DANH GIA NANG lUi; GIAI QUYtl VAN fli TRONG DAY HOG TOAN T i HOC THEO HirOMG PHATTRIEN NANG LU€ NGUQI HOC TS LE N G Q C S O N '''' ThS D O H O A N S M A I " 1 Danh gia (BG) theo hi/ong phattrien nang ILT[.]
Trang 1DANH GIA NANG lUi; GIAI QUYtl VAN fli TRONG DAY HOG TOAN T i HOC THEO HirOMG PHATTRIEN NANG LU€ NGUQI HOC
TS LE N G Q C S O N ' - ThS D O H O A N S M A I "
1 Danh gia (BG) theo hi/ong phattrien nang ILTC
(NL) ngudi hgc laBG kha nang thi/c hien thanh cong
cac hoatdpng hpc tap Doi moi DG, dac biet la danh
gia nang lt;c(DGNL) giai quyet van de(GQVD) cua
hpc sinh (HS)trpng day hpc teu hpc theo dinh hucfng
tiep can NL doi hoi xay dung lal cac tieu chi DG ket
qua hpc tap cuaHS.Day ia van dem6l, con gap phai
nhiing kho khan khong chitrong thuc te day hpc ma
ca trang nghien cUu Bai viet nay decapDGNLGQVD
trong day hpc l o a n tieu hpc theo huong phat trien NL
nguoi hpc qua do, gop phan nang cao li leu qua day
hoc pbac Heu hpc noi chung, day hpc toan tieu hpc noi
rieng
2.DGNL QQVe cua HS tieu hpc
2.1 Cackhai niem
2.1.1 BG la n/ian dinh gia W(1; tr287) Nhu vay,
DQNL GQVO cua HS tieu hpc trong day hpc Tpan la
dua ra nhan djnh vegia trj cua hethong cac NL maHS
dat dupc DG mang nghTa rpng hon sp vcri kiem tra,
bapgpm4thanhtSchinh:mucdichDG;npidungvakT
thuatOG; tieu chuan vateu chiDG;siidung ketqua
DG IHm dicii cua DG la kich thich hpat dpnp hgc tap
cua HS, cung cap nhung thcng tin plian hpi de ban
than tudieuchinhquatrinh hpc tap,phattrien NLtri tue,
tuduy sang tap,tri thong mlnh v a N L t u danh glSigiup
giao vien (GV) xac dinh dung diem xuSphathoac diem
ketiep cua quatrinh day hoc, kjp thdi diSu chinh hoat
dpng day hpc; ia co sode can bq quan il glao due chi
dao kip th^, bao dam thuc hien tot muc tieu giao duc
Wo/toffratoJiftuafeffiDGlietquagiaoduc cuaHS
theo chuan kien thuc, kinang,thai dpvaNLmaHScan
datdupc, khuyen khich GV sudung oac hinh thiJt;DG
nhu: doi thoai, ghi nhan xet, tuDG Tieu ctiuan va tieu
c/j/fGbao gom cacmuc dp: nhan biet, hieu,van dung
cac kien thiic va kT nang co ban Su'dung l<etquaBG
va nhiJrig thcng tin khac giup GV dua ra quyet djnh
diing din deviecdayhpccohleu qua
2.1.2 NL e O K f l c o the hieu la su thanh thao,
kha nang thiJc hien cua ca nhan doivdi mpt van de;
la mpt he thp'ng kha nang, hay kTnang du datdupc
muc tieu vdi cac miic dp: thap (tim kiem thong tiri),
36 Tap chi Gido due so 360
trung binh (ket npi thong tin), cao (phan tich, khai
quat, DG thong tin)
Quatrinh GOVS ctia HS gom mptsobirdc Voi m6l buac, can co nhirng l<T nang de thuc
hien (xem sod6j
TiCp can v i phdc hiSri VD — DiidihuOng flmh:2
G Q V D — T l m v i idnh bby K i c n t n v ^ giai Oiich
HS tieu hoc cothedatden miJcthLfba tren di/iJng phattrien NL GQVD:
3 Sil d\ing quy trinh, nguyen tac ik GQVD ]
2 Nhgn thiic mfi h:Wi, clu tnic, vin ik T HS lieu hoc
1, Nh?n dfaig ySu tfl J
Bang 1.DGNL GQVD
NL
NL hi^u vandS
NL xao dfnh giai phap GQVe
NL thi/c hl0n gial phdp GQVD
NLOQva vandS
Ma h6a
Ho
H,
H,
H j
Xo
X,
X,
X,
To
T,
T J
T J
Po
P, P)
Pa
Cap
0
2
3
0
1
2
0
1
3
0
'
2
3
Bi£u hi$n cija HS Khong hilu van d4 Xac dinh dirvc di? ki$n, cau h6i PhSn bi$t dugc ySu to ca bin Cija van
de dd ki$n cau hdi vi tJiSu ki^n
N&u Iai van d4 bSng chiiih ng6n ngti cua minh
Khong co giai phap ho^c glil phdp sai
Skp x l p dJ kign Iheo c^c thupc tlnh,
du hay thCfa thong tin
Ud hinh hoa duac tinh huong Mi/ang tugng duijc cdc giii phdp Khong thuc hi$n dLK?c Nhan thuc du<?c l^ilu vSn dS
Suy lu$n z6 II
Ldp luan chdt ch6 khi kit lu^n GOVS Khong OG
Nhan ra du^c sai Idm khi thi/c hi$n gidi phdp
Giai Ihlch di/qrc cdch Idm Phat triln di/(?c van d l
* Trudng Dai hoc sir p h p i Ha N^i 2
"Tnrimg (l^i hpc Hongfliic
(ki2-6/2015)
Trang 22^ Bang DGNL GQVD
Cothldua vao cgc budc GQVB dethietkebang
OGNL GQVB cua HS: (xem bang 1)
Co th^su dgng bang DGNL GQVD neu tren
trongdayhpctoandti&jhpc{xemfc»K?^
Vi du; Lop 3A co 32 HS, xep hang mot de phan
nhom hoat dong, cir4 ban vao mpt nhom, bit dau ti)
ngi/d* mang so 1 se vao nhom 1 An va Ba m ang so
Uva 15 Haiban cocungmptnhom khong?
Bang 2 DGNL GO VD trong day hoc Toan tieu hgc
M
NL
hflu
V & )
06
NL
<qnh
giai
phdp
GQVD
Ihvc
glat
phSp
GQVD
NL
DGvd
phdt
vfii
d l
Md
h6a
Hf,
H,
H,
H,
X,
X,
X)
Tft
T,
T I
T,
P(i
P,
P?
P,
CSp
0
2
3
D
1
3
0
9
3
1
2
3
Bilu hi$n ciia HS
JOttaqhilijvdndl
Khbna nh&i ra M n n Hn thCra'' (32 HS]
Xdc ^ n h SiKJC v&i d l « t ra Id gl?(ban
mang so ihi) ti; 14 vd ban mang so thii tv 15
cd cijng nhdm IdiAng?
Phdt hi$n dUiTc cdn Hm moi Ddn h$ oja cdc
s614:15 vd s6 47
Kh6ng co qiai phdp
Oua ra oiai phdp ldo bano vm 32 HS
Dua ra cddi lao banq kh6nq Oiira
Ehfa ra each GQVD dva vdo khdi ni$m phdp
chia vd hilu v6 stf till
KhAna thuc h i ^ duoc
Thyc Ndn AA)CU
Thvc^ugn
diKTcm^t
trong2
phuong dn
tgo bang
khAng Diila
khdi ni@m phdp c
ll>banavari32H5 SIHS 1.2.3.4 9,10.11.12 13.14.15.16
Mitel
t
2
4
hia v d h i l u v ^ s o d u
Chon AKK phuono dn cho Id hop li
Khdnq biet ddnh aid
Ldm duoc nhung kh6ng ^ i thich dUQc cdch
Idm
Gidl thich duoc cdch Idm
- Phdi hi$n la con sfl cutfi cCing 0 mfii hdng
trong c^ $6 HS vA s6 tSp ngay sau trong
c^l nhdm Ihi hi^n b&ig diia 4
- Khdi tiudt duoc n l u tfy sti Ittf tv chia cho
s l b ^ trong nhdm md k ^ qua Id cdng s6
thuong vd n 4 l sfi du (khdc s l khOng) nho
hon s6 thdnh vidn oia nham ttd nhiing b«n
ndv sd vdo cuno mit nhdm
2^ r^f OG.Chung toimuon nhan manh den vi§c
Qiiup HS suy nghl lai each tu duy trong qua trinh
GQVfi cua chinh minh Co thehuong dan HS each
ti/BGnhi/sau:
2,3,1.MdtisuynghingaytrongquatrinhGQVD
ChiatDrgia^lam2phan:phan ben traighilai ketqua
GQVD, phan ben phai ghilaisuy nghTva hanh dpng
dm^giaidoan trong quatrinh GQVO Gdy cho HS
Ira loi cac cau hoi: Da lam gi khi b§t dau GQVD? Vi
sao lai lam nhirvay?T^sao lai chpn each lam nayma
khong chpn cacti tam khac?
232 Mdta lai suy nghi sau khi hoan Mnh viec
GOV® Cach lani giong nhir tren, nhung khac ach6 suy nghidupc viet ra sau khi giai phap da hoan thanh vakhongxayra dong thdiviMeac budc GQVD.Cach lam nay khong anh huong den tinh Ben tuc, tunhien cuatuduytrongsuotquatrinh GQVD Theo chung toi, neu HS dupc yeu cau viet"nhatki hpctoan'va tnJ thanh thraquen,segiup GV hieu nhieu vetuduy HS, eodupe hinh anh ro hcfti each HS dang siidung qua trinh GQVD nhuthenao? Neu thuc hien mptcach thuong xuyen, hop li, chiing ta se CO mpt biic ^ n h ro net ve kTnang GQVD cua HS Nen sudung "nhatkl hpctoan'nhumptcongeuDGbanhiingKh lpi khong chl doi voi GV ma vcri moi HS Thong qua viec ghi chep ve nhijng frai nghian hang ngay cung nhutrong hpetoan,suynghTvetuduy cua ehinh minh, eae em
se nhan thuc sau s^c hon, sang tao hon GQVD lakTnang coban, cqvaitroquan trpng doi voi suphat bien tu duy eua moi nguoi Cae kl nang nay can dupc nghien ciiu ki luong trong timg giai doan hpc tap cuaHS vaco the day cho cac em ngay tO" khi bu6c chan vao trudng hpc
Viec xay dung bang DGNL GQVO CO the h6 tro eho G V viet ldi nhan xet, DG duoc qua trinh GQVD cua HS; giup phu huynh n^m dupc khanang hpe tSp cua eon em minh; giiip HS tu tin, tich cue hpc tap kh^cphue nhUng han checua ban than.Q
(ki2-6/2015)
(I) Hoang Phe (chu bifin) TiJrdi^n Ti&ng Vifit NXB
DdNdng 1995
Tai lieu tham khao
1 Tnirnig Dai hpc Hai Fh6ng Ki y^u hOi thao khoa
hoc quO'c gia "Nghien ciiu gido due todn hoc theo
hudng phdi iriin ndng luc ngudi hoc giai doan 2014-2020" NXB Dgihpcsupham,H 2014
2 BO GD-DT Thdng tusd30/20i4/TT-BGDDT Quy
dinh ddnh gid hpc sinh tiiu hpc, ngay 28/8/2014
3 Nguyin Bd Kim Phuong ph^p d^y hoc tndn To^n
NXB Dai hoc supham, H 2002
4 Le Ngpc Son Dpy hpc Todn ttiu hoc theo huong dgy
Giao dye hpc Truong Dai hoc sir phjim Ha N6i, 2007
SUMMARY
This article refers to the assessment of problem solving ability In mathematics teaching in primaiy ener^tovvards developing learners'capacity Ther^jy proposed several measures to Improve the effective-ness ofteaching In general and teaching elementary mathematics at primaiy schools in particular
Tap chi Giqo due so 360 | 37