1. Trang chủ
  2. » Tất cả

TOP 30 đề thi toán học kì 2 lớp 11 năm 2022 2023 có đáp án

62 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 1,05 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đề 1 I) TRẮC NGHIỆM (7,0 điểm) Câu 1 Cho hình hộp ABCD A’B’C’D’ (hình vẽ minh hoạ) Mệnh đề nào sau đây đúng ? A AC'''' AD AC AA''''    B AC'''' AB AD AA''''    C AC'''' AB AC AA''''    D AC'''' AB AD AC    Câu[.]

Trang 1

Đề 1 I) TRẮC NGHIỆM: (7,0 điểm)

Câu 1: Cho hình hộp ABCD.A’B’C’D’ (hình vẽ minh hoạ)

Mệnh đề nào sau đây đúng ?

Trang 2

Câu 5: Trong không gian, cho đoạn thẳng AB có trung điểm là I, ( ) là mặt phẳng

trung trực của đoạn thẳng AB Phát biểu nào sau đây đúng ?

A ( ) qua I và vuông góc với AB

B ( ) qua A và vuông góc với AB

C ( ) qua I và không vuông góc với AB

D ( ) qua B và vuông góc với AB

Câu 6: Hàm số nào dưới đây liên tục trên toàn bộ tập số thực ?

Trang 3

B 5.

2

C 

D 2

Câu 8: Gọi S là tổng của cấp số nhân lùi vô hạn  un có công bội q ( q 1) Khẳng

định nào sau đây đúng ?

Câu 9: Cho hai hàm số uu x , v  v x  có đạo hàm tại điểm x thuộc khoảng xác

định Mệnh đề nào sau đây sai ?

Trang 4

D -3

Câu 11: Trong không gian, cho hai đường thẳng phân biệt a, b và mặt phẳng ( )

Phát biểu nào sau đây đúng ?

A Nếu a / /( ) và b / /( ) thì ab

B Nếu a ( ) và b ( ) thì ab

C Nếu b / /( ) và a  ( ) thì ab

D Nếu b / /( ) và ab thì a ( )

Câu 12: Cho hình chóp S.ABCD có đáy là hình thoi, cạnh bên SA vuông góc với mặt

phẳng (ABCD) (như hình vẽ minh hoạ) Hãy chọn khẳng định đúng

A BD(SAC)

B CD(SAD)

C AC(SBD)

D BC(SAB)

Câu 13: Cho lăng trụ ABC.A’B’C’ (hình vẽ minh hoạ) Vectơ A 'A không phải là

vectơ chỉ phương của đường thẳng nào sau đây ?

S

Trang 6

Câu 17: Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau (hình vẽ minh hoạ)

Số đo góc giữa hai đường thẳng SAvà CD bằng

Trang 8

II) TỰ LUẬN: (3,0 điểm)

Tìm tất cả các giá trị của tham số m

để hàm số f(x) liên tục tại điểm x = -2

b) Cho hàm số y f (x) 2x 1

x 1

 , có đồ thị (C) Viết phương trình tiếp tuyến của đồ

thị (C) biết tiếp tuyến vuông góc với đường thẳng d : y  3x 4

Bài 2 (1,0 điểm) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a; SA vuông

góc với mặt phẳng (ABCD) và SA = 2a Gọi G là trọng tâm tam giác SAB,  là góc tạo bởi đường thẳng CG và mặt phẳng (SAC) Xác định góc  và tính sin 

================= HẾT =================

Đề 2

I TRẮC NGHIỆM (3,0 điểm)

Chọn phương án trả lời đúng cho các câu hỏi sau:

Câu 1 Hệ số góc của tiếp tuyến với đồ thị hàm số yx3 4x2 1 tại điểm có hoành

Trang 9

A.20

B.14

C.2

Trang 10

D 11

Câu 7 Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O Biết rằng SA =

SC; SB = SD Khẳng định nào sau đây đúng?

Câu 9 Cho hình chóp S.ABCD có các cạnh bên và cạnh đáy đều bằng a Gọi M là

trung điểm SA Mặt phẳng (MBD) vuông góc với mặt phẳng nào dưới đây?

Câu 11 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a,

SA(ABCD) Khoảng cách từ điểm D đến mặt phẳng (SAC) bằng

Trang 11

Câu 14 (1,0 điểm) Cho hàm số yx3 3x 1 có đồ thị là (C) Viết phương trình

tiếp tuyến của (C) tại điểm có tung độ bằng 3

Câu 15 (2,5 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O,

cạnh a Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Gọi H; K lần lượt là trung điểm của AB; BC

a) Chứng minh rằng SH ABCD và SAD  SAB

Trang 12

b) Gọi  là góc giữa đường thẳng SC và mặt phẳng (ABCD) Tính tan

c) Tính khoảng cách từ K đến (SAD)

Câu 16 (0,5 điểm) Cho hàm số 3 2  

f (x)ax bx cxd a0 có đồ thị là (C) Biết (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ x , x , x1 2 3 Tính giá trị biểu thức

Câu 1 Cho các hàm số u(x); v(x) có đạo hàm trên khoảng K và v x 0 với mọi

xK Mệnh đề nào sau đây SAI?

Trang 14

C y sin x2

D y  cot x

Câu 7 Mệnh đề nào sau đây là mệnh đề ĐÚNG?

A Nếu đường thẳng d vuông góc với một đường thẳng nằm trong mặt phẳng   thì

Trang 15

Câu 13 Cho hình chóp tứ giác đều S.ABCD, gọi O là tâm của hình vuông ABCD

Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABCD)?

Trang 16

Câu 15 Phát biểu nào sau đây là ĐÚNG về hình lăng trụ đứng?

A Các mặt bên của hình lăng trụ đứng là những hình chữ nhật

B Các mặt bên của hình lăng trụ đứng là những hình vuông

C Các mặt bên của hình lăng trụ đứng không vuông góc với mặt phẳng đáy

D Các mặt bên của hình lăng trụ đứng là những hình thoi

Trang 17

C 12

D 8

Câu 20 Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh SA vuông góc

với mặt phẳng (ABCD), (xem hình vẽ) Góc giữa đường thẳng SB và mặt phẳng (ABCD) là góc

A SBD

B SBA

C SDC

D SBC

II PHẦN TỰ LUẬN ( 6 điểm)

Câu 1 (1,5 điểm): Tính đạo hàm của các hàm số sau

 có đồ thị là (H) Viết phương trình tiếp tuyến

của (H) tại điểm M 1; 20  

Câu 4 ( 2,5 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt

bên SAB là tam giác đều, hình chiếu vuông góc của S lên mặt phẳng ABCD trùng với trung điểm H của cạnh AB

Trang 18

a) Chứng minh rằng: BCSAB

b) Gọi K là trung điểm của cạnh BC, tính khoảng cách giữa hai đường thẳng HK và

SC Xác định đoạn vuông góc chung của của hai đường thẳng HK và SC

Trang 20

C' D

A B'

Trang 21

Câu 12: Cho hình hộp ABCD.MNPQ Phép chiếu song song lên mặt phẳng (MNPQ)

theo phương BM biến điểm C thành điểm

A N

B M

C Q

Trang 24

Câu 22: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 8 cm Tính khoảng

cách giữa đường thẳng A’B’ đến mặt phẳng (ABC’D’)

A 4 cm

B 4 2 cm

C 8 2 cm

D 8 cm

Câu 23: Cho một vật chuyển động theo phương trình S t3 mt2 10tm2, trong

đó t được tính bằng giây, S được tính bằng mét và m là tham số thực Biết tại thời điểm t = 4s vận tốc của vật bị triệt tiêu Gọi a là gia tốc của vật tại thời điểm t = 5s Chọn khẳng định đúng trong các khẳng định sau

A a30;40

D' A'

Trang 25

A 23 (m/s)

B 25 (m/s)

Trang 28

II PHẦN TỰ LUẬN (3.0 điểm, học sinh trình bày bài giải vào giấy)

Câu 36 (1,0 điểm) Tính đạo hàm của các hàm số sau:

Câu 38 (1,5 điểm) Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a Biết SB

vuông góc với mặt đáy và P là trung điểm của cạnh AC

Trang 31

Tìm điều kiện của

tham số m và n để hàm số trên liên tục tại điểm x = 1

A 5m + 4n = 2018

B 4m – 5n = 2018

C 4m + 5n = 2018

D 5m – 4n = 2018

Trang 32

Câu 11 Một chất điểm chuyển động theo phương trình S t3 3t2  3t 1, trong đó t

được tính bằng giây (s) và S được tính bằng mét (m) Tính vận tốc của chất điểm tại thời điểm t = 2( giây)

Trang 33

II TỰ LUẬN: (5,0 điểm)

Câu 1 (1,0 điểm) Tính các giới hạn sau:

Tìm điều kiện của tham số a để hàm số trên gián đoạn tại điểm x = 2

Câu 3 (1,0 điểm) Cho hàm số y f (x) 1x3 2x

3

   , có đồ thị (C)

a) Tính đạo hàm của hàm số trên

b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 =3

Câu 4 (2,0 điểm) Cho hình chóp S.ABC có đáy ABCD là hình vuông cạnh a,

hình chiếu vuông góc của S lên mặt đáy là trung điểm M của cạnh AD,

a 3

SM Gọi N, Q lần lượt là trung điểm của các cạnh SC; SB

Trang 35

3.2 1lim

Câu 12: Cho hình chóp S.ABCD có đáy là hình thoi, cạnh bên SA vuông góc với mặt

phẳng (ABCD) (như hình vẽ minh hoạ) Hãy chọn khẳng định đúng

Trang 36

A BD(SAC)

B CD(SAD)

C AC(SBD)

D BC(SAB)

Câu 9 Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O Biết rằng SA =

SC; SB = SD Khẳng định nào sau đây đúng?

Trang 37

trung trực của đoạn thẳng AB Phát biểu nào sau đây đúng ?

A ( ) qua I và vuông góc với AB

B ( ) qua A và vuông góc với AB

C ( ) qua I và không vuông góc với AB

D ( ) qua B và vuông góc với AB

x 1

 Mệnh đề nào dưới đây đúng ?

Trang 38

II PHẦN TỰ LUẬN ( 5,0 điểm)

Câu 1 (1,0 điểm) Tính các giới hạn sau:

Tìm điều kiện của tham số a để hàm số f(x) gián đoạn tại x = 1

Câu 3 (1,0 điểm) Cho hàm số y f (x) 1x3 4x

3

   , có đồ thị (C)

a)Tính đạo hàm của hàm số trên

b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = 5

Câu 4 (2,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,

hình chiếu vuông góc của S lên mặt đáy là trung điểm M của cạnh AB,

Trang 40

Câu 4: Giới hạn

x 1

2x 3lim

Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC Khẳng

định nào sau đây đúng ?

A SO(ABCD)

B BD(SAC)

C AC(SBD)

D AB(SAD)

Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông

góc với đáy Khẳng định nào sau đây đúng ?

A (SCD)(SAD)

B (SBC)(SAC)

C (SDC)(SAC)

D (SBD)(SAC)

Câu 7: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, (SAB)(ABC),

SA = SB, I là trung điểm AB Khẳng định nào sau đây sai ?

A Góc giữa SC và (ABC) là SCI

B SI(ABC)

C AC(SAB)

D AB(SAC)

Trang 41

Câu 8: Một chất điểm chuyển động có phương trình s t3 3t (t tính bằng giây, s

tính bằng mét) Tính vận tốc của chất điểm tại thời điểm t0 = 2 (giây) ?

A 15 m/s

B 7 m/s

C 14 m/s

D 12 m/s

Câu 9: Cho một hàm số f x( ) Khẳng định nào sau đây là đúng?

A Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a;

b)

B Nếu hàm số f(x) liên tục, đồng biến trên đoạn [a; b] và f(a).f(b) > 0 thì phương

trình f(x) = 0 không có nghiệm trong khoảng (a; b)

C Nếu f(x) liên tục trên đoạn [a; b], f(a).f(b) < 0 thì phương trình f(x) = 0 không có

nghiệm trên khoảng (a; b)

D Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f(x) phải liên

tục trên khoảng (a; b)

Trang 43

Câu 15: Cho hàm số y 3x2 Phương trình tiếp tuyến của đồ thị hàm số biết tiếp

tuyến song song với đường thẳng y 3x 1

14x

Trang 44

Câu 18: Phương trình

t 1

2 t 3 4sinx lim

Trang 45

Câu 22: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, có cạnh SA =

a 2 và SA vuông góc với mp(ABCD) Tính góc giữa đường thẳng SC và mp(ABCD) là:

B Góc giữa (SBC) và (ABCD) là SMO

C Góc giữa (SCD) và (ABCD) là NSO

Trang 46

B sin x cosx 2  

C sin xcos x2

D  sin x cosx 2x  

II PHẦN TỰ LUẬN (3 điểm)

Câu 1 (1 điểm) Cho hàm số 1 3 2

y x 2mx 3mx 2 23

     , m là tham số

a) Giải bất phương trình y’ > 0 khi m = 1

b)Tìm điều kiện của tham số m để y'    0, x

Câu 2(0,75 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số 3

a) Chứng minh SOABCD , (SAC) SBD

b) Tính khoảng cách giữa hai đường thẳng SO và IJ

c) Tính góc giữa (SIJ) và mặt phẳng (SAC)

Trang 49

A Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a;

b)

B Nếu hàm số f(x) liên tục, đồng biến trên đoạn [a; b] và f(a).f(b) > 0 thì phương

trình f(x) = 0 không có nghiệm trong khoảng (a; b)

C Nếu f(x) liên tục trên đoạn [a; b], f(a).f(b) < 0 thì phương trình f(x) = 0 không có

nghiệm trên khoảng (a; b)

D Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f(x) phải liên

tục trên khoảng (a; b)

Câu 11 Cho hình chóp S.ABC có SAABC và H là hình chiếu vuông góc của S

lên BC Khẳng định nào sau đây đúng?

A ACSH

B BCSC

C ABSH

D BCAH

Câu 12 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, có cạnh SA =

a 2 và SA vuông góc với mp(ABCD) Tính góc giữa đường thẳng SC và mp(ABCD) là:

A 45o

B 30o

C 60o

Trang 50

D 90o

Câu 13 Cho hình chóp tứ giác đều S.ABCD có đáy tâm O và M, N lần lượt là trung điểm của BC, CD Khẳng định nào sau đây là sai ?

A (SBD)(SAC)

B Góc giữa (SBC)và (ABCD) là SMO

C Góc giữa (SCD) và (ABCD) là NSO

II Tự luận (5 điểm)

Câu 1 (1,5 điểm): Tính đạo hàm của các hàm số sau

a) y3x2  x 1

b) ysin x3 cot 5x

Trang 51

Câu 2 (1 điểm): Cho hàm số y x 1

x 2

 có đồ thị là (H) Viết phương trình tiếp tuyến

của (H) tại điểm M 1; 20  

Câu 3 ( 2,5 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt

bên SAB là tam giác đều, hình chiếu vuông góc của S lên mặt phẳng ABCD trùng với trung điểm H của cạnh AB

a) Chứng minh rằng: BCSAB

b) Gọi K là trung điểm của cạnh BC, tính khoảng cách giữa hai đường thẳng HK và

SC Xác định đoạn vuông góc chung của của hai đường thẳng HK và SC

Đề 9 PHẦN I: TRẮC NGHIỆM ( 3 điểm)

Câu 1: Trong các giới hạn sau đây, giới hạn nào là 0?

Trang 53

Câu 6: Một chất điểm chuyển động có phương trình S(t)   t3 3t2   5t 2 Trong đó t > 0, t tính bằng giây (s) và S tính bằng mét(m) Gia tốc của chuyển động tại thời điểm t = 3 là:

Câu 8: Cho hình hộp ABCD.A’B’C’D’, cóABa ,ADb,AA'c Gọi I là

trung điểm của BC’ Hãy chọn khẳng định đúng trong các khẳng định sau:

Câu 9: Trong các mệnh đề sau, mệnh đề nào là đúng?

A Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì vuông góc với nhau

Trang 54

B Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song

song với nhau

C Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song

Câu 12: Trong các mệnh đề sau, mệnh đề nào sai?

A Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt

đáy

B Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật

C Hình hộp có các cạnh bằng nhau gọi là hình lập phương

D Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đ

PHẦN II: TỰ LUẬN ( 7 điểm)

Trang 55

 có đồ thị là (Cm) Gọi k1 là hệ số góc của tiếp tuyến tại

giao điểm của đồ thị (Cm) với trục hoành Gọi k2 là hệ số góc của tiếp tuyến với

đồ thị (Cm) tại điểm có hoành độ x =1 Tìm tất cả giá trị của tham số m sao cho

b) Gọi M là trung điểm của SC Chứng minh BDM  ABCD

c) Tính góc giữa đường thẳng SB và mp(SAC)

Đề 10

Trang 56

I TRẮC NGHIỆM (6 điểm)

Câu 1: Tính

2 2 x

x 1lim

Câu 4: Chứng minh rằng phương trình x3  x 3 0có ít nhất một nghiệm

Một bạn học sinh trình bày lời giải như sau:

Trang 57

Bước 1: Xét hàm số 3

yf (x)x  x 3 liên tục trên

Bước 2: Ta có f(0) = 3và f(-2) = -3

Bước 3: suy ra f(0).f(-2) > 0

Bước 4: Vậy phương trình đã cho có ít nhất 1 nghiệm

Hãy tìm bước giải sai của bạn học sinh trên ?

Trang 58

Câu 7: Đạo hàm của hàm số y 2x 1

Trang 60

Câu 14: Trong không gian, phát biểu nào sau đây là sai ?

A Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau

B Nếu hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau

C Cho hai đường thẳng song song Đường thẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia

D Hai đường thẳng vuông góc với nhau thì chúng có thể cắt nhau hoặc chéo nhau

Câu 15: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA(ABCD)

Câu 16: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA(ABC) và

AH là đường cao của SAB Khẳng định nào sau đây sai ?

Trang 61

C (SAD)

D (ABCD)

Câu 18: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA(ABCD)

và SA = x Tìm x để góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600

Câu 19: Cho a và b là hai đường thẳng chéo nhau, biết a(P),b(Q) và (P) / /(Q)

Khẳng định nào sau đây là sai?

A Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ đường thẳng a đến mặt phẳng (Q)

B Khoảng cách giữa hai đường thẳng a và b bằng khoảng cách từ một điểm A tùy ý thuộc đường thẳng a đến mặt phẳng (Q)

C Khoảng cách giữa hai đường thẳng a và b không bằng khoảng cách giữa hai mặt phẳng (P) và (Q)

D Khoảng cách giữa hai đường thẳng a và b bằng độ dài đoạn thẳng vuông góc chung của chúng

Câu 20: Một vật được thả rơi tự do ở độ cao 147m có phương trình chuyển động

S t gt

2

 , trong đóg9,8m / s2và t tính bằng giây (s) Tính vận tốc của vật tại

thời điểm vật tiếp đất

A 30 m/s

B 30 m / s

Ngày đăng: 18/11/2022, 23:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w