1. Trang chủ
  2. » Tất cả

Sáng tạo bài toán mới từ bài toán ban đầu về bất đẳng thức nhằm rèn luyện tư duy độc lập, sáng tạo cho học sinh trung học phổ thông

3 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 164,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

SANG TAD Bill T O J l N i l I I I BAI TDAN BAN DAU VtBATOiNG IHOC NHAM BtNlUYlNTUBUYDPGlAP SANGTAD CHD HOC SINH TRDNG HOC PDOTHONG O ThS N G U Y I N S O N HA" R6n luy^n hi duy d ^ l§p vd sdng Igo cho[.]

Trang 1

SANG TAD Bill TOJlNil III BAI TDAN BAN DAU VtBATOiNG IHOC NHAM BtNlUYlNTUBUYDPGlAP.SANGTAD CHD HOC SINH TRDNG HOC PDOTHONG

O ThS N G U Y I N S O N HA"

R6n luy^n hi duy d ^ l§p vd sdng Igo cho

hpc sinh (HS) Id m$t trong nhOng nhl^m vi,

quan trpng trong dgy hpc mdn Todn 6

trudng phd' thdng Phfin Idm nhOng bdl todn (BT|

6 pha llidng hl^n noy Id BT cd kS't lu^n rS rdng,

ygu cdu chvng minh m^t k^t qud ndo dd ho$c

tim m$t dd'l tupng c\f th^; tu nhihig BT dd, gido

vlSn (GV| cd thi thoy dd'l cdch phdt bllu d l duo

ro BT mdl B^t ddng ihljc (BDT) Id m^t dpng todn

tllm long nhllu khd ndng phdl trlln tu duy cho

ngudi hpc Bdi bdo trinh bdy m^t so' cdch sdng

tpo BT mdi thdng qua BT ban i6u v l BDT nhdm

r^n luv^n tu duy d$c l$p, sdng too cho HS d trung

hpc pnd' ttidng

1 GV gie(u di phdp todn cda BDT, yiu c&u

HS so sdnh gid trj cOa cdc bilu ihuc, sau dd

HS tv thay d6\ dllu ki^n cua BT d l Hm ra kit

qud mdt

BT han ddu: Cho A, 8 to cdc bliu ihuc chiia

b/6i ChOng minh BDT A > B

Trong BT ban ddu ndy, bllu thi>c cdn chung

minh do du<?c phdt bilu mdt cdch tucmg minh

GV glau di phep todn cua BDT d l HS phdl phdn

dodn, phdt hl|n kit qud cdn chiing minh GV

y6u cdu HS chO ddng thay dd'l dllu ki«n cOo BT

d l flm ro kit qud mdl Vi vdy, HS cd ihl phdt

bllu k^i BT nhu sou:

BTmdl: Cho A, B Id cdc bliu ihlic chiia blin

So sdnh gid Irl cua hal hliu ihuc A, B hliu ihay

doi dliu klSn cua blin ihl kii qud ihay dil nhu

ihi ndo?

Vidv h BTban diu: Chiing minh rdng:

x^ + 2x > 3x^ V X > 2

Brmi«.Chox>2

a} So sdnh gid tri cDo hoi bllu thiic

A=!i? + 2xvdB = 3>f

bl Nlu thay d^l dllu klSn dcfl vdi x thi kit

qud Ihay d l l nhu i h l ndo?

ehdnllch:A-B=.i^ + 2x-3x''x(i^-3x*2l

=.4x-l)lx-2l

aj Vi X> 2n6nxfx-;)(x-2)>0=>A-B>0=> A>B

bl X6t dSu Clio bllu thiic xlx-](x-2l:

X

X x-1

x - 2

-co 0 1 2 KO

- 0 + 1 +

0 + + +

- 1 - 0

>t(x-lXx-2) 1 - 0 + 0 - 0 +

To cd: v6l X e {0;1;2) thi A-B > 0 => A=B: v6l

i s ( ^ ; 0 ) u ( l ; 2 ) thi A-B < 0 => A<B; vdi

r e (0; 1) u (2; +«) thM-B > 0 => A>B Nhdn xSt: Trong qud Irlnh x6t dd'u cOo bllu

thiic A - B, HS cd thi tv dS xud't cdc dllu kiSn khdc doi X vdi vd duo ro kit qud mdi

VIdu 2: BTban dau: Chiing minh rfing: aix-1

> a+b, v6l^a,b > h

BTmdl: Cho cdc sd thi/c o, b> L

al So sdnh hal bleu thiic M = ab+ 1 vd

N = a+b _

bj Nlu thoy doi dieu kiSn dd'l vol cdc so' a, b,

kit qud thoy dot nhu ihl ndo?

Phan tich: ab+ha-b = (a-ljlb-lj

a) Nluo>/;b>? lhla-l>0,b-l>0=»la-lllb-J) >0=> ab+1 > a+b

b)Ta xet cdc trudng hpp sou: - Nlu mpt trong

hoi sd'o, t bdng 1 ihl (a-))(b-l) = 0 => ob+! =

a+b; - Nlu cd hal s l a, b nhd hon 1 thi: o- J < 0;

b-1 <0=>la-l)lb-ll>0=>ob+l >a+b;-N4u

hal s l a, b cd diing mot s l Idn hon 1 vd mdt so'

nhd hon 1 thi (a-Ijlb-1) <0=>ob+] < a+b ^

Nh^n xil: Trong qud trinh x6t dd'u cuo bllu

thiic A - fl, HS cd thi tv d l xud't cdc dllu kiSn khdc dd'l vol hot s l a, b vd duo ra kit qud mdl

VIdv 3: BTban dau: Cho neN', xeR, Hx) =

2x" + I, gtxl = >e + 2 Chiing minh rSng: f{xl >

glxl,'^x> 1

BTmdl:Cho neH',xsR

' TnWlfTHPTCIlliyil t)l tgc Wplm Hi N«l

Trang 2

+ 1 v d g W x " + 2 k h l x > /

b; Nlu Ihay d l l dllu kl^n cHa BT d l l v6l x vd

n thi kit qud thay d l l nhu thi ndo?

Phdn Hch: a] Hxj • gW - x"-1 Vdi V x>) - > x»

>;->ffx;>gW;

W N l u x - I t h l x " }->xr-

l'0->Hx}-glxl'0=>Hxl-glxl;

' N l u X < /, x6t cdc trudng hpp sou cOa n:

Trudng h<^ /; n Id s l nguyin duong 16, x<J

=> x"</ =•> X"-; < 0 - > fix) • gix) <0-> fix) <

Trudng hgp 2: n Id s l nguyin duong chfln,

x" - 1 = 0 o X = ±1 To cd bdng xlt ddu:

Jt

x T - l

-00 - 1 1 -MO

+ 0 0 +

Bdng trln cho ihSfy: + Vdi x - - 1 ; n chgn:

Hx) - glxj - 0 - > Hxl - glxl; + Vdi x < • 1; n chSn:

fix) - gW > 0 => fixl > glxl; + Vdt - I < x < 0/

n chSn: fix) - gW < 0 - > llxl < gix)

Kil ludn: - Nlu n l l : + Hxl = gix) khi x - ];

+ Hx) > glxl khi X > I; + Hxl < gix) khi x < / ;

- N l u n c h a n : + / i ' x ; g M « i l i s ( - l ; l } , + / i ' x ; >

gW khi xe(-a);-l)u(l;-H»); + Hx) < gix) khi

xsl-l;l)

HS dd Sli di/ng tinh chSn l l cuo n, kit hpp vdi

cdc khodng cua blln d l so sdnh gid trj hal bllu

thiic VlSc xet cdc trudng hpp cy thi cua n vd x

khong cd trong yiu cdu cua bdi todn; tuy nhlln,

vol cdu hdl 'md', HS phdl tv Hm ra cdc dilu kl|n

lien quan cuo n vd x M$t khdc, HS cd thi khdm

phd ro BDT Hx) > gW khdng chi dung khi x > ;

md cdn diing khi X < - J trong trudng hpp n Id s l

chSn

2 Chuyin ti> chi/ng minh m|t BDT sang

chiing minh nhilu BDT cd i h l c6

BT ban dSu: Chiing minh BDT A 2 B

BTmdl: Cho cdc bllu thiic A,B,C,, = B +

mlA-B),C^ = B + n^A-S; Hay l0p td't cd cdc BDT cd thi

cd glua cdc bilu thiic A,fi,C,^C„ vd chiing minh

cdc BDT dd

rtion llch:A-C 'A-B- mlA-B) =

(hm)tA-B),B-C_ = -mlA-B), C^-C„ - lm-n)IA-B) Vi|c l^p

cdc BDT mdl dupe dva vdo kit qud xlt dd'u cOa

bllu thiic A-B Nhu v§y, lii BOT A>fi, GV cd i h l

y8u cou HS tim mil liln h$ glua cdc bllu thiic

V6I m3l s l thvc m khdc 0 tuong ling s3 cd m$t

thiic A, B; tuong ling v6l hoi s l thvc phdn bijt m,

n khdc 0, GV cd thi yiu cdu HS so sdnh glOa C,

vd C, Cdch phdt bllu cOa BT mdl glCip ngudi hpc rIn luyln tu duy d$c ldp, sdng tpo nhllu hon

so vdi v i ^ chiing minh BDT ban ddu

Vf dv 4: BTban ddu: Cho x,y eR, A - x'+y', B

• 2xy Chiing minh rdng: A 2 B

BT mdi: Cho x,y€R, A - x' + /, B - 2xy,

c ('*>•)' n^(£+Ml±(Zl2£2l

° 2 ' 16

Hdy ldp cdc BOT cd i h l cd giOa cdc bllu thiic

A, B, C, D vd chiing minh cdc BOT dd

Phdn Kch: A-a = x' y'-2xy.-ix-yT^m^AiS

A-IJ

! " ) • > '

B

c-0 16 -Ix-yfsO^CSD

d BT ban ddu, GV dd rIn luy?n cho HS kr

ndng v$n dvng kit qud (x-y)^ ^ d l chiing minh BDT Tuy nhlln, vdi BT mdl, GV dua HS vdo linh hulng tv kiln tpo ra cdc BDT; trong dd, HS phdl

van dvng mpt cdch nhudn nhuyin kit qud

Ix-yf £0 vdo chiing minh cdc BOT khdc

VI dll 5: BTban ddu: Cho X£(I;2I, A=if + 2,B- 3x Chiing minh rdng: A < B

Brmdl:Choxef'.a,•*-;<' +2, B 3 x , C

2 , 2i

— x ' + — X

5 5 Jx»- I2x+ (0, c =

Hay ldp tdt cd cdc BOT cd i h l cd giOo cdc

bllu thiic A, 6, C, D Chiing minh cdc BDT dd

Phdn Hch: A-B-x'*2-3i-U-nx-2)<l>^A<B

»2-l5i'-l2«10).-<(i'-3i»!l.-<(i-ll(x-!)>0!=.(>C

14 7,

A-C~

«-C=3x-lSr-l2i+I01=-5(i-l)li-2)>Oafl>C

«-0.).-l4>'*T"-T>-|"'-!"Ml'-l«'-21'»='<'' 5 5 5 5 5 5

21 27, Khi HS gldl BT ban ddu, GV cht kllm tra dupe

d HS kr ndng v§n dgng BDT (x- l)lx-2l < 0 (dllu

Trang 3

mdl, G V cfuti HS vdo tinh hu^ng ti/ l0p ra vd

chiing minh c6c BDT mdl, trong dd, HS phol v^n

dyng mpt c6ch nhu6n nhu/en k^t qud (x- l)(x-2)

< 0 (vol dllu kiSn 1<x<2\

3 TCr BT ban d6u, HS c6 t h i duo ra nhllu BT

mdl vd "dn phdi dv dodn kit qud hodc mit phin

ndo dd cOa kit qud, h/ minh khdm phd kiin ^uc

hang khd ndng cd ihi, h/ khdm phd tdl mdc td'l

da h-ong nhffng hadnh cdnh cv thi" [ 1); nhOng BT

nhu v^y dux?c gpl Id BT md M^t s6' d^c dllm cOo

BT md d h-udng ph^ thdng: - BT tim tdl thi dliu

p/id/ Hm khdng dugc niu lin mdl ed^ h/dng minh,

ngudi hgc phdl tim td't cd cdc kil qud cd thi ed;

-Niu Id BT ehung minh, ngudi hgcf^di p/idn dodn,

phdt hlin cdc kit qud cin chdng minh vd ehung

minh dliu dd; - Ngudi hgc cd thi thay dil mdt

so dliu kl$n dedua ra kit qud mdl

V6I BT md, HS khdng b} phy thu$c vdo kiln

thijc dd cd md dutjrc tham gla vdo qud trinh

sdng tqo BT mdl, cdc em cd t h i h/ gldl quylt

van d l vd thu duge nhOng kit qud mdl h> dllu

t(nh mim d6o cOa tuduy sdng too, khd ndng dp dyng linh hopt kit qud dd cd vdo gldl quylt cdc

BT khdc nhau, d^c bi^t Id cdc em r^n luy^n dupe tinh nhudn nhuySn, mdt tinh chd't quan trpng cuo

tu duy sdng tpo Q

(l)G.Polya.S4ngt90to6nhpc.t9p3 NXB GWorffic, H.1976

Tdi li^u tham khito

I, Ton Than Xdy ditng H th6ng cdu hdi bdi ldp nhdm

bdi du&ng m^t s^yiu t^ciia tuduy sdiig igo cho hqc sinh khd vd gidi Todn dtradrng trung hgc cosd Vifi

Nam Lu9n fin Ph6 ti£n sT IChoa tiQc tarn li Vi$n ktioa

tiQCgiiiodvc, H 1995

SUMMARY

The article summarizes some characteristics of the open problems In schools and offers some creative measures to open thepfoblem of Inequality contents These measures will help teachers from the Inequality has to create problems on the ability to promote In-dependent and creative students

Thu€ trang sir dung ki thuaL

(Tiip thea trang 14)

De khdng djnh vol trd cua PPDH vd KTDH

dd'l vdi mdn G D H , chung tdl phdng vd'n mot sd

GV V kiln dupe cd V.T.LA neu ra Id «trong xd

hpl ngdy noy con dudng de cho ngudi hpc chilm

Ifnh tri thi/c nhanh nhd't Id con dudng h/ hpc

Md d l kich thich dupe hung thu nhdn thue cuo

cdc em khdng cd con dudng ndo khdc dd chinh

Id vi^c «n6n" vd «cdn phdl" su dyng cdc PPDH

vdKTDH"

3 Qua thi/c l l nghlSn ci>u, chung tdl nhdn

thdy, G V dd rd't no li/c duo PPDH vd KTDH hi^n

dpi vdo trong bdl gidng cOa minh Tuy nhlen, so'

lupng ndy khdng coo vd vl#c si> dyng ndy cdn

mang tinh chd't phong trdo chua dCing vdi quy

trinh cdch thue tlln hdnh thyc hi#n Mdt so G V

d w a thyc sy tdm huyet khi khi ISn Idp Cd nhllu

nguySn nhdn dnh hudng den vlSc G V v^n dyng

PPDH vd KTDH vdo mdn G D H , nguyin nhdn cd

v l phia chu quon Idn khdch quan: ndng li/c td

chuc: 35,7% G V chpn sdung", thdi gian: 71,4%

chon adung", SV chua thich ung vdi si; thay d^l

PP hpc tdp: 78,d% sd' G V chpn

ftp Chi filao due s6 2 9 5 (fci i - io/aoia>

D l ndng coo chd't lupng vd hl&u qud DH mdn GDH, GV cdn phdi vung v l chuySn mdn, ch^c v l PPDH vd KTDH vd thudng xuyin hpc hdl khdng ngOng cd t h i ddp ung dupe nhung yeu cdu, ddi hdi cua xd hpl •

( D T r i n Ngpe Lan - D$ng H6ng Hitfu "la thujt d^y

hpc - MOt c i p do ciia ptiuong phSp dgy hpc" 7<jp cM Gido difc, SO' 205 (Ki i, 1/2009)

Tk\ li$u ttiam khdo

1 NguySn Cudng Phinmg ti$n kl thu$t vd dA ditng d^y hpc (Churnig trinh gido dMc d^i hpc) BO

GD-DT, H I 995

2 Dp an Vi$t - Bi Tdi li^u tdp hudn dgy vd hpc tich

c(/c.H200I

3 NguySn K5' Phumig phdp gido di^c tfch cvc Id'y

ngudi hpc ldm trung tdm NXB Cidodifc, H 1995

4 Le Nguyen Long Thi> di tim nhOng phuwng phdp

d^y hpc hifu qud NXB Gi&od^c, H 2000

5 Trin H6ng Qudn "Phuemg phip d?y hpc tich cpc

mOt phuong phip vO cang qu^ biu" Tgp chi Nghiin

ciiugidodftc 12/1994

SUMMARY

Through the Invertlgotlon process the situattlon,

we realized that: teachers have access to the

mod-em methods and techniques of teaching but not high

Ngày đăng: 18/11/2022, 12:36

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w