1. Trang chủ
  2. » Tất cả

Thiết kế tài liệu tự học có hướng dẫn theo module phần vật lí đại cương cho sinh viên các trường cao đẳng kĩ thuật

3 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Thiết kế tài liệu tự học có hướng dẫn theo module phần vật lý đại cương cho sinh viên các trường cao đẳng kỹ thuật
Tác giả ThS. Tran Duc Khoan, PGS. TS. Mai Van Trinh
Trường học Trường Đại học Công nghiệp Thành phố Hồ Chí Minh - Cơ sở Thành Hóa
Chuyên ngành Vật lý đại cương
Thể loại Tài liệu tự học
Thành phố Thanh Hóa
Định dạng
Số trang 3
Dung lượng 104,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

THIET KE TAI LIEU TU HOC 00 HO0NG DAN THEO MODULE PHnnufliLiDfiiciJJniGCHosinHuiGncflCTRiimiGCROflHnGiiiTHunT O ThS TRAN DUC KHOAN * PGS TS MAI V A N TRINH ** Sy phdt trien cuo khoa hgc cdng nghe ddt[.]

Trang 1

THIET KE TAI LIEU TU HOC 0 0 HO0NG DAN THEO MODULE PHnnufliLiDfiiciJJniGCHosinHuiGncflCTRiimiGCROflHnGiiiTHunT

O ThS TRAN DUC K H O A N * - PGS TS M A I V A N TRINH **

Sy phdt trien cuo khoa hgc cdng nghe ddt ro - Gido trinh, tdi lieu hpc tap: Dd'i vdi ngdnh kT

yeu cdu nen gido dye phdi tgo ro nhCrng eon thugt, VLOC Id hgc phdn co bdn trong cde hgc ngudi loo ddng ty chu, ndng ddng vd sdng phdn chuyen ngdnh Tuy nhien, hien nay cd rdt tgo O bgc dgi hgc, gidng vien (GV) trong qud n h i l u gido trinh, tdi lieu tham khdo, nen SV ggp trinh dgy hgc cdn ren luyen tu duy, bdi dudng khd khdn khi lya chgn tdi lieu cho phu hgp vdi ndng lyc ty hgc, ty nghien ciiu cho SV Ngodi ndng lyc cua minh vd khd khdn trong viec ty kiem

g i d hgc tren gidng dudng, SV cdn ddnh nhieu tra, ddnh gid ket qud h/ hgc cuo bdn thdn

thdi gian cho viec hr hgc; hjy nhien, cdc em ggp 2 Ve t d i lieu t u hgc c d h u d n g d d n theo

phdi khd khdn trong viec tim tdi lieu ty hgc soo module

eho hieu qud nhd't Viec sii dyng tdi lieu hudng - Module Id don vj ehuong trinh dgy hgc hrang

ddn ty hgc theo module se giup SV thudn Igi hon ddi ddc lgp, dugc cdu true mdt cdch ddc biet; trong qud trinh chiem h'nh tri thirc vd ndng coo module chira d y n g myc tieu, ngi dung, phuong ndng lyc ty hgc phdp d g y hgc vd he thd'ng cde edng cy de ddnh

1 Vd'n de t u hgc ctia SV d cdc t r u d n g cao gid ket qud hgc tdp cuo SV, cde yeu t d ndy lien

d d n g kT thudt ket vdi nhau thdnh mdt he thd'ng

Quo thyc h i n dgy hgc, thdm d d , trao ddi - Cd'u fruc ciio moc/u/e (xem sado /J gdm: he

tryc tiep vdi GV vd SV ede frudng coo ddng ngdnh vdo, thdn module vd he ra Trong he vdo gdm

kT thugt, ehung tdi nhdn thd'y cd mdt sd nguyen cdc pho, mdi pho Igi cd chtic ndng rieng (pho nhdn tde ddng den viec ty hgc phdn vdt If dgi cbgn module vd tim hieu mye tieu cuo module; cuong (VLOC), dd Id: pha kiem tro eo bdn, kiem tro ndng coo, kiem tra

- Dd7 tugng SV: Do chd't lugng SV d d u vdo cde d i l u kien hen quyet) Thdn cuo module gdm

chu ye'u Id dd'i tugng thi d g i hgc nhung khdng "liieu heu module h/ong iing vdi cdc chuong, myc diJ diem sdn nen nop hd so v d o hgc cao d d n g , *'©" chung hogc mdt logt mye heu, ngudi hgc cdn nen do sd' cdc em ndm chua virng kie'n thtic co "^9^ khodng thdi gian nhd't dinh de linh hdi He bdn d p h d thdng, g d p khd khdn trong hgc tdp ""o gdm mdt sd tdng ket chtjng, test kiem tra todn

M d t sd' SV ed tdm If ty t i , chdn n d n , mdt khde, bd cuo module, mdt he thd'ng phdn nhdnh hogc

cde em edn thy d d n g trong hoc t d p , chuo cd 9 ^ ' 9 ^^pn module hep theo

thdi quen tim t d i , ty hoe, t u bdi d u d n g kie'n ^9c diem eua module: Id mdt don vj hgc thiic sou mdi bdi g i d n g d a n tdi ket qud mon ^"'^^ ^9C ldp chtio d y n g cd muc Heu, ngi dung hgc cdn thd'p ^° phuong phdp hgc tdp, gdm tdp hgp cdc finh ' - Chuang trinh VLDC a ede trudng eao ddng ^^°"3 ^^V ^^^ <^^<?<= ^dp xep theo mdt logic nhdt

kl thudt gom 30 het VLl (Co vd Nhiet) vd 3 0 Het ^\^^- '-°g''= ^^° "^o^ule gdm menh lenh hudng VL2 (Dien vd Tti) Thdi gian ddnh cho cdc hoc ° ° " ' \'° ^""^ " 9 ^ ° " ^'^c trong qud trinh thyc hien

phdn ndy Id khdng nhieu song kien thtic khd nen cdc n h i | m vt^ hgc tgp

ddi hdi SV phdi ed mdt phuong phdp hoe tdp , 3- Thiet ke t d i ligu t y hoc c d h u d n g dan

phu hop mdi ndm duoc kie'n thtic Vi thdi gian ^^° module p h d n VLOC

hgc ngdn vdi khdi luong k i l n thtic Idn nen SV ^ Tdi lieu ty hgc co huong don cd the dugc tht/c ggp khd khdn, lung tung trong viec lya chgn hien gii/a thay vo tro duoi hmh thuc su dyng mgt phuong phdp, cdch b d trf thdi gian hgc tdp de * Tnrdng Dai hpc Cong nghiep TP Ho Chi Minh - Co sd Thanh Hoa Hep thu kie'n thirc mgt cdch hieu qud **Tnrdng Dai hoc 1/inh

Tap chi Giao due so 2 7 0 (ki 2.0/201 n

Trang 2

Khdng

d^l

s v nghiSn cClu module

de giai quyjt vhn d4

' '

SV tl/ hpc theo nhjp dp ri6ng

cua minh

i

SV tl/ ddnh gid

b^ng cac test trung gian

i

GV danh giii b^ng cdc test

kit thuc

-I Dgt

Nghien cCru module ti§p theo

Sa dd 1 Cdu true tdi lieu hudng dan

ty hgc theo module

sd phuong phdp dgy hgc nhu: ddm thogi,

dgy hgc neu vd'n de Thdng quo ede

nhiem vy hgc tdp, SV cung cd the hgc

gidn tiep quo Tdi lieu ty hgc ed hudng

dan theo module Tdi lieu ndy dugc bien

sogn vd phdn thdnh nhilu dgng phy thude

vdo npi dung li Hiuyet vd bdi tap

1) Phdn hudng dan SV ty hgc li

ihuyit: Tdi lieu vira cung cdp ndi dung

kien tht/c, vCro hudng ddn cdc hogt ddng

kiem tro, ddnh gid ket qud hgc tdp CIJO

ngudi hgc

Vidy: Chuong «Hien tugng edm irng

dien tir" thudc hgc phdn VL dgi cuong cd

the xdy dyng thdnh mdt module Idn vd 4

Heu module nhd sou: 1) Cdc djnh ludt vi

cdm ung dien tir; 2) Hien tugng ty edm;

3) Hien tugng ho edm; 4) Ndng Iuang fir

trudng

Tieu module 1: Cde dinh ludt vi edm

ung dien fir

Hudng ddn ty hgc phdn li riiuyet: GV

gidi thieu kien thi/c trgng tdm, giup SV

lya chgn dugc cdch hgc phu hgp de ndm

dugc ndi dung ctDo bdi hgc

Tdi lieu: 1) C o sd VL, tdp 4 , fr

85-104; 2) VL d g i c u o n g , tdp 2 CIJO tdc gid

Luong Duyen Binh, fr 1 d9-188; 3) VL d g i

cuong, tdp 2, ctio Trudng Ogi hgc Cdng

nghiep TP Hd Chf M i n h , fr 118-127

Hudng dan: SV dgc tdi lieu vd trd

Idi cdc cdu hdi sou: 1) Nguyen nhdn ndo

sinh ra ddng dien cdm ting?; 2) Ddng dien

cdm irng dd tdn tgi khi ndo?; 3) Cudng do ddng dien cdm irng tf le nhu the ndo vdi td'c do bien thien hi thdng?; 4) C h i l u ddng dien cdm irng phy thudc nhu the ndo vdo tir thdng giii quo mgch?; 5) Cdch xdc dinh chilu eua ddng dien cdm irng?; d) Cdch xdc djnh sudt dien ddng cdm irng?; 7) Nguyen tdc tgo ro ddng dien xoay chilu?; 8) Gidi thfch sy xud't hien ddng dien Fued vd tdc dyng cuo nd?

Test 1: Kiem tro kie'n thiic co bdn (gdm 10 cdu trdc

nghiem khdch quan n h i l u lyo chgn, thdi gian Idm bdi

15 phut)

Sou khi SV h/ hgc phdn If thuyet se Idm mdt bdi Testsd

2 de kiem tro, ndng coo kie'n thirc (gdm 10 cdu hdi frde

nghiem trong thdi gian 15 phut), cd ddp dn de SV h/ ddnh gid Neu SV h/ ddnh gid Id khdng dgt yeu cdu thi

se hgc Igi; neu dgt, cdc em se chuyen sang Heu module Hep theo

2) Phdn hudng ddn SV ty hgc bdi tap (BT): Cd the

chia phdn BT thdnh cdc dgng nhu: mire do kie'n thire; hinh thirc hgc top cuo SV (If thuyet, thye nghiem); kien thi/c trong ehuong frinh; ndng lyc cuo SV,

Vi dy: Trong chutTng «Hien tugng edm ung dien tu",

module BT cd the phdn ehia thdnh cdc Heu module nhd nhu: - BT ren luyen ndng lye phdt hien vd gidi quyet vd'n de; BT ren luyen ndng lyc tu duy sdng tgo; BT ren luyen khd ndng vdn dyng kien thtic vdo thyc h i n

Tieu module 2: BT ren luyen ndng lyc tu duy sdng tgo BT: Cho mdt vdng ddy kfn vd mgt nam chdm vTnh ctiu

(thdng) SV hdy trinh bdy cdc cdch de cd the tgo ra ddng dien cdm ting trong vdng ddy

Vdi BT dgng ndy, GV yeu edu SV phdi ndm rd't chdc

phdn «Hien tugng edm ung dien tir", biet td hgp cdc yeu

to, cdc thao tde de thie't ke phuong dn vd duo ro ket qud nhu mong mud'n

Tieu module 3: BT ren luyen khd ndng van dyng kien thue vdo thye tien

BT: Tir mgt sd BT trong Heu module 1 vd module 2, SV

dd cd cdc phuong dn de tgo ra ddng dien Yeu cdu SV chgn phuong dn tdt nhd't de ting dyng vdo thyc h i n

VL Id mdn khoa hgc thye nghiem, vi vdy SV khi hgc mdn hgc ndy cdn ren luyen kT ndng gidi thfch nhung vd'n

d l frong thyc t i l n cudc sd'ng cd lien quan den cdc kien thirc

VL, ed y thtic vdn dyng kien thtic VL dd hgc vdo thyc Hin

* * *

N h u vdy, tdi lieu hudng ddn ty hgc theo module dd giup SV tfch cue, ehu ddng, tuong tdc tryc tiep vdi ndi dung hgc tdp nhdm ndng coo ndng lyc h/ hgc cho SV, gdp phdn edi tien phuong phdp hgc tdp phdn VL dgi

(Xem tiep trang 54)

Tap chi Giao due so 2 7 0 (ki 2 • 9/2011)

Trang 3

edp nhdt nhung tri thiic tien Hen eua the gidi (tren

CO sd ke thira cd chgn lgc nhtrng g i d trj truyen

thd'ng) Ben cgnh d d , de ndng cao chd't lugng

dgy hgc mdn GDCD, cdn cd nhtfng gidi phdp

tdc dgng ddng b d : Thay ddi nhdn thire x d hdi,

ndng coo chdt lugng dgi ngu G V , tdng cudng

trong thiet bj co sd vdt chdt, ddi mdi phuong phdp

dgy hgc Q

(1) Dinh Van Dtic - Duomg Thuy Nga (d6ng chu bien)

Phuong phap day hoc mon Giao due cong dan &

truong THPT NXB Dgi hoc suphgm, H 2009

(2) Bao gia cho tdi giao diJC 3.0, Vietnamnet, 15/3/2010

Tai lieu tham khao

1 Mai Van Binh (tdng chu bien kiem chii bien) - Le

Thanh Ha - Nguyen Thi Thanh Mai - Luu Thu Thuy

Giao due eong dan 10 NXB Gido due, H 2009

2 Mai Van Binh (tdng chii bien Iciem chu bien)

Pham Van Hiing Pham Thanh Phd Vu Hdng Tie'n

-Phi Van ThiJC Giao due cdng dan 11 NXB Gido due

H.2009

3 Mai Van Binh (tdng chu bien) - Tran Van Thing (chu bien) - Pham Kim Dung - Vuomg Thi Thanh Mai

- Nguyen Thi Xuan Mai Giao due eong dan 12 NXB

Gido due, H 2009

4 Nguyen Van Cu "M6t sd bien phap khSc phtJC

diem kho trong day hpc giao diic cdng dan a trudng FTTH" Tgp ehi Gido due sd 240, ki 2/thang 6/2010

5 http://www.viettriduhoc.com

SUMMARY

The article presents several good and bad points of the current syllabus and textbook of the Civics subject at upper secondary level and proposes the direction for making and developing syllabus and textbook of this subject under the trend of International Integration

Day hoc phat hien

(Tiep theo trang 45)

cdc nhdm xet cde trudng hgp gdc A (hodc B hogc C)

Id to hogc nhgn, sou dd dyng dudng trdn ngogi Hep

tam gide ABC; tti d d , cdc nhdm Hep tyc nghien eiiu de

chiing minh dugc edng thtic (*)

Budc 3: Ldm viee ehung ed Idp Cde nhdm trinh

bdy ket qud, G V tdng ket vd'n de

* * *

N h u vdy, cd the ket hgp gitfa hoi hinh thi/c DH

GQVD vdi DHTN DHTN dugc vdn dyng vdo khdu ndo

Clio DH PH&GQVO Id hjy thudc vdo ndi dung, mye

dfch DH md khdng nhd't thiet phdi ludn d khdu ndo;

ndu GV vgn dyng mgt cdch linh hogt se gdp phdn

ndng cao hieu qud DH mdn Todn d phd thdng •

Tai lieu tham khao

1 Nguyen Ba Kim Phmmg phap day hoe toan NXB Dgi

hgc suphgm, H 2004

2 Doan Quynh (tdng chu bien) Hinh hoe 10 nang eao

NXB Giaoduc Viet Nam, H 2010

3 Doan Quynh (tdng chu bien) Hinh hpc 12 nang cao

NXB Gido due Viet Nam, H 2010

SUMMARY

From the practice of mathematics teaching and

learning today, problem finding and solving teaching

combining with group teaching In general Mathematics

Is the issue which the author is interested in and

proposing several specific measures

Thiet ke tai lieu

(Tiep theo trang 47)

cuong SV d d hting thu hon trong qud trinh hgc tdp Hep thu ede khdi niem, hien tugng

VL mdt cdch ed he thd'ng, ndm duge bdn chdt ctja vdn d l , biet lien he vd vdn dyng kien thirc d d hgc vdo eude sd'ng G

Tai lieu tham khao

1 VO Qudc Chung - Le Hai Y^n De tu hoe dat

hieu qua NXB Dgi hgc suphgm, H 2004

2 Nguyen Dtic Tham - NguySn Nggc Hung Td

ehih: hoat ddng nhan thuc eho sinh vien trong

day hoc vat If u truong phd thdng NXB Dgi

hgc qu6c gia,\{ 1999

3 Nguyen Canh Toin Day - tu hoc NXB Gido

due, H 2001

SUMMARY

Nowadays, students of technology colleges have difficulties in conducting their ovm self study, one problem of which is how

to choose course books or materials suitable for their own self-study abilities This paper presents the author's attempts towards designing self-study materials with module-based Instructions In General Physics with a view to helping students overcome those difficulties

Tap chi Giao due so 2 7 0 (ki 2.9/2011)

Ngày đăng: 18/11/2022, 19:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w