1. Trang chủ
  2. » Tất cả

Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review

9 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review
Tác giả Naruna Pereira Rocha, Luana Cupertino Milagres, Giana Zarbato Longo, Andrộia Queiroz Ribeiro, Juliana Farias de Novaes
Trường học Universidade Federal de Viçosa
Chuyên ngành Nutrition
Thể loại review article
Năm xuất bản 2017
Thành phố Vicosa
Định dạng
Số trang 9
Dung lượng 464,08 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Association between dietary pattern and cardiometabolic risk in children and adolescents a systematic review Q1 Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 A[.]

Trang 1

JPED 476 1 -9

ARTICLE IN PRESS

+Model

www.jped.com.br

REVIEW ARTICLE

Q1

aUniversidade Federal de Vic ¸osa (UFV), Programa de Pós-Graduac ¸ão em Ciência da Nutric ¸ão, Vic ¸osa, MG, Brazil

bUniversidade Federal de Vic ¸osa (UFV), Departamento de Nutric ¸ão e Saúde, Vic ¸osa, MG, Brazil

KEYWORDS

Dietary;

Patterns;

Cardiovascular;

Children;

Adolescent

Abstract

Objective: Toevaluatetheassociationbetweendietarypatternsandcardiometabolicrisk fac-torsinchildrenandadolescents

Data source:ThisarticlefollowedtherecommendationsofPRISMA,whichaimstoguidereview publicationsinthehealtharea.Thearticlesearchstrategyincludedsearchesintheelectronic databases MEDLINEviaPubMed,Scopus,andLILACS.Therewasnodatelimitationfor

publi-Q2

cations.ThedescriptorswereusedinEnglishaccordingtoMeSHandinPortugueseaccording

to DeCS.Onlyarticles ondietarypatternsextracted by thea posteriori methodology were included Thequestiontobeansweredwas:how muchcanan‘‘unhealthy’’dietarypattern influencebiochemicalandinflammatorymarkersinthispopulation?

Data synthesis: The studies showed an association between dietary patterns and car-diometabolic alterations.The patternswerecharacterized asunhealthywhen associated to theconsumptionofultraprocessedproducts,poorinfiberandrichinsodium,fat,andrefined carbohydrates.Despitetheassociations,inseveralstudies,thestrengthofthisassociationfor someriskmarkerswasreducedorlostafteradjustingforconfoundingvariables

Conclusion: Therewasapositiveassociationbetween‘‘unhealthy’’dietarypatternsand car-diometabolicalterationsinchildrenandadolescents.Someunconfirmedassociationsmaybe relatedtothedifficultyofassessingfoodconsumption.Nevertheless,studiesinvolvingdietary patternsandtheirassociationwithriskfactorsshouldbeperformedinchildrenandadolescents, aimingatinterventionsandearlychangesindietaryhabitsconsideredtobeinadequate

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradePediatria.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/)

夽 Pleasecitethisarticleas:RochaNP,MilagresLC,LongoGZ,LongoGZ,RibeiroAQ,NovaesJF.Associationbetweendietarypatternand cardiometabolic risk in children and adolescents: a systematic review J Pediatr (Rio J) 2017 http://dx.doi.org/10.1016/j.jped.2017.01.002

∗Correspondingauthor.

E-mail:narunarocha@hotmail.com (N.P Rocha).

http://dx.doi.org/10.1016/j.jped.2017.01.002

0021-7557/© 2017 Published by Elsevier Editora Ltda on behalf of Sociedade Brasileira de Pediatria This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Trang 2

Alimentac¸ão;

Padrões;

Cardiovascular;

Crianc¸as;

Adolescente

Associac ¸ão entre padrão alimentar e risco cardiometabólico em crianc ¸as e adolescentes: uma revisão sistemática

Resumo

Objetivo: Avaliaraassociac¸ãoencontradanosestudosentrepadrãoalimentarefatoresderisco cardiometabólicosemcrianc¸aseadolescentes

Fonte dos dados: Esteartigo seguiu as recomendac¸ões doPRISMA, que objetiva orientaras publicac¸õesderevisãonaáreadasaúde.Aestratégiadebuscadosartigosincluiupesquisasnas baseseletrônicasMedlineviaPubMed,ScopuseLilacs.Nãohouvedatalimitedepublicac¸ão

OsdescritoresforamusadoseminglêsdeacordocomMeSHeemportuguêssegundoosDeCS Apenasartigosdepadrãoalimentarextraídospelametodologiaa posterioriforamincluídos.A perguntaaserrespondidafoi:quantoumpadrãoalimentar‘‘nãosaudável’’podeinfluenciar nosmarcadoresbioquímicoseinflamatóriosdessapopulac¸ão

Síntese dos dados: Osestudosdemonstraram haverassociac¸ãoentreospadrõesalimentares

ealterac¸ões cardiometabólicas.Ospadrõeseramcaracterizadoscomonãosaudáveis marca-dospeloconsumodeprodutosultraprocessados,pobresem fibrasericosemsódio,gordura

ecarboidratosrefinados.Apesardasassociac¸ões,emváriosestudos,aforc¸adessaassociac¸ão paraalgunsmarcadoresderiscoerareduzidaouperdidaapósosajustesparaasvariáveisde confusão

Conclusão: Houve associac¸ão positiva entre os padrões alimentares ‘‘não saudáveis’’ e as alterac¸õescardiometabólicasemcrianc¸aseadolescentes.Algumasassociac¸õesnãoconfirmadas podemestarrelacionadasàprópriadificuldadedeavaliaroconsumoalimentar.Apesardisso, estudosenvolvendoapadrõesalimentaresesuaassociac¸ãoafatoresderiscodevemser realiza-dosemcrianc¸aseadolescentesobjetivandointervenc¸õesemodificac¸õesprecocesnoshábitos alimentarestidoscomonãoadequados

©2017PublicadoporElsevierEditoraLtda.emnomedeSociedadeBrasileiradePediatria.Este

´umartigoOpenAccesssobumalicenc¸aCCBY-NC-ND(http://creativecommons.org/licenses/ by-nc-nd/4.0/)

Introduction

Overweightinchildhoodandadolescenceisamajorconcern

worldwide.1,2Littleisknownaboutthecomplicationsthat

early-onsetobesitycancauseinthelongterm.3,4Giventhe

uncertainties,manyassociationshavebeenmadetobetter

understandtheconsequencesofoverweightandobesityfor

theonsetofcardiometaboliccomplicationsinearlylife.1,5

Some established associations between the genesis of

obesityandalterationsincardiovascularriskmarkers -such

asinflammatory cytokines, C-reactive protein, traditional

biochemical parameters (total cholesterol, triglycerides,

glucose,insulin), diet, and physical activity - have been

evaluatedinstudieswithadultsandmuchisalreadyknown

aboutthedirectionoftheserelations.4,6However,itcanbe

observedthat thesestudies arenot verycommon in

chil-dren andadolescents, andmore consistent informationis

stillnecessary about the behaviorof cardiometabolicand

inflammatoryriskfactorsinthisperiod.3,5

Dietisanimportant,modifiableriskfactorintheetiology

of diseases, given the increasing number of

epidemiolog-ical studies that address its relation with the onset of

chronic diseases.7 -9 The methodology of identification of

thedietarypatternofspecificpopulationshasbeenwidely

usedinobservationalstudies,andhasbeenusefulto

iden-tifytheassociation betweendietandcardiometabolicrisk

factors.8,10,11

Dietary patterns can better inform about diet-disease

associations than the assessment of isolated foods or

nutrients, because they consider the total dietary intake andthe interrelationshipsbetween many foodsand nutri-ents,aswellastheirsynergisticeffects.7,9Theyhavebeen widely used due to the understanding that nutrients are rarelyconsumedinisolation, andthatnutrient-only inves-tigations underestimatethe possibleinteractions between nutrientsorbetweenfoodsandotherdietcomponents.8

The identification ofdietary patternsconsidered tobe unhealthymayberelatedtochangesin bodycomposition and biochemicalandinflammatory parametersin children and adolescents.7,10 Consideringthat childhoodis aphase during which eating habits are formed, the adoption of healthy eatingpracticesinthis periodcanhave favorable consequencesfortherestoflife

Inthissense,theaimofthissystematicreviewarticlewas

toevaluatetheassociationfoundbetweendietarypatterns andcardiometabolicrisk factorsin studiesofchildrenand adolescents.Thehypothesiswasthatunhealthydietary pat-ternsareassociatedwithalterationsintheserisk markers

intheassessedgroup

Methods

The systematic review was carried out according to the recommendationsofPreferredReportingItemsfor System-atic Reviews and Meta-Analyses (PRISMA), which aims to guidesystematic reviewsand meta-analysesin thehealth area.12Thearticlesearchstrategyincludedsearchesinthe

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

107

108 109 110 111 112

Trang 3

JPED 476 1 -9

ARTICLE IN PRESS

+Model

electronicdatabasesMEDLINE(NationalLibraryofMedicine,

USA) via PubMed, Scopus, LILACS (Latin American and

CaribbeanLiteratureinHealthSciences),and SciELO

(Sci-entificElectronicLibraryOnline),withnopublicationdate

limitations

Articleidentificationandselectioninalldatabaseswere

simultaneously performed by two researchers during a

three-monthperiodbetweenFebruaryandApril2016.The

words used as descriptors were: diet, dietary, patterns,

risk,cardiovascular,biomarkers,children,adolescent,and

health.ThedescriptorswereusedinEnglishaccordingtothe

MedicalSubjectHeadings(MeSH)andinPortuguese

accord-ing to the Descriptors in Health Sciences (in Portuguese,

DescritoresemCiênciasdaSaúde[DeCS])

The searches in the databases were performed using

the keywords withBoolean operators represented by the

connector terms AND, OR, and NOT Thus, the following

combinationswereused:dietarypatternsANDriskAND

car-diovascularANDadolescent;dietarypatternsANDriskAND

cardiovascularANDchildren;dietarypatternsAND

biomark-ers AND cardiovascular AND adolescent; dietary patterns

ANDbiomarkers ANDcardiovascular ANDchildren; dietary

patterns AND health AND cardiovascular AND adolescent;

dietarypatterns ANDhealth ANDcardiovascular AND

chil-dren;dietANDriskANDcardiovascularANDadolescent;diet

ANDriskANDcardiovascularANDchildren.These

combina-tionswerealsousedforthetermsORandNOT,respectively,

inallsearcheddatabases

The review searchedforstudies thatevaluateddietary

patternsusingthea posteriorimethodologyonly,whichuses

multivariateanalysistechniques toextractthepatterns,13

andthatassociatedthepatternfoundwithcardiometabolic

riskfactorsinchildrenand/oradolescents.Thearticlesthat

consideredonlyfoodpatternidentificationorthatonly

asso-ciatedthepatternwithanthropometricmeasurementswere

notincluded, asthe objectivewastodetect howmucha

foodpatternclassifiedas‘‘unhealthy’’couldinfluencethe

biochemicalandinflammatorymarkersinthispopulation

As non-inclusion criteria, the authors highlight studies

conductedwithadults,pregnantwomen,childrenunder2

yearsofage,reviewarticles,experts’comments,andthose

publishedinlanguagesotherthanPortugueseandEnglish

Article selection and identification in the databases

were independently andsystematically performed by two

researchers, who carried out the initial identification

through the titles of the publications found by the

descriptorsand, later, by the abstracts obtainedby

elec-tronicsearch.After theselection ofpublications bytitles

and abstracts, a new assessment was made by the two

researchers,whoconsensuallydeterminedthestudiestobe

readin fulland includedin thereview.The referencesof

theselectedstudieswereassessed,aimingtoincludeother

articlesofpotentialinterest

Results

Atotalof364articleswereidentifiedonthistopic.Ofthe

50publicationsselectedforreadingoftheabstractandof

thefulltext,onlysevenarticlesmettheestablishedcriteria

forthissystematicreview,andtwowerefoundthroughthe

referencesofthefirstselectedarticles(Fig.1)

Themaincharacteristicsofthestudies,suchaslocation, yearofpublication,design,ageoftheparticipants, statisti-calanalysisusedforfoodpatternderivation,andtheother assessedvariables,aredescribedinTable1.Thearticles dif-ferregardingthetypeofdesignandintermsofthesample age,withmost(78%)beingcross-sectionalstudies

Table 2 shows the identified confounding factors that wereincludedintheregressionmodels,theidentifiedfood patternsnamedaccordingtothedefinitionofeachauthor, andthe main results of the articles Confounding factors were described because they are important for the nec-essary adjustments in statistical analyses to increase the accuracyoftheassociation strength.Inmostpublications, the authors performed the analyses divided into models adjustedfirstforgenderandageandthenforothervariables that could influence the characteristics of the food pat-ternandtheassociationwithcardiometabolicriskmarkers, suchasparentallevelofschooling,levelofphysicalactivity, income,pubertalstage,andtotalenergyintake.10,14,15

Duringthereadingofthearticles,theauthorsdescribed the difficulty of approaching the association between dietary patterns and cardiometabolic risk factors in the group of children and adolescents, since there is little information available on the effects of dietary patterns

oncardiometabolicalterationsinthepediatricgroup.9,10,16

However,itisimportanttoevaluatetheassociationbetween dietarypatternsandchronicnoncommunicablediseasesin childhood and adolescence, since cardiometabolic alter-ationscan influence thecurrent and futurehealth ofthis group.17

Theidentificationofthefoodpatternvariedlittlein rela-tion tothe statistical analysis used.Principal component analysis(PCA)wasthemostpredominant(78%),which rep-resentsanalternativeapproachfortheevaluationoffood andnutrientintake,beingusefultoassessthediet-disease association.7 Unhealthy eating patterns were defined as

‘‘Western’’bymoststudies(55%),alsousingtheterms‘‘fast food,’’9‘‘highconsumptionofproteinandfat,’’15and‘‘high

infat.’’10 Onlyonestudydidnotnametheidentified pat-terns,maintainingonlythenamesofthefoodsthatbelonged

toeachgroup.8

guardians assisted in the evaluation of children’s food consumption.10,14,15,18 In 2013,Parketal.14 performed the dietaryassessmentinasubgroupoftheirsample(503 par-ticipants); the authors explained that this practice was adoptedduetopracticaldifficultiesincollectingthedata

In general, a positive association was observed in the studies between an ‘‘unhealthy’’ eating pattern and increasedcardiometabolicrisk.7 -10,14 -18

AccordingtoApannahetal.,in2015,10thepattern iden-tifiedasenergeticallydense,high in fat, andlow infiber was associated with cardiometabolic alterations, such as highinsulinconcentrationandinsulinresistanceinboth gen-ders.Incontrast,Karatzietal.,in20148foundthat,ofthe fiveidentifiedfoodpatterns,onlythepatterncharacterized

by‘‘margarine, sweets, andsnacks’’ wasassociated with insulinresistanceaftertheadjustmentsforconfounding fac-tors

Bibiloni et al.,16 in a 2013 study with 219 girls aged 12 -19, identified that the Western dietary pattern was associatedwithahigherconcentrationofadiponectinand

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

Trang 4

Table 1 Characteristicsoftheevaluatedstudies

Author/year Country Design Age(n) Referencemethod Statisticalanalysisa Anthropometry Tests

Appannahetal.,

201510

17years(n=1009)

Semi-quantitativeFFQ relatedtoprevious12 months

Reducedrank regressionb

Height,weight, BMI,WC

Insulin,glucose,TG, HDL-c,LDL-c,HOMA-ir Karatzietal.,

20148

Cross-sectional

9 -13years

(n=1912)

24-hfoodrecord(two daysaweekandone weekend)

Principalcomponent analysisc

Weight,height, WC

Insulin,glucose, HOMA-ir Biblionietal.,

201316

Cross-sectional

12 -17years

(n=219)

Validated semi-quantitativeFFQ relatedtoprevious12 months

Principalcomponent analysis

Weight,height,

WC,WtHR

Adiponectin,leptin, TNF-␣,PAI-1,IL-6

Cross-sectional

8 -9years

(n=1008)

24-hfoodrecord (performedinthree days)

Principalcomponent analysis

WC,BMI,blood pressure

Glucose,TC,TG, HDL-c,ALT,ASTand CT/HDL-c,TG/HDL-c Shangetal.,

201217

Cross-sectional

6 -13years

(n=5267)

24-hfoodrecord(two daysaweekandone weekend)

Groupinganalysis Weight,height,

BMI,blood pressure,WC

Glucose,TC,TG, HDL-c,LDL-c Romero-Polvo

etal.,201215

Cross-sectional

7 -18years

(n=916)

Semi-quantitativeFFQ relatedtoprevious12 months

Principalcomponent analysis

Weight,height, BMI,WC,body fat%(DXA)

Glucose,insulin, HOMA-ir Dishchekenianet

al.,20119

Cross-sectional

14 -19years

(n=76)

Four-dayfoodrecord (threedaysaweekand oneweekend)

Principalcomponent analysis

Weight,height, bloodpressure

TC,LDL-c,HDL-c,TG, glycemia,insulin Ambrosinietal.,

20107

Australia Cohort

cross-sectional

14years(n=1139) Semi-quantitativeFFQ

relatedtoprevious12 months

Principalcomponent analysis

Weight,height,

WC,blood pressure

TC,LDL-c,HDL-cTG, glycemiaandinsulin, HOMA-ir

Mikkiläetal.,

200718

(n=1200)

analysis

Height,weight, BMI,blood pressure

CRP,TC,LDL-c,HDL-c, VLDL-c,ApoA1s,Apo

B,triacylglycerol, insulin,homocysteine

FFQ, food frequency questionnaire; BMI, body mass index; WC, waist circumference; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein

choles-terol; HOMA-IR, homeostasis model assessment - insulin resistance; PAI-1, plasminogen activator inhibitor-1; IL-6, interleukin 6; WtHR, waist to height ratio; TC, total cholesterol; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; CRP, C-reactive protein; Apo A1, apolipoprotein A1; ApoB, apolipoprotein B; DXA, dual-energy X-ray absorptiometry.

a Statistical analysis used to determine the dietary pattern.

b Reduced rank regression (RRR).

c Principal component analysis.

Trang 5

JPED 476 1 -9

ARTICLE IN PRESS

+Model

Publications identified in databases with descriptors:

diet, patterns, risk, cardiovascular, health, children, adolescent, “dietary

patterns” from February to April, 2016 ( n=464).

Excluded articles:

Repeated articles: 7; Articles with adults: 5;

determination of the dietary pattern only: 9;

diet assessment by FFQ, record or 24-hr food record only: 13; use of the a priori methodology: 10

1st stage of refinement:

Search by title and eligibility criteria.

Selected articles:

7 articles plus 2 articles selected

by reverse search

Pre-selected publications:

50 articles for abstract/full text

reading.

Final articles:

9 articles

Figure 1 Studyselection,evaluation,andinclusionprocess

interleukin-6 (IL-6) However, the authors observed that

inflammationwasmoreinfluencedbybodymassindex(BMI)

andwaist-to-heightratio(WtHR)thanbytheidentifiedfood

pattern

Park et al.,14 in a 2013 study with Korean

prepuber-tal children, identified two eating patterns (‘‘balanced’’

and‘‘Western’’),andfoundnoassociationwithmetabolic

alterations in boys In girls, the mean concentration of

triglycerides decreasedat the highest quintile of the

bal-anced pattern of consumption (mean: 72.6, SD: 8.27,

p=0.032) The ‘‘Western’’patternshowed ahigher score

inthecategorywithmorethanoneriskfactorformetabolic

syndrome(MS)inthegroupofgirls(mean:29.5,SD:1.37,

p=0.026)

In 2013, Shang etal.,17 whenevaluating 5267children

and adolescents aged 6 -13 years of age, found that the

‘‘Westernpattern’’wasassociatedwithahigherchanceof

obesityandthatchildrenandadolescentswithhigherscores

inthe ‘‘Western’’and ‘‘transition’’patternshada higher

chance of abdominal obesity There was no association

betweentheidentifieddietarypatternsandhypertension,

hypertriglyceridemia, hypercholesterolemia, dyslipidemia,

andMS.However,the‘‘Western’’patternhadhighermean

values of weight, BMI, waist circumference, and systolic

and diastolic pressure, and higher concentrations of

glu-cose,LDL-c,andtriglycerides,andwasinverselyassociated

withHDL-cconcentrationwhencomparedtothe‘‘healthy’’

pattern

In 2012, Romero-Polvoet al.15 found that children and

adolescentswith‘‘Western’’foodpatternshada1.92-fold

higher chance of insulin resistance In 2011,

Dishcheke-nian et al.9 found a positive association between the

‘‘transition’’ pattern, based predominantly on the

con-sumption of rice,pasta, beans, oil,red meats, processed

meats,andsweets,andincreasedconcentrationsofinsulin,

glucose,triglycerides,and diastolicblood pressurelevels

In the ‘‘fast food’’ pattern, the authors found a positive

associationwiththeconcentrationofLDL-c,andsystolicand diastolicbloodpressurelevels,and anegativeassociation withHDL-c

In 2010, Ambrosini et al.,7 when studying the com-ponents of the metabolic syndrome (MS) in adolescents, dividedtheir sample into twogroups: high metabolic risk andlowmetabolicrisk,aimingtoinvestigatetheassociation betweendietarypatternandriskmarkersforMSand cardio-vasculardisease.Theauthorsobservedthatthe‘‘Western’’ patternwasassociatedwithincreasedriskofmetabolic syn-dromeand itsincreasedcomponents, suchastotal serum cholesterol, BMI, and waist circumference among female adolescents.The‘‘healthy’’dietarypatternwasassociated withlowerglucoseconcentrationsinmaleandfemale ado-lescents

In2007,Mikkiläetal.,18whenevaluatingthefoodintake

of children and adolescents in a cohort study, identified the‘‘traditional’’and‘‘health-conscious’’dietarypatterns The second dietary pattern wasinversely associated with cardiovascularriskfactors;however,theresultssuggestthat thisdietary pattern is more of an indicator of an overall healthylifestylethanjustadequatedietarychoices

Discussion

The results of the studies showed a positive association between unhealthy eating patterns and cardiometabolic alterations.7 -10,14 -18However,itisimportanttounderstand that, in several studies, the strength of this association for some risk markers was reduced, while others lost it aftertheadjustmentsforconfoundingfactorsorinteraction variables.7,9,10,14 -17

Theseresultsarenoteworthy,asseveralfactors associ-atedwithdietaryintakeandcardiometabolicalterations -suchasincome, gender, age,birth weight,parental level

ofschooling,physicalactivitylevel,andfoodavailabilityat

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

293

294 295 296 297 298 299 300 301 302 303 304

Trang 6

Table 2 Confounding/interactionfactors,identifiedpatterns,andmainresultsoftheevaluatedarticles.

Author/year Confounding/interaction

factors

Identifiedpatterns Mainresults

Appannahet

al.,201510

Physicalactivity, smokingstatus,gender, age,dietary

underreporting

1.Energeticallydense

2.Highinfat

3.Poorinfiber

Highscoresondietarypatternswereassociated withhigherchanceofbelongingtothehigh metabolicriskgroupforboys(OR:1.20,95%CI: 1.01 -1.41),butnotforgirls(OR:1.03,95%CI: 0.87 -1.22)whenadjustedforphysicalactivity andsmokingstatus.Higherscoresondietary patternswereassociatedwithhigherinsulin levels(FandM-␤:3.0,95%CI:1 -7%)andHOMA-IR (FandM-␤:4.0,95%CI:1 -7%)inbothgenders Karatzietal.,

20148

Gender,breakfast consumption,pubertal stage,waist

circumference,parents’

BMI,socioeconomic status,birthweight, physicalactivity

1.Friedpotatoes,red meat,andsweetened drinks

2.Processedmeatsand cheese

3.Margarine,sweets, andsavorysnacks

4.Vegetablesandfruits

5.Increasedegg consumptionandlower consumptionoffish

Thedietarypatterncontainingmargarines, sweets,andsnackswaspositivelyassociatedwith HOMA-IR(ˇ=0.08;p=0.02)afteradjustmentfor confoundingfactors.Childrenwhohadhigher adherencetothiseatingpattern(consumptionin thehighesttertile)were2.51timesmorelikelyto haveinsulinresistancecomparedtochildrenin thefirsttertile(95%CI:1.30 -4.90)

Bibilonietal.,

201316

Age,physicalactivity, smoking,energyintake, BMI,WtHR

1.Mediterraneandiet

2.Westerndiet

Westerndietscorewasinverselyrelatedto plasmaconcentrationsofadiponectinandIL-6 aftercontrolforpossibleconfoundingfactors (ˇ=−0.177,p<0.050andˇ=0.183,p<0.050, respectively)andwithadditionaladjustmentfor theBMIandWtHR(ˇ=−0.168,p=0.050and

ˇ=0.177,p<0.050,respectively)

Parketal.,

201314

Age,gender,energy intake,height,blood pressure

1.Balancedpattern

2.Westernpattern

Ingirls,themeanconcentrationoftriglycerides decreasedinthehighestconsumptionquintileof thebalancedpattern(mean:72.6,SD:8.27,

p=0.032).ThehighestscoreintheWestern patternwaspresentinthegirlswhohadmore thanoneriskfactorforMS(mean:29.5,SD:1.37,

p=0.026).Noassociationwasfoundforthemale gender

Shangetal.,

201217

Gender,age,birth weight,eatingprofilein the4thmonthafter birth,totalenergy intake,physicalactivity, parents’weight,levelof schooling,income

1.Healthydietary pattern

2.Transitionpattern

3.Westernpattern

Thefastingglucoselevelwashigherinthe westernfoodpatternthaninthehealthypattern (4.53mmol/Lvs.4.46mmol/L,p=0.0082)

ChildrenwiththeWesternpatternhadhigher concentrationsofLDL-c(2.156mmol/Lvs.

2.07mmol/L,p=0.0023)andlowerHDL-c concentrations(p<0.001)comparedtothosewith thehealthypattern.ChildrenwiththeWestern patternprofilewere1.80times(95%CI: 1.15 -2.81)morelikelytobeobesethanthosewiththe healthypattern.Transition(OR:1.31,95%CI: 1.09 -1.56)andWestern(OR:1.71,95%CI:

1.13 -2.56)foodpatternswereassociatedwith abdominalobesity

Romero-Polvo

etal.,201215

Gender,age,sexual maturation,BMI, physicalactivity,screen time,energyintake,use

ofmedication, supplements, multivitamins

1.Westernpattern

2.Prudentpattern

3.Highprotein/fat consumptionpattern

Insulinresistancewasassociatedwiththehighest consumptionquintilesoftheWesterndietary pattern(OR:1.92;95%CI:1.08 -3.43).Theother identifiedpatternsshowednosignificant association

Trang 7

JPED 476 1 -9

ARTICLE IN PRESS

+Model

Table 2 (Continued)

Author/year Confounding/interaction

factors

Identifiedpatterns Mainresults

Dishchekenianet

al.,20119

Gender,age,ethnicity, income,maternal schooling,BMI

1.Traditionalpattern

2.Transitionpattern

3.Fastfoodpattern

Thetraditionalpatternhadapositiveassociation withinsulin(ˇ=0.156,p<0.001),glycemia (ˇ=0.329,p=0.027),andTG(ˇ=0.513,

p<0.001),andnegativeassociationwith HDL-=−0.297;p=0.020)afteradjustingfor confoundingfactors.Thefastfoodpatternwas associatedwithinsulin(ˇ=0.176;p<0.001)when adjustedonlybygenderandethnicity.When adjustedbyincome,maternaleducation,and BMI,thispatternshowedapositiveassociation withLDL-c(ˇ=0.334,p<0.001),SBP(ˇ=0.469,

p<0.001),andDBP(ˇ=0.615,p<0.001),anda negativeonewithHDL-c(ˇ:−0.250,p<0.001)

Ambrosiniet

al.,20107

Gender,energyintake, physicalactivity,screen time,maternal

schooling,parents’

maritalstatus,BMI,WC

1.Westernpattern

2.Healthypattern

ThemeanBMIandWCdidnotvaryaccordingto thequartilesforeachdietarypattern.Forgirls, thechancesofmetabolicriskwereapproximately 2.5timeshigher(p<0.05;95%CI:1.05 -5.98)in thehighestquartileofthe‘‘Western’’food patternwhencomparedtothelowest

Mikkiläetal.,

200718

Age,smokingstatus, totalenergy consumption,smoking, physicalactivity,years

offollow-upinthestudy

1.Traditionalpattern

2.Health-conscious pattern

Thehealth-consciouspatternwasassociatedwith lowerriskfactors,butmainlyamongfemales.The levelsofTC(ˇ:−0.06,p=0.02),LDL-c(ˇ:−0.07,

p=0.01),ApoB(ˇ:−0.07,p=0.03),andCRP(ˇ:

−0.09;=0.04)showedanegativeassociationwith thescoreofthehealth-consciouspatternin females,allaffectedbytheBMIinsertioninthe finalmodel.Additionally,thescoreofthe health-consciouspatternshowedanindependent inverseassociationwithhomocysteinelevels(F-ˇ:

−0.11,p=0.03andM-ˇ:−0.14;p<0.01)inboth genders

OR, odds ratio; ˇ, regression coefficient ˇ; 95% CI, 95% confidence interval; F, female; M, male; BMI, body mass index; WC, waist circumference; HOMA-IR, homeostasis model assessment - insulin resistance; WtHR, waist to height ratio; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; Apo B, apolipoprotein B; CRP, C-reactive protein; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.

home -mayaltertheassociationbetweendietanddisease,

beingoftheutmostimportancetoevaluatethem

The inability to identify positive associations between

some risk factors and unhealthy foods in cross-sectional

studiesmaybepartlyexplainedbychangesineatinghabits

or dietary restrictions when body compositionalterations

already existin children/adolescents,such as overweight

andobesity,knownasreversecausality.11,19Anotherinability

toidentifypositiveassociationsisthefactthatestimating

truedietaryintakeisoftencomplicated,asunderreporting

may occur in records,when theinformation is forgotten

This inaccuracy makes it difficult to analyze energy and

macro-and micronutrientintake,aswell astheir

associa-tionswithcardiometabolicalterations.20

Mostofthestudiesidentifiedthepatterncharacterized

as unhealthy, consisting of the consumption of

ultrapro-cessed foods, poor in fiber and rich in sodium, fat, and

refinedcarbohydrates.7 -10,14 -18

It is observedthat the highconsumption of foods with

higher energetic density, rich in fats and refined sugars,

is directly associated to the increase of lipogenesis, the secretionofverylowdensitylipoproteins,andthereduced oxidationandgreateraccumulationoffattyacidsinthe tis-suesandblood.21Thesubstitutionoftraditionalandhealthy foodconsumptionbyultraprocessedandready-to-eatfoods andbeveragesisassociatedwiththeincreaseinthe preva-lenceofoverweightandchronicdiseasesalreadypresentin pediatric patients.22,23 In contrast, adequate consumption

ofhealthyfoodshelpstoreducenutritionaldeficienciesand contributestothemaintenanceofbodyweightandthe pre-ventionofchronicdiseases,24thusitisessentialtostimulate childrenandadolescentsnotonlyregardingthedaily con-sumptionofadequatefoods,but alsothereductioninthe consumptionofultraprocessedfoods

The articles selected for this review were those that addressed only the a posteriori methodology This, in turn, consists in an exploratory method that uses multi-variateanalysis techniques toextractdietarypatterns In thisapproach, themost relevantpatternsof theassessed population are identified from correlations between the

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

Trang 8

collected data in the food surveys.13,25 This food

con-sumption assessment methodology allows addressing the

interactionsbetweennutrients,food,andotherdiet

com-ponents

Dietary patterns offer a new approach in nutritional

epidemiology,withresults that can be more easily

trans-latedintoadviceforthepopulation,sincefood-orientated

guidelinesaremoreeasilyinterpretedandpracticedbythe

populationthannutrient-relatedones.18

Despitetheimportanceofstudieswithdietarypatterns,

few studies were performed with children and

adoles-cents Some difficulties are reported, such as the need

to evaluate food intake in the presence of parents and

thefact that the diseases arenot yet established at this

stage,whichdecreasestheinterestininvestigatinghealthy

populations.5,10,25 Additionally, many cardiometabolic risk

factorsthatcanbeusedtoverifyassociationsbetweendiet

anddiseasedonothaveestablishedcutoffsforchildrenand

adolescents.5,6,26 Thisis whatoccurswiththedefinitionof

metabolicsyndrome,whichdoesnothavewell-established

criteriatodate and,therefore, it is difficult toassess its

realprevalenceinthepediatricpopulation.14,27

Itcan beobserved thatsome riskmarkers widely used

in adultsare stillnot frequentlyassessed in children and

adolescents,asisthecaseofC-reactiveprotein,thusitis

necessarytodefinecutoffsandtheirassociation with

car-diometabolicalterationsintheearlystagesoflife.5

Therearealsolimitationsrelatedtotheinvestigationof

foodconsumptioninrelationtothemethodsused,thelack

oftoolvalidation,foodcompositiontablesthatfrequently

donotincludetheanalyzedfoods,diversityinthe

composi-tionofindustrializedproducts,theinterviewees’difficulty

inmeasuringfoodandbeverageportions,aswellas

under-reportingofthedata.9,28

Irrespectiveofthecomplexityofthisassociation,

assess-mentsof dietary patterns and other cardiometabolic risk

factorsin children and adolescentsshould be performed,

sincethispopulationiseasilyinfluencedbytheenvironment

inwhichtheylive,byfoodadvertisers,bypeers,family,and

bytheadoptedsocioculturalvalues.9,17,29 Recognizingthat

theprevalence of overweightand obesity is increasing in

developedanddevelopingcountries,andthatthisincrease

in overweight has raised the economic costs of countries

andthefamilies affectedby theproblem, informationon

foodconsumptionandchangesincardiometabolicrisk

fac-torsshouldalwaysbeevaluated.2,17,30

Somestudieshavedescribedthatchildhoodobesitycan

induceearlychangesinmetabolism,leadingtodyslipidemia

and glucose intolerance, in parallel with changes in the

oxidative and inflammatory system, as well as the early

onsetofobesity,whichmaydetermineamoresevere

pro-inflammatoryphenotypethantheadultobesity.4,27,31

In2013,Bibilonietal.16 reportedthattheinflammatory

processexistsintheadiposetissueofobesechildren,

repre-sentinganearlyalterationinhumans.Fromthisperspective,

theidentification andprevention,preferablyinchildhood,

ofriskfactors associatedwithcardiometabolicalterations

may bethe best strategy to prevent the progressionand

involvementofotherundesirablehealtheffects.2

Becausedietisoneofthemodifiableandimportantrisk

factorsin the etiologyof chronic diseases, the

identifica-tion of eating patterns characterized by consumption of

‘‘unhealthy’’ foods in childhood and adolescence can be usefulforthedevelopmentofstrategiesthatimprove eat-inghabitsand,consequently,reducetheprevalenceofthese riskfactorsthroughoutlife.7

The authors report that dietary patterns are specific

to particular populations, since they may vary with gen-der,age,culture,ethnicity,socioeconomicstatus,andfood availability,anditisimportanttoanalyzethemindifferent groupstoverifytheiractualapplicability.9,11

The specificityof thepopulation regarding thetype of consumed dietary pattern, related to sociocultural char-acteristics,causesdifficultiesincomparisons,eventhough some similarities can beobserved.11,18 Therefore,caution shouldbeexercisedwhencomparingthestudies,sincemany

of themdifferin termsof sample size,numberof follow-ups,statisticalmethods,andfoodconsumptionassessment methods.32

Conclusion

There was a positive association between ‘‘unhealthy’’ dietary patterns and cardiometabolic alterations by most studies with children and adolescents Some associations that could not be confirmed may be related to the spe-cificdifficultyofevaluatingfoodconsumption.Somepoints should beconsidered in assessing the diet-disease associ-ation, such aslimitations of the selected dietary survey, incompletefoodcompositiontables,under-notificationsdue

toomissionsorforgetfulness,andeventheneedforparental

orcaregiverassistancetoprovidetheinformation

Giventhecomplexityofthisassociation,itisimportant

to evaluate the dietary patterns in different populations

ofinterest, sincetheymayvaryaccording togender, age, availabilityoffoodathome,andsocioculturaldifferences, amongothers.Assimilarastheresultsmayseem,the com-parisonsandextrapolationsofthedatatootherpopulations areuncertain

Studieswithdietarypatternsandtheirassociationswith cardiometabolic risk factors should be performed in chil-drenandadolescents,sincetheprevalence ofobesityand associatedcomorbiditiesisincreasinginthispopulation,so thatearlyinterventionscanbeperformed withthe objec-tive of reducing short- and long-term health damage, as wellasthereductionofcostsinvolvedinthecareofhealth complications

Conflicts of interest

Theauthorsdeclarenoconflictsofinterest

References

1 Karabouta Z, Papandreou D, Makedou A, Rousso I, Athanassiadou

F Associations of apolipoprotein A, high-sensitivity C-reactive protein and fasting plasma insulin in obese children with and without family history of cardiovascular disease J Clin Med Res 2016;8:431 -6.

2 Funtikova AN, Navarro E, Bawaked RA, Fíto M, Schröder H Impact of diet on cardiometabolic health in children and ado-lescents Nutr J 2015;14:118.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

424

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

450

451

452

453 454 455 456 457 458 459 460

Trang 9

JPED 476 1 -9

ARTICLE IN PRESS

+Model

3 Carolan E, Hogan AE, Corrigan M, Gaotswe G, O’Connell J,

Foley M, et al The impact of childhood obesity on

inflamma-tion, innate immune cell frequency, and metabolic microRNA

expression J Clin Endocrinol Metab 2014;99:474 -8.

4 Oliver SR, Rosa JS, Milne GL, Pontello AM, Borntrager HL,

Heydari S, et al Increased oxidative stress and altered

sub-strate metabolism in obese children Int J Pediatr Obes.

2010;5:436 -44.

5 Tam CS, Clément K, Baur LA, Tordjman J Obesity and

low-grade inflammation: a pediatric perspective Obes Rev.

2010;11:118 -26.

6 Balagopal P, Ferranti SD, Cook S, Daniels SR, Gidding SS,

Hay-man LL, et al Nontraditional risk factors and biomarkers for

cardiovascular disease: mechanistic, research, and clinical

con-siderations for youth Circulation 2011;123:2749 -69.

7 Ambrosini GL, Huang RC, Mori TA, Hands BP, O’Sullivan TA, Klerk

NH, et al Dietary patterns and markers for the metabolic

syn-drome in Australian adolescents Nutr Metab Cardiovasc Dis.

2010;20:274 -83.

8 Karatzi K, Moschonis G, Barouti AA, Lionis C, Chrousos GP,

Man-ios Y Dietary patterns and breakfast consumption in relation to

insulin resistance in children The Healthy Growth Study Public

Health Nutr 2014;17:2790 -7.

9 Dishchekenian VR, Escrivão MA, Palma D, Ancona-Lopez F,

Araújo EA, Taddei JA Padrões alimentares de adolescents

obesos e diferentes repercussões metabólicas Rev Nutr.

2011;24:17 -29.

10 Appannah G, Pot GK, Huang RC, Oddy WH, Beilin LJ, Mori TA,

et al Identification of a dietary pattern associated with greater

cardiometabolic risk in adolescence Nutr Metab Cardiovasc Dis.

2015;25:643 -50.

11 Oellingrath IM, Svendsen MV, Brantsæter AL Eating patterns

and overweight in 9- to 10-year-old children in Telemark

County, Norway: a cross-sectional study Eur J Clin Nutr.

2010;64:1272 -9.

12 Urrútia G, Bonfill X PRISMA declaration: a proposal to improve

the publication of systematic reviews and meta-analyses Med

Clin 2010;135:507 -11.

13 Carvalho CA, Fonsêca PC, Nobre LN, Priore SE, Franceschini SC.

Metodologias de identificac ¸ão de padrões alimentaresa

poste-rioriem crianc ¸as brasileiras: revisão sistemática Cien Saude

Colet 2016;21:143 -54.

14 Park SJ, Lee SM, Kim SM, Lee M Gender specific effect of major

dietary patterns on the metabolic syndrome risk in Korean

pre-pubertal children Nutr Res Pract 2013;7:139 -45.

15 Romero-Polvo A, Denova-Gutiérrez E, Rivera-Paredez B,

Casta˜ nón S, Gallegos-Carrillo K, Halley-Castillo E, et al

Associa-tion between dietary patterns and insulin resistance in mexican

children and adolescents Ann Nutr Metab 2012;61:142 -50.

16 Bibiloni MM, Maffeis C, Llompart I, Pons A, Tur JA Dietary

fac-tors associated with subclinical inflammation among girls Eur J

Clin Nutr 2013;67:1264 -70.

17 Shang X, Li Y, Liu A, Zhang Q, Hu X, Du S, et al Dietary pattern

and its association with the prevalence of obesity and related

cardiometabolic risk factors among Chinese children PLoS ONE 2012;7:e43183.

18 Mikkilä V, Rasanen L, Raitakari OT, Pietinen JMP, Ronnemaa T, Viikari J Major dietary patterns and cardiovascular risk factors from childhood to adulthood The Cardiovascular Risk in Young Finns Study Br J Nutr 2007;98:218 -25.

19 Bielemann RM, Motta JVS, Mintem GC, Horta BL, Gigante DP Consumo de alimentos ultraprocessados e impacto na dieta de adultos jovens Rev Saude Publica 2015;49:28.

20 Ambrosini GL, Emmett PM, Northstone K, Howe LD, Tilling

K, Jebb SA Identification of a dietary pattern prospectively associated with increased adiposity during childhood and ado-lescence Int J Obes 2012;36:1299 -305.

21 Rauber F, Campagnolo PD, Hoffman DJ, Vitolo MR Consumption

of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study Nutr Metab Cardiovasc Dis 2015;25:116 -22.

22 Aranceta-Bartrina J, Pérez-Rodrigo C Determinants of child-hood obesity: ANIBES study Nutr Hosp 2016;33:17 -20.

23 Sparrenberger K, Friedrich RR, Schiffner MD, Schuch I, Wagner

MB Ultra-processed food consumption in children from a Basic Health Unit J Pediatr 2015;91:535 -42.

24 Souza RL, Madruga SW, Gigante DP, Santos IS, Barros AJ, Assunc ¸ão MC Padrões alimentares e fatores associados entre crianc ¸as de um a seis anos de um município do Sul do Brasil Cad Saude Publica 2013;29:2416 -26.

25 Hoffmann K, Schulze MB, Schienkiewitz A, Nöthlings U, Boe-ing H Application of a new statistical method to derive dietary patterns in nutritional epidemiology Am J Epidemiol 2004;159:935 -44.

26 Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, Mor-ris JE, et al C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors Atherosclerosis 2000;149:139 -50.

27 Barraco GM, Luciano R, Semeraro M, Prieto-Hontoria PL, Manco

M Recently discovered adipokines and cardio-metabolic comor-bidities in childhood obesity Int J Mol Sci 2014;15:19760 -76.

28 Pierre LA, Zago JN, Mendes RC Eficácia dos inquéritos alimenta-res na avaliac ¸ão do consumo alimentar Revista Brasileira de Ciencia da Saúde 2015;19:91 -100.

29 Teixeira RC, Costa SP, Oliveira GV, Candido FN, Rafael LM, Filho

ML Influência da mídia e das relac ¸ões sociais na obesidade de escolares Cinergis 2016;17:162 -7.

30 Canela DS, Novaes HM, Levy RB Influência do excesso de peso

e obesidade nos gastos em saúde nos domicílios brasileiros Cad Saude Publica 2015;31:2331 -41.

31 Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al Evidence of early alterations in adipose tis-sue biology and function and its association with obesity-related inflammation and insulin resistance in children Diabetes 2015;64:1249 -61.

32 Ambrosini GL, Emmett PM, Northstone K, Jebb SA Tracking a dietary pattern associated with increased adiposity in childhood and adolescence Obesity 2014;22:458 -65.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

Ngày đăng: 19/11/2022, 11:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm