Theidentificationofthefoodpatternvariedlittlein rela-tion tothe statistical analysis used.Principal component analysis(PCA)wasthemostpredominant(78%),which rep-resentsanalternativeapproachfortheevaluationoffood andnutrientintake,beingusefultoassessthediet-disease association.7 Unhealthy eating patterns were defined as
‘‘Western’’bymoststudies(55%),alsousingtheterms‘‘fast food,’’9‘‘highconsumptionofproteinandfat,’’15and‘‘high
infat.’’10 Onlyonestudydidnotnametheidentified pat-terns,maintainingonlythenamesofthefoodsthatbelonged
toeachgroup.8
guardians assisted in the evaluation of children’s food consumption.10,14,15,18 In 2013,Parketal.14 performed the dietaryassessmentinasubgroupoftheirsample(503 par-ticipants); the authors explained that this practice was adoptedduetopracticaldifficultiesincollectingthedata
In general, a positive association was observed in the studies between an ‘‘unhealthy’’ eating pattern and increasedcardiometabolicrisk.7 -10,14 -18
AccordingtoApannahetal.,in2015,10thepattern iden-tifiedasenergeticallydense,high in fat, andlow infiber was associated with cardiometabolic alterations, such as highinsulinconcentrationandinsulinresistanceinboth gen-ders.Incontrast,Karatzietal.,in20148foundthat,ofthe fiveidentifiedfoodpatterns,onlythepatterncharacterized
by‘‘margarine, sweets, andsnacks’’ wasassociated with insulinresistanceaftertheadjustmentsforconfounding fac-tors
Bibiloni et al.,16 in a 2013 study with 219 girls aged 12 -19, identified that the Western dietary pattern was associatedwithahigherconcentrationofadiponectinand
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
Trang 4Table 1 Characteristicsoftheevaluatedstudies
Author/year Country Design Age(n) Referencemethod Statisticalanalysisa Anthropometry Tests
Appannahetal.,
201510
17years(n=1009)
Semi-quantitativeFFQ relatedtoprevious12 months
Reducedrank regressionb
Height,weight, BMI,WC
Insulin,glucose,TG, HDL-c,LDL-c,HOMA-ir Karatzietal.,
20148
Cross-sectional
9 -13years
(n=1912)
24-hfoodrecord(two daysaweekandone weekend)
Principalcomponent analysisc
Weight,height, WC
Insulin,glucose, HOMA-ir Biblionietal.,
201316
Cross-sectional
12 -17years
(n=219)
Validated semi-quantitativeFFQ relatedtoprevious12 months
Principalcomponent analysis
Weight,height,
WC,WtHR
Adiponectin,leptin, TNF-␣,PAI-1,IL-6
Cross-sectional
8 -9years
(n=1008)
24-hfoodrecord (performedinthree days)
Principalcomponent analysis
WC,BMI,blood pressure
Glucose,TC,TG, HDL-c,ALT,ASTand CT/HDL-c,TG/HDL-c Shangetal.,
201217
Cross-sectional
6 -13years
(n=5267)
24-hfoodrecord(two daysaweekandone weekend)
Groupinganalysis Weight,height,
BMI,blood pressure,WC
Glucose,TC,TG, HDL-c,LDL-c Romero-Polvo
etal.,201215
Cross-sectional
7 -18years
(n=916)
Semi-quantitativeFFQ relatedtoprevious12 months
Principalcomponent analysis
Weight,height, BMI,WC,body fat%(DXA)
Glucose,insulin, HOMA-ir Dishchekenianet
al.,20119
Cross-sectional
14 -19years
(n=76)
Four-dayfoodrecord (threedaysaweekand oneweekend)
Principalcomponent analysis
Weight,height, bloodpressure
TC,LDL-c,HDL-c,TG, glycemia,insulin Ambrosinietal.,
20107
Australia Cohort
cross-sectional
14years(n=1139) Semi-quantitativeFFQ
relatedtoprevious12 months
Principalcomponent analysis
Weight,height,
WC,blood pressure
TC,LDL-c,HDL-cTG, glycemiaandinsulin, HOMA-ir
Mikkiläetal.,
200718
(n=1200)
analysis
Height,weight, BMI,blood pressure
CRP,TC,LDL-c,HDL-c, VLDL-c,ApoA1s,Apo
B,triacylglycerol, insulin,homocysteine
FFQ, food frequency questionnaire; BMI, body mass index; WC, waist circumference; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein
choles-terol; HOMA-IR, homeostasis model assessment - insulin resistance; PAI-1, plasminogen activator inhibitor-1; IL-6, interleukin 6; WtHR, waist to height ratio; TC, total cholesterol; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; CRP, C-reactive protein; Apo A1, apolipoprotein A1; ApoB, apolipoprotein B; DXA, dual-energy X-ray absorptiometry.
a Statistical analysis used to determine the dietary pattern.
b Reduced rank regression (RRR).
c Principal component analysis.
Trang 5JPED 476 1 -9
ARTICLE IN PRESS
+Model
Publications identified in databases with descriptors:
diet, patterns, risk, cardiovascular, health, children, adolescent, “dietary
patterns” from February to April, 2016 ( n=464).
Excluded articles:
Repeated articles: 7; Articles with adults: 5;
determination of the dietary pattern only: 9;
diet assessment by FFQ, record or 24-hr food record only: 13; use of the a priori methodology: 10
1st stage of refinement:
Search by title and eligibility criteria.
Selected articles:
7 articles plus 2 articles selected
by reverse search
Pre-selected publications:
50 articles for abstract/full text
reading.
Final articles:
9 articles
Figure 1 Studyselection,evaluation,andinclusionprocess
interleukin-6 (IL-6) However, the authors observed that
inflammationwasmoreinfluencedbybodymassindex(BMI)
andwaist-to-heightratio(WtHR)thanbytheidentifiedfood
pattern
Park et al.,14 in a 2013 study with Korean
prepuber-tal children, identified two eating patterns (‘‘balanced’’
and‘‘Western’’),andfoundnoassociationwithmetabolic
alterations in boys In girls, the mean concentration of
triglycerides decreasedat the highest quintile of the
bal-anced pattern of consumption (mean: 72.6, SD: 8.27,
p=0.032) The ‘‘Western’’patternshowed ahigher score
inthecategorywithmorethanoneriskfactorformetabolic
syndrome(MS)inthegroupofgirls(mean:29.5,SD:1.37,
p=0.026)
In 2013, Shang etal.,17 whenevaluating 5267children
and adolescents aged 6 -13 years of age, found that the
‘‘Westernpattern’’wasassociatedwithahigherchanceof
obesityandthatchildrenandadolescentswithhigherscores
inthe ‘‘Western’’and ‘‘transition’’patternshada higher
chance of abdominal obesity There was no association
betweentheidentifieddietarypatternsandhypertension,
hypertriglyceridemia, hypercholesterolemia, dyslipidemia,
andMS.However,the‘‘Western’’patternhadhighermean
values of weight, BMI, waist circumference, and systolic
and diastolic pressure, and higher concentrations of
glu-cose,LDL-c,andtriglycerides,andwasinverselyassociated
withHDL-cconcentrationwhencomparedtothe‘‘healthy’’
pattern
In 2012, Romero-Polvoet al.15 found that children and
adolescentswith‘‘Western’’foodpatternshada1.92-fold
higher chance of insulin resistance In 2011,
Dishcheke-nian et al.9 found a positive association between the
‘‘transition’’ pattern, based predominantly on the
con-sumption of rice,pasta, beans, oil,red meats, processed
meats,andsweets,andincreasedconcentrationsofinsulin,
glucose,triglycerides,and diastolicblood pressurelevels
In the ‘‘fast food’’ pattern, the authors found a positive
associationwiththeconcentrationofLDL-c,andsystolicand diastolicbloodpressurelevels,and anegativeassociation withHDL-c
In 2010, Ambrosini et al.,7 when studying the com-ponents of the metabolic syndrome (MS) in adolescents, dividedtheir sample into twogroups: high metabolic risk andlowmetabolicrisk,aimingtoinvestigatetheassociation betweendietarypatternandriskmarkersforMSand cardio-vasculardisease.Theauthorsobservedthatthe‘‘Western’’ patternwasassociatedwithincreasedriskofmetabolic syn-dromeand itsincreasedcomponents, suchastotal serum cholesterol, BMI, and waist circumference among female adolescents.The‘‘healthy’’dietarypatternwasassociated withlowerglucoseconcentrationsinmaleandfemale ado-lescents
In2007,Mikkiläetal.,18whenevaluatingthefoodintake
of children and adolescents in a cohort study, identified the‘‘traditional’’and‘‘health-conscious’’dietarypatterns The second dietary pattern wasinversely associated with cardiovascularriskfactors;however,theresultssuggestthat thisdietary pattern is more of an indicator of an overall healthylifestylethanjustadequatedietarychoices
Discussion
The results of the studies showed a positive association between unhealthy eating patterns and cardiometabolic alterations.7 -10,14 -18However,itisimportanttounderstand that, in several studies, the strength of this association for some risk markers was reduced, while others lost it aftertheadjustmentsforconfoundingfactorsorinteraction variables.7,9,10,14 -17
Theseresultsarenoteworthy,asseveralfactors associ-atedwithdietaryintakeandcardiometabolicalterations -suchasincome, gender, age,birth weight,parental level
ofschooling,physicalactivitylevel,andfoodavailabilityat
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
293
294 295 296 297 298 299 300 301 302 303 304
Trang 6Table 2 Confounding/interactionfactors,identifiedpatterns,andmainresultsoftheevaluatedarticles.
Author/year Confounding/interaction
factors
Identifiedpatterns Mainresults
Appannahet
al.,201510
Physicalactivity, smokingstatus,gender, age,dietary
underreporting
1.Energeticallydense
2.Highinfat
3.Poorinfiber
Highscoresondietarypatternswereassociated withhigherchanceofbelongingtothehigh metabolicriskgroupforboys(OR:1.20,95%CI: 1.01 -1.41),butnotforgirls(OR:1.03,95%CI: 0.87 -1.22)whenadjustedforphysicalactivity andsmokingstatus.Higherscoresondietary patternswereassociatedwithhigherinsulin levels(FandM-:3.0,95%CI:1 -7%)andHOMA-IR (FandM-:4.0,95%CI:1 -7%)inbothgenders Karatzietal.,
20148
Gender,breakfast consumption,pubertal stage,waist
circumference,parents’
BMI,socioeconomic status,birthweight, physicalactivity
1.Friedpotatoes,red meat,andsweetened drinks
2.Processedmeatsand cheese
3.Margarine,sweets, andsavorysnacks
4.Vegetablesandfruits
5.Increasedegg consumptionandlower consumptionoffish
Thedietarypatterncontainingmargarines, sweets,andsnackswaspositivelyassociatedwith HOMA-IR(ˇ=0.08;p=0.02)afteradjustmentfor confoundingfactors.Childrenwhohadhigher adherencetothiseatingpattern(consumptionin thehighesttertile)were2.51timesmorelikelyto haveinsulinresistancecomparedtochildrenin thefirsttertile(95%CI:1.30 -4.90)
Bibilonietal.,
201316
Age,physicalactivity, smoking,energyintake, BMI,WtHR
1.Mediterraneandiet
2.Westerndiet
Westerndietscorewasinverselyrelatedto plasmaconcentrationsofadiponectinandIL-6 aftercontrolforpossibleconfoundingfactors (ˇ=−0.177,p<0.050andˇ=0.183,p<0.050, respectively)andwithadditionaladjustmentfor theBMIandWtHR(ˇ=−0.168,p=0.050and
ˇ=0.177,p<0.050,respectively)
Parketal.,
201314
Age,gender,energy intake,height,blood pressure
1.Balancedpattern
2.Westernpattern
Ingirls,themeanconcentrationoftriglycerides decreasedinthehighestconsumptionquintileof thebalancedpattern(mean:72.6,SD:8.27,
p=0.032).ThehighestscoreintheWestern patternwaspresentinthegirlswhohadmore thanoneriskfactorforMS(mean:29.5,SD:1.37,
p=0.026).Noassociationwasfoundforthemale gender
Shangetal.,
201217
Gender,age,birth weight,eatingprofilein the4thmonthafter birth,totalenergy intake,physicalactivity, parents’weight,levelof schooling,income
1.Healthydietary pattern
2.Transitionpattern
3.Westernpattern
Thefastingglucoselevelwashigherinthe westernfoodpatternthaninthehealthypattern (4.53mmol/Lvs.4.46mmol/L,p=0.0082)
ChildrenwiththeWesternpatternhadhigher concentrationsofLDL-c(2.156mmol/Lvs.
2.07mmol/L,p=0.0023)andlowerHDL-c concentrations(p<0.001)comparedtothosewith thehealthypattern.ChildrenwiththeWestern patternprofilewere1.80times(95%CI: 1.15 -2.81)morelikelytobeobesethanthosewiththe healthypattern.Transition(OR:1.31,95%CI: 1.09 -1.56)andWestern(OR:1.71,95%CI:
1.13 -2.56)foodpatternswereassociatedwith abdominalobesity
Romero-Polvo
etal.,201215
Gender,age,sexual maturation,BMI, physicalactivity,screen time,energyintake,use
ofmedication, supplements, multivitamins
1.Westernpattern
2.Prudentpattern
3.Highprotein/fat consumptionpattern
Insulinresistancewasassociatedwiththehighest consumptionquintilesoftheWesterndietary pattern(OR:1.92;95%CI:1.08 -3.43).Theother identifiedpatternsshowednosignificant association
Trang 7JPED 476 1 -9
ARTICLE IN PRESS
+Model
Table 2 (Continued)
Author/year Confounding/interaction
factors
Identifiedpatterns Mainresults
Dishchekenianet
al.,20119
Gender,age,ethnicity, income,maternal schooling,BMI
1.Traditionalpattern
2.Transitionpattern
3.Fastfoodpattern
Thetraditionalpatternhadapositiveassociation withinsulin(ˇ=0.156,p<0.001),glycemia (ˇ=0.329,p=0.027),andTG(ˇ=0.513,
p<0.001),andnegativeassociationwith HDL-=−0.297;p=0.020)afteradjustingfor confoundingfactors.Thefastfoodpatternwas associatedwithinsulin(ˇ=0.176;p<0.001)when adjustedonlybygenderandethnicity.When adjustedbyincome,maternaleducation,and BMI,thispatternshowedapositiveassociation withLDL-c(ˇ=0.334,p<0.001),SBP(ˇ=0.469,
p<0.001),andDBP(ˇ=0.615,p<0.001),anda negativeonewithHDL-c(ˇ:−0.250,p<0.001)
Ambrosiniet
al.,20107
Gender,energyintake, physicalactivity,screen time,maternal
schooling,parents’
maritalstatus,BMI,WC
1.Westernpattern
2.Healthypattern
ThemeanBMIandWCdidnotvaryaccordingto thequartilesforeachdietarypattern.Forgirls, thechancesofmetabolicriskwereapproximately 2.5timeshigher(p<0.05;95%CI:1.05 -5.98)in thehighestquartileofthe‘‘Western’’food patternwhencomparedtothelowest
Mikkiläetal.,
200718
Age,smokingstatus, totalenergy consumption,smoking, physicalactivity,years
offollow-upinthestudy
1.Traditionalpattern
2.Health-conscious pattern
Thehealth-consciouspatternwasassociatedwith lowerriskfactors,butmainlyamongfemales.The levelsofTC(ˇ:−0.06,p=0.02),LDL-c(ˇ:−0.07,
p=0.01),ApoB(ˇ:−0.07,p=0.03),andCRP(ˇ:
−0.09;=0.04)showedanegativeassociationwith thescoreofthehealth-consciouspatternin females,allaffectedbytheBMIinsertioninthe finalmodel.Additionally,thescoreofthe health-consciouspatternshowedanindependent inverseassociationwithhomocysteinelevels(F-ˇ:
−0.11,p=0.03andM-ˇ:−0.14;p<0.01)inboth genders
OR, odds ratio; ˇ, regression coefficient ˇ; 95% CI, 95% confidence interval; F, female; M, male; BMI, body mass index; WC, waist circumference; HOMA-IR, homeostasis model assessment - insulin resistance; WtHR, waist to height ratio; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; Apo B, apolipoprotein B; CRP, C-reactive protein; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
home -mayaltertheassociationbetweendietanddisease,
beingoftheutmostimportancetoevaluatethem
The inability to identify positive associations between
some risk factors and unhealthy foods in cross-sectional
studiesmaybepartlyexplainedbychangesineatinghabits
or dietary restrictions when body compositionalterations
already existin children/adolescents,such as overweight
andobesity,knownasreversecausality.11,19Anotherinability
toidentifypositiveassociationsisthefactthatestimating
truedietaryintakeisoftencomplicated,asunderreporting
may occur in records,when theinformation is forgotten
This inaccuracy makes it difficult to analyze energy and
macro-and micronutrientintake,aswell astheir
associa-tionswithcardiometabolicalterations.20
Mostofthestudiesidentifiedthepatterncharacterized
as unhealthy, consisting of the consumption of
ultrapro-cessed foods, poor in fiber and rich in sodium, fat, and
refinedcarbohydrates.7 -10,14 -18
It is observedthat the highconsumption of foods with
higher energetic density, rich in fats and refined sugars,
is directly associated to the increase of lipogenesis, the secretionofverylowdensitylipoproteins,andthereduced oxidationandgreateraccumulationoffattyacidsinthe tis-suesandblood.21Thesubstitutionoftraditionalandhealthy foodconsumptionbyultraprocessedandready-to-eatfoods andbeveragesisassociatedwiththeincreaseinthe preva-lenceofoverweightandchronicdiseasesalreadypresentin pediatric patients.22,23 In contrast, adequate consumption
ofhealthyfoodshelpstoreducenutritionaldeficienciesand contributestothemaintenanceofbodyweightandthe pre-ventionofchronicdiseases,24thusitisessentialtostimulate childrenandadolescentsnotonlyregardingthedaily con-sumptionofadequatefoods,but alsothereductioninthe consumptionofultraprocessedfoods
The articles selected for this review were those that addressed only the a posteriori methodology This, in turn, consists in an exploratory method that uses multi-variateanalysis techniques toextractdietarypatterns In thisapproach, themost relevantpatternsof theassessed population are identified from correlations between the
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
Trang 8collected data in the food surveys.13,25 This food
con-sumption assessment methodology allows addressing the
interactionsbetweennutrients,food,andotherdiet
com-ponents
Dietary patterns offer a new approach in nutritional
epidemiology,withresults that can be more easily
trans-latedintoadviceforthepopulation,sincefood-orientated
guidelinesaremoreeasilyinterpretedandpracticedbythe
populationthannutrient-relatedones.18
Despitetheimportanceofstudieswithdietarypatterns,
few studies were performed with children and
adoles-cents Some difficulties are reported, such as the need
to evaluate food intake in the presence of parents and
thefact that the diseases arenot yet established at this
stage,whichdecreasestheinterestininvestigatinghealthy
populations.5,10,25 Additionally, many cardiometabolic risk
factorsthatcanbeusedtoverifyassociationsbetweendiet
anddiseasedonothaveestablishedcutoffsforchildrenand
adolescents.5,6,26 Thisis whatoccurswiththedefinitionof
metabolicsyndrome,whichdoesnothavewell-established
criteriatodate and,therefore, it is difficult toassess its
realprevalenceinthepediatricpopulation.14,27
Itcan beobserved thatsome riskmarkers widely used
in adultsare stillnot frequentlyassessed in children and
adolescents,asisthecaseofC-reactiveprotein,thusitis
necessarytodefinecutoffsandtheirassociation with
car-diometabolicalterationsintheearlystagesoflife.5
Therearealsolimitationsrelatedtotheinvestigationof
foodconsumptioninrelationtothemethodsused,thelack
oftoolvalidation,foodcompositiontablesthatfrequently
donotincludetheanalyzedfoods,diversityinthe
composi-tionofindustrializedproducts,theinterviewees’difficulty
inmeasuringfoodandbeverageportions,aswellas
under-reportingofthedata.9,28
Irrespectiveofthecomplexityofthisassociation,
assess-mentsof dietary patterns and other cardiometabolic risk
factorsin children and adolescentsshould be performed,
sincethispopulationiseasilyinfluencedbytheenvironment
inwhichtheylive,byfoodadvertisers,bypeers,family,and
bytheadoptedsocioculturalvalues.9,17,29 Recognizingthat
theprevalence of overweightand obesity is increasing in
developedanddevelopingcountries,andthatthisincrease
in overweight has raised the economic costs of countries
andthefamilies affectedby theproblem, informationon
foodconsumptionandchangesincardiometabolicrisk
fac-torsshouldalwaysbeevaluated.2,17,30
Somestudieshavedescribedthatchildhoodobesitycan
induceearlychangesinmetabolism,leadingtodyslipidemia
and glucose intolerance, in parallel with changes in the
oxidative and inflammatory system, as well as the early
onsetofobesity,whichmaydetermineamoresevere
pro-inflammatoryphenotypethantheadultobesity.4,27,31
In2013,Bibilonietal.16 reportedthattheinflammatory
processexistsintheadiposetissueofobesechildren,
repre-sentinganearlyalterationinhumans.Fromthisperspective,
theidentification andprevention,preferablyinchildhood,
ofriskfactors associatedwithcardiometabolicalterations
may bethe best strategy to prevent the progressionand
involvementofotherundesirablehealtheffects.2
Becausedietisoneofthemodifiableandimportantrisk
factorsin the etiologyof chronic diseases, the
identifica-tion of eating patterns characterized by consumption of
‘‘unhealthy’’ foods in childhood and adolescence can be usefulforthedevelopmentofstrategiesthatimprove eat-inghabitsand,consequently,reducetheprevalenceofthese riskfactorsthroughoutlife.7
The authors report that dietary patterns are specific
to particular populations, since they may vary with gen-der,age,culture,ethnicity,socioeconomicstatus,andfood availability,anditisimportanttoanalyzethemindifferent groupstoverifytheiractualapplicability.9,11
The specificityof thepopulation regarding thetype of consumed dietary pattern, related to sociocultural char-acteristics,causesdifficultiesincomparisons,eventhough some similarities can beobserved.11,18 Therefore,caution shouldbeexercisedwhencomparingthestudies,sincemany
of themdifferin termsof sample size,numberof follow-ups,statisticalmethods,andfoodconsumptionassessment methods.32
Conclusion
There was a positive association between ‘‘unhealthy’’ dietary patterns and cardiometabolic alterations by most studies with children and adolescents Some associations that could not be confirmed may be related to the spe-cificdifficultyofevaluatingfoodconsumption.Somepoints should beconsidered in assessing the diet-disease associ-ation, such aslimitations of the selected dietary survey, incompletefoodcompositiontables,under-notificationsdue
toomissionsorforgetfulness,andeventheneedforparental
orcaregiverassistancetoprovidetheinformation
Giventhecomplexityofthisassociation,itisimportant
to evaluate the dietary patterns in different populations
ofinterest, sincetheymayvaryaccording togender, age, availabilityoffoodathome,andsocioculturaldifferences, amongothers.Assimilarastheresultsmayseem,the com-parisonsandextrapolationsofthedatatootherpopulations areuncertain
Studieswithdietarypatternsandtheirassociationswith cardiometabolic risk factors should be performed in chil-drenandadolescents,sincetheprevalence ofobesityand associatedcomorbiditiesisincreasinginthispopulation,so thatearlyinterventionscanbeperformed withthe objec-tive of reducing short- and long-term health damage, as wellasthereductionofcostsinvolvedinthecareofhealth complications
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest
References
1 Karabouta Z, Papandreou D, Makedou A, Rousso I, Athanassiadou
F Associations of apolipoprotein A, high-sensitivity C-reactive protein and fasting plasma insulin in obese children with and without family history of cardiovascular disease J Clin Med Res 2016;8:431 -6.
2 Funtikova AN, Navarro E, Bawaked RA, Fíto M, Schröder H Impact of diet on cardiometabolic health in children and ado-lescents Nutr J 2015;14:118.
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
424
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
450
451
452
453 454 455 456 457 458 459 460
Trang 9JPED 476 1 -9
ARTICLE IN PRESS
+Model
3 Carolan E, Hogan AE, Corrigan M, Gaotswe G, O’Connell J,
Foley M, et al The impact of childhood obesity on
inflamma-tion, innate immune cell frequency, and metabolic microRNA
expression J Clin Endocrinol Metab 2014;99:474 -8.
4 Oliver SR, Rosa JS, Milne GL, Pontello AM, Borntrager HL,
Heydari S, et al Increased oxidative stress and altered
sub-strate metabolism in obese children Int J Pediatr Obes.
2010;5:436 -44.
5 Tam CS, Clément K, Baur LA, Tordjman J Obesity and
low-grade inflammation: a pediatric perspective Obes Rev.
2010;11:118 -26.
6 Balagopal P, Ferranti SD, Cook S, Daniels SR, Gidding SS,
Hay-man LL, et al Nontraditional risk factors and biomarkers for
cardiovascular disease: mechanistic, research, and clinical
con-siderations for youth Circulation 2011;123:2749 -69.
7 Ambrosini GL, Huang RC, Mori TA, Hands BP, O’Sullivan TA, Klerk
NH, et al Dietary patterns and markers for the metabolic
syn-drome in Australian adolescents Nutr Metab Cardiovasc Dis.
2010;20:274 -83.
8 Karatzi K, Moschonis G, Barouti AA, Lionis C, Chrousos GP,
Man-ios Y Dietary patterns and breakfast consumption in relation to
insulin resistance in children The Healthy Growth Study Public
Health Nutr 2014;17:2790 -7.
9 Dishchekenian VR, Escrivão MA, Palma D, Ancona-Lopez F,
Araújo EA, Taddei JA Padrões alimentares de adolescents
obesos e diferentes repercussões metabólicas Rev Nutr.
2011;24:17 -29.
10 Appannah G, Pot GK, Huang RC, Oddy WH, Beilin LJ, Mori TA,
et al Identification of a dietary pattern associated with greater
cardiometabolic risk in adolescence Nutr Metab Cardiovasc Dis.
2015;25:643 -50.
11 Oellingrath IM, Svendsen MV, Brantsæter AL Eating patterns
and overweight in 9- to 10-year-old children in Telemark
County, Norway: a cross-sectional study Eur J Clin Nutr.
2010;64:1272 -9.
12 Urrútia G, Bonfill X PRISMA declaration: a proposal to improve
the publication of systematic reviews and meta-analyses Med
Clin 2010;135:507 -11.
13 Carvalho CA, Fonsêca PC, Nobre LN, Priore SE, Franceschini SC.
Metodologias de identificac ¸ão de padrões alimentaresa
poste-rioriem crianc ¸as brasileiras: revisão sistemática Cien Saude
Colet 2016;21:143 -54.
14 Park SJ, Lee SM, Kim SM, Lee M Gender specific effect of major
dietary patterns on the metabolic syndrome risk in Korean
pre-pubertal children Nutr Res Pract 2013;7:139 -45.
15 Romero-Polvo A, Denova-Gutiérrez E, Rivera-Paredez B,
Casta˜ nón S, Gallegos-Carrillo K, Halley-Castillo E, et al
Associa-tion between dietary patterns and insulin resistance in mexican
children and adolescents Ann Nutr Metab 2012;61:142 -50.
16 Bibiloni MM, Maffeis C, Llompart I, Pons A, Tur JA Dietary
fac-tors associated with subclinical inflammation among girls Eur J
Clin Nutr 2013;67:1264 -70.
17 Shang X, Li Y, Liu A, Zhang Q, Hu X, Du S, et al Dietary pattern
and its association with the prevalence of obesity and related
cardiometabolic risk factors among Chinese children PLoS ONE 2012;7:e43183.
18 Mikkilä V, Rasanen L, Raitakari OT, Pietinen JMP, Ronnemaa T, Viikari J Major dietary patterns and cardiovascular risk factors from childhood to adulthood The Cardiovascular Risk in Young Finns Study Br J Nutr 2007;98:218 -25.
19 Bielemann RM, Motta JVS, Mintem GC, Horta BL, Gigante DP Consumo de alimentos ultraprocessados e impacto na dieta de adultos jovens Rev Saude Publica 2015;49:28.
20 Ambrosini GL, Emmett PM, Northstone K, Howe LD, Tilling
K, Jebb SA Identification of a dietary pattern prospectively associated with increased adiposity during childhood and ado-lescence Int J Obes 2012;36:1299 -305.
21 Rauber F, Campagnolo PD, Hoffman DJ, Vitolo MR Consumption
of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study Nutr Metab Cardiovasc Dis 2015;25:116 -22.
22 Aranceta-Bartrina J, Pérez-Rodrigo C Determinants of child-hood obesity: ANIBES study Nutr Hosp 2016;33:17 -20.
23 Sparrenberger K, Friedrich RR, Schiffner MD, Schuch I, Wagner
MB Ultra-processed food consumption in children from a Basic Health Unit J Pediatr 2015;91:535 -42.
24 Souza RL, Madruga SW, Gigante DP, Santos IS, Barros AJ, Assunc ¸ão MC Padrões alimentares e fatores associados entre crianc ¸as de um a seis anos de um município do Sul do Brasil Cad Saude Publica 2013;29:2416 -26.
25 Hoffmann K, Schulze MB, Schienkiewitz A, Nöthlings U, Boe-ing H Application of a new statistical method to derive dietary patterns in nutritional epidemiology Am J Epidemiol 2004;159:935 -44.
26 Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Mor-ris JE, et al C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors Atherosclerosis 2000;149:139 -50.
27 Barraco GM, Luciano R, Semeraro M, Prieto-Hontoria PL, Manco
M Recently discovered adipokines and cardio-metabolic comor-bidities in childhood obesity Int J Mol Sci 2014;15:19760 -76.
28 Pierre LA, Zago JN, Mendes RC Eficácia dos inquéritos alimenta-res na avaliac ¸ão do consumo alimentar Revista Brasileira de Ciencia da Saúde 2015;19:91 -100.
29 Teixeira RC, Costa SP, Oliveira GV, Candido FN, Rafael LM, Filho
ML Influência da mídia e das relac ¸ões sociais na obesidade de escolares Cinergis 2016;17:162 -7.
30 Canela DS, Novaes HM, Levy RB Influência do excesso de peso
e obesidade nos gastos em saúde nos domicílios brasileiros Cad Saude Publica 2015;31:2331 -41.
31 Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al Evidence of early alterations in adipose tis-sue biology and function and its association with obesity-related inflammation and insulin resistance in children Diabetes 2015;64:1249 -61.
32 Ambrosini GL, Emmett PM, Northstone K, Jebb SA Tracking a dietary pattern associated with increased adiposity in childhood and adolescence Obesity 2014;22:458 -65.
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567