1. Trang chủ
  2. » Tất cả

Analysis of steady state thermal hydraulic behaviour of the DEMO divertor cassette body cooling circuit

5 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 1,81 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Analysis of steady state thermal hydraulic behaviour of the DEMO divertor cassette body cooling circuit F A d P a b c h • • • • • a A R R A A K D D C C T 1 w m f r p h p d h 0 ARTICLE IN PRESSG Model[.]

Trang 1

Contents lists available atScienceDirect

j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / f u s e n g d e s

P.A Di Maioa, S Garittaa, J.H Youb, G Mazzonec, E Vallonea,∗

a University of Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy

b Max Planck Institute of Plasma Physics (E2 M), Boltzmann Str.2, 85748 Garching, Germany

c Department of Fusion and Technology for Nuclear Safety and Security, ENEA C.R Frascati, via E Fermi 45, 00044 Frascati, Roma, Italy

•Thermal-hydraulicstudyofDEMOdivertorcassettebodycoolingsystem

•Adoptionofacomputationalfluid-dynamicapproachbasedonfinitevolumemethod

•Comparativestudyonbothwaterandheliumcoolingoptions

•Assessmentofspatialdistributionsofpressuredrop,flowvelocityandtemperature

•Analysisofanimprovedlayout,leadingtosignificantperformancesenhancement

Article history:

Received 3 October 2016

Received in revised form 26 January 2017

Accepted 5 February 2017

Available online xxx

Keywords:

DEMO

Divertor

Cassette body

CFD analysis

Thermofluid-dynamics

WithintheframeworkoftheWorkPackageDIV1–“DivertorCassetteDesignandIntegration”ofthe EUROfusionaction,aresearchcampaignhasbeenjointlycarriedoutbyENEAandUniversityofPalermo

toinvestigatethethermal-hydraulicperformancesoftheDEMOdivertorcassettecoolingsystem.A com-parativeevaluationstudyhasbeenperformedconsideringthetwodifferentoptionsunderconsideration forthedivertorcassettebodycoolant,namelysubcooledpressurizedwaterandhelium

Theresearchactivityhasbeencarriedoutfollowingatheoretical-computationalapproachbasedon thefinitevolumemethodandadoptingaqualifiedComputationalFluid-Dynamic(CFD)code

CFDanalyseshavebeencarriedoutfortheconsideredoptionsofcassettebodycoolingcircuitunder nominalsteadystateconditionsandthepertainingthermal-hydraulicperformanceshavebeenassessed

intermsofoverallcoolantthermalrise,coolanttotalpressuredrop,flowvelocityandpumpingpower,to checkwhethertheycomplywiththecorrespondinglimits.Resultsobtainedarereportedandcritically discussed

©2017ElsevierB.V.Allrightsreserved

1 Introduction

TherecentEuropeanFusionDevelopmentAgreementroadmap

waselaboratedtopursuefusionasasustainable,secureand

com-mercial energy source[1] In this framework, thedivertor is a

fundamentalcomponentoffusionpowerplants,beingprimarily

responsibleforpowerexhaustandimpurityremovalviaguided

plasma exhaust.Due toitsposition and functions,thedivertor

hastosustainveryhighheatandparticlefluxesarisingfromthe

plasma(upto20MW/m2),whileexperiencinganintensenuclear

depositedpower,whichcouldjeopardizeitsstructure andlimit

∗ Corresponding author.

E-mail address: eugenio.vallone@unipa.it (E Vallone).

itslifetime Therefore, attentionhastobepaid tothe thermal-hydraulicdesignofitscoolingsystem,inordertoensureauniform andpropercooling,withoutanundulyhighpressuredrop WithintheframeworkoftheactivitiesforeseenbytheWP-DIV

1 “DivertorCassette Designand Integration”oftheEUROfusion action,aresearchcampaignhasbeencarriedoutattheUniversity

ofPalermo,in cooperationwithENEA,toinvestigatethesteady statethermal-hydraulicperformancesoftheDEMOdivertor cas-settebodycoolingcircuit,payinga specificattentiontothetwo differentoptionsunderconsiderationforitscoolant,namely sub-cooledpressurizedwaterandhelium

The research campaign has been carried out following a theoretical-numerical approach based on the Finite Volume Method and adopting the commercial Computational Fluid-Dynamic(CFD)codeANSYS CFXv.16.2,typicallyemployed also http://dx.doi.org/10.1016/j.fusengdes.2017.02.012

0920-3796/© 2017 Elsevier B.V All rights reserved.

Trang 2

Fig 1. DEMO divertor cassette 2015 design.

Table 1

Summary of CB cooling options.

WCDC1 WCDC2 HCDC HCDC+B4C

toevaluateconcentratedhydraulicresistancestobeusedin

sys-temcodes[2,3].Theanalysismodelsandassumptionsareherein

reportedandcriticallydiscussed,togetherwiththemainresults

obtained

2 Cassette body cooling circuit

Accordingtoits2015design,DEMOdivertoriscomposedof54

toroidalcassettes,eacharticulatedinaCassetteBody(CB)that

sup-portstwotargetplateplasmafacingcomponents,namelyanInner

VerticalTarget(IVT)andanOuterVerticalTarget(OVT)(Fig.1)[4,5]

Fourdifferentcoolingoptionsarecurrentlyunderconsideration

fortheCBcoolingcircuit,thatdifferbothastocoolant,namely

pres-surizedwaterforWaterCooledDivertorCassette(WCDC)options

andheliumforHeliumCooledDivertorCassette(HCDC)options

[6],and totheiroperativeparameters Asummary of themain

CBcoolingoptionshasbeenreportedinTable1,togetherwitha

preliminaryassessmentoftheirthermal-hydraulicperformances,

carriedoutassumingnuclearheatingdatadrawnfrom[7]

Inlet BC T in = 350◦C T in = 150◦C

p s = 4.0 MPa p s = 3.5 MPa

Outlet BC G = 1.33 kg/s G = 5.71 kg/s

3 CB cooling circuit CFD analysis

Thethermal-hydraulicperformances ofboth theHCDC+B4C andWCDC1coolingoptionscurrentlyunderconsiderationforthe

CBcoolingcircuithavebeeninvestigatedundernominalconditions

byrunningseparate,steadystate,fully-coupledfluid-structureCFD analyseswiththeANSYSCFXv.16.2code

Inparticular,CFDanalyseshaveaimedtoassesstheCB thermal-hydraulicperformancesintermsof:

• coolantflowvelocitydistribution;

• coolantoverallpressuredrop;

• coolanttemperaturedistribution;

• CBstructuretemperaturedistribution

Moreover,foreachcoolingoptiontwoCBdesignconceptshave beenstudied,namelyDesignConceptI(DC-I),representingthe ini-tialCBreferencelayout,andDesignConceptII(DC-II),differingin flowpathsandinternalribthicknessfromthepreviousandset-up

toovercomethecriticalissuesrevealedbyCFDanalysis

Selectedmeshparametersandmainassumptions,modelsand boundaryconditions(BCs)adopted,maturedasafurther develop-mentof[8],aresummarizedinTables2and3.Adetailofthetypical meshset-upisshowninFig.2

3.1 DC-ICFDanalysisresults ThefluidandstructurecalculationdomainadoptedfortheDC-I CFDanalysisisreportedinFig.3

SteadystateCFDanalyseshavebeencarriedoutforboththe HCDC+B4CandWCDC1optionstoassesstheircooling effective-nessbycheckingwhethertheyallowthestructurethermalfield

tostaybelowthemaximumallowableEUROFERtemperatureof

550◦C[9]whileavoidingtheoccurrenceofcoolantsaturation,even locallyatthefluid-wallinterface

AstotheHCDC+B4Ccoolingoption,coolantflowvelocityand

CBstructuretemperaturedistributionsarereportedinFigs.4and5, showingsomeissuesmainlyconcerningthestructure

tempera-Table 2

Summary of the selected mesh parameters.

Trang 3

Fig 2.Detail of a typical mesh set-up.

Fig 3. DC-I fluid and structure calculation domain.

Fig 4. DC-I: HCDC + B4C coolant flow velocity field.

Fig 5.DC-I: HCDC + B4C structure temperature field.

Fig 6. DC-I: WCDC1 coolant temperature field.

Fig 7. DC-I: WCDC1 structure temperature field.

Table 4

DC-I CFD analyses main results.

turefield.Infact,Fig.5showswidecriticalareaswherethewall temperatureovercomesthelimitof550◦C

AstotheWCDC1coolingoption,coolantandCBstructure tem-peraturedistributionsarereportedinFigs.6and7,indicatingthe occurrenceofCBcriticalareas

Inparticular,Fig.6showsthecoolantcriticalareas, conserva-tivelydefinedastheregionswherewatertemperatureovercomes the saturation temperature at the minimum pressure reached insidetheflowdomain.Fig.7showslocalizedcriticalareaswhere thewalltemperatureexceedsthelimitof550◦C.Finally,Table4 summarizesthemain resultsobtainedforboth coolingoptions CFDanalyses,additionallyshowingthattherearemorethanthree ordersofmagnitudebetweenheliumandwatercoolantcalculated pumpingpower

3.2 DC-IICFDanalysisresults

Inordertoimprovethethermal-hydraulicperformancesof

DC-I,andparticularlythoserelevanttothestructurethermalfield,the

CBDC-IIhasbeenpurposelydevised.Specifically,thepositionof inlet/outletmanifoldsattachmenthasbeenchanged(Fig.8)andthe thicknessofthestructureandofitsinternalribshasbeendecreased

Trang 4

Fig 8.DC-I and DC-II manifolds attachment.

Fig 9.DC-I and DC-II structural differences.

Fig 10. DC-II: HCDC + B4C structure temperature field.

byafactor1.3÷2alongwiththatofthecornersunderIVTandOVT

(Fig.9).Thesechangeshaveaimedtoimproveflowuniformityand,

ingeneral,toenhancethecassettecoolingeffectiveness

Inanalogywiththepreviouscases,steadystateCFDanalyses

havebeencarriedoutfortheHCDC+B4CandtheWCDC1cooling

options

Resultsobtainedhaveshownthat,asitwasforecast,

temper-aturefieldsgloballyassessatlowervalues.EUROFERmaximum

temperature(550◦C)is overcomeinlargeareasofCB structure

onlyforHCDC+B4C(Fig.10).Furthermore,onlyextremely

local-izedcoolantvaporizationispredictedastoWCDC1(Fig.11).Finally,

Table5summarizesthemainresultsobtained,additionally

show-ingalimitedincreaseintheevaluatedpressuredropsandpumping

power

Fig 11.DC-II: WCDC1 coolant temperature field.

Table 5

DC-II CFD analyses main results.

4 Conclusions

WithintheframeworkoftheactivitiesforeseenintheWPDIVof theEUROfusionConsortium,acomputationalstudyhasbeen car-riedoutattheUniversityofPalermo,incooperationwithENEA,

toinvestigatethesteadystatethermal-hydrauliccooling perfor-mancesofthedivertorCBcoolingcircuit.Inordertoaccomplishthis task,twodifferentdesignconceptshavebeeninvestigated,namely DC-IandDC-II.Forbothcases,ahelium-cooled(HCDC+B4C)anda water-cooled(WCDC1)optionwasconsidered,respectively ThestudyhasrepresentedthefirststepoftheCBconceptual designandithasbeenuniquelyintendedtohavea preliminary assessmentofthethermal-hydraulicperformancesofthetwo cool-ingoptions underconsideration, startingfrom a “first-attempt” designof thecircuit, asacommonbasisfor boththetwo cool-ingoptions,tobefurtherrevisedaccordingtotheCFDanalysis indicationssotoimprovetheperformancesofeachcoolingoption Results obtainedfor theDC-I case indicated that thelayout needstoberevised, sinceitsbehaviourdoesnotfullymeetthe requirementsofsafetyandoperationtemperaturelimits.In par-ticular,structuralmaterialalwaysexceedsthemaximumallowed temperature(550◦C),nomatterwhattheadoptedcoolant was Moreover,watercoolantisexpectedtoexperiencevaporizations extensively.Theflowpathalsoneedstobeimprovedinorderto reachmoreeffectivecooling,particularlyattheoutboardCB cor-ners.AsforDC-IIoption,thestructureandtheflowpathswere revised.Asaconsequence,thetemperaturelevelofthestructural materialcouldbelargely reduced whilethemaximum allowed temperaturewasviolatedonly inthecase ofheliumcooling.In

Trang 5

Finally,pressuredropspredictedforthisconceptareslightlyhigher

thanthoseofDC-I,regardlessofcoolant.Asfortherequired

pump-ingpowerfor all54Cassettes,it rangedbetween4.24MWand

4.97MWforheliumcoolingandbetween3and4kWinthecaseof

watercooling

Inconclusion,theCBthermal-hydraulicperformancescouldbe

significantlyenhancedbytheimprovedfeedingpipeconfiguration

(DesignConceptII)forboththetwocoolingoptionsinvestigated

Anyway,ithastobeunderlinedthat,atthisstageoftheactivity,

thedesignandworkingconditionsofthetwocoolingoptionsare

notmatureenoughtoallowanywell-posedcomparisonoftheir

performances.Tothispurpose,furthersolutionsarebeingstudied

astobothcircuitlay-outsandcoolantthermodynamicconditions,

purposelydevelopedforeachcoolingoption,toallowtheirfuture

well-posedcomparison

Acknowledgments

This work has been carried out within the framework of

theEUROfusionConsortium and hasreceivedfundingfromthe

Euratomresearchandtrainingprogramme2014–2018undergrant

agreementNo633053.Theviewsandopinionsexpressedhereindo

notnecessarilyreflectthoseoftheEuropeanCommission

References

[1] F Romanelli, et al., Fusion Electricity – A Roadmap to the Realisation of Fusion Energy, European Fusion Development Agreement (EFDA), 2012, 2017 (ISBN 978-3-00-040720-8T).

[2] P.A Di Maio, et al., Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system, Fusion Eng Des 98–99 (2015) 1470–1473.

[3] P.A Di Maio, et al., Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure, Fusion Eng Des 98–99 (2015) 1664–1667.

[4] Final Report on Deliverable DEMO Divertor - Thermo-hydraulic assessmentreport 2015, Report IDM reference No EFDA D 2MY45W, DIV-1-T001-D010.

[5] J.H You, G Mazzone, E Visca, C Bachmann, et al., Conceptual design studies for the European DEMO divertor: rationale and first results, Fusion Eng Des 109–111 (2016) 1598–1603.

[6] J.H You, E Visca, C Bachmann, T Barrett, et al., European DEMO divertor target: operational requirements and material-design interface, Nucl Mater Energy (2017), http://dx.doi.org/10.1016/j.nme.2016.02.005 , in press [7] DR-DIV-01-2-Structural feasibility of cassette body material, Report IDM reference No EFDA D 2N2F23 v1.2.

[8] P.A Di Maio, M Merola, R Mitteau, R Raffray, E Vallone, On the hydraulic behaviour of ITER Shield Blocks #14 and #08 Computational analysis and comparison with experimental tests, Fusion Eng Des 109–111 (2016) 30–36 [9] EUROfusion, personal communications.

Ngày đăng: 19/11/2022, 11:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w