PHATTRllNNANIIlllGilAiGIAiOyJiHDCTAPCHOSINHVliN NGANH SIIPHAMIDAN THONG QUA DAY HOG GAG HOG PHAN NGHIiPVUSIfPHAM TS PHAIVI XUAN C H U N G '''' Abstract In this study, we exploit activities of teaching th[.]
Trang 1PHATTRllNNANIIlllGilAiGIAiOyJiHDCTAPCHOSINHVliN NGANH SIIPHAMIDAN THONG QUA DAY HOG GAG HOG PHAN NGHIiPVUSIfPHAM
TS PHAIVI X U A N C H U N G '
Abstract: In this study, we exploit activities of teaching the pedagogic professional module for mathematical pedagogical students, in detail the activity of building new sums from given ones, to train activities of assessing learning results: Thereby, to contribute to developing competence of learning results assessment for mathematical pedagogical students
I.Danhgiaketquahpctap(DGKQHT) la ttianh
td quan trpng trong qua trinh day hpe (DIH) Danh
gia (DG) vira ehiu tae dpng tnJC tiep cua cac thanh to
khac trong qua trinh DH, lai vda ed tac dpng trd lai
de hieu chtnh qua trinh DH Chinh vi vay, Chuan
nghe nghiep giao vien taing hpc c o s d vagiao vien
(G V} tmng hpc phd'ttidng, nang luc DGKQHT dupc
xem lamdttrongnhungtieu ehuan cua ngudi thay
Thenhung chuong trinh dao tao nghe cho sinh vien
(S V) nganh su pham Toan hpc trong cac tardng dai
hqc ndi ehung chua dupc quan tam dung mdc ve
vande nay Dethuc hien hoat ddng DGKQHT cua
hpe sinh (HS) ve mdt mdn hpc cy the nao dd it nhat
giao sinh phai cd tri thuc ve khoa hpc DG, tri thdc
khoa hoove mdn hpc ma minh DGKQHT, tri thu'c
ve phuang phap day hpc (PPDH) bd mdn, Cd the
ndi DGKQHT ciia HS lien quan tdi nhieu linh vUe
kien thu'c khac nhau, do dd neu viec chuan bj ehi
d i l n ra trong hpc phan "Kiem tta (KT) DG trong
giao dud thi khdng tan dyng dupc cae tinh hudng
ttong qua frinh DH giup SV hieu sau sac, thay dupe
vaitrdquan trpng cua D G , hon nua khdng du thdi
gian.cohpiderenluyericackTnangDG,kiem ehdng
viec sudyng DG de dieu chinh quatrinh DH Trong
nghien edu nay, chting tdi tim each khai thac cac
hoat dpng tDng DH cac hpc phan nghiep vu su pham
(NVSI^)mattidngquaDH cac hpe phan nay c d c o
hdi tap luyen cac hoat ddng ttianh phan cua hoat
dpng DGKQHT cua HS
2 Cac hpc phan NVSP ma chung tdi quan tam la:
PPDH mdn Toan (phan dai cuong); PPDH ndi dung
mdn Toan (PPDH Hinh hpc, PPDH Dai sd - Glai
tich); Toan so cap (H inh hpc so cap, Dai sdso cap va
giai tich cd'dien)
Thdng qua mpt sd hoat dpng frong DH cac hpe
38 Tqp chi Gido due so 367
phan NVSP cd the tich hpp tap luyen cho SV cac hoatddng thanh phan eua hoat dpng DGKQHTnhu: Lap ke hoach DGKQHT ciia HS; Xay dyng tidu eliuan, tieu c h i D G ; L i ^ chpn,xay dung cdng cuDG; Tochdc trien khai cac hoatddng dethu ttiap tiidng tin; Sirdung cac cdng ey ttiu ttiap thdng tin; Tim kiem, lija ehpn eacthdng tin tueacdii'lieu phu hop vdimucdich DG; Xac djnh nht?ng tac dpng va nguyen nhan gay
ra hien tran^; Dua ttidng tin phan hdi cho HS; Sir dyng DG de dieu ehinh qua frinh DH
Viec phattrien nang luc DGKQHT thdng qua DH cae hpc phan NVSP ma chung tdi nghien cdu dupc tien hanli qua eae hoatdpng nhu: tap luyen phat hien vasua chua sai lam;tapluyai xaydung BT mdi tdBT
da cho; tap lap ke'hoach DH; tap giang Trong pham
vi bai viet, ehiing tdl trinh bay viec phat ttien nang luc
DG KQHT qua hoatddng tap luyen xay dung BT mdi tdBTdabiet
2.1 Y nghia hoat dgng xay dung BT mdi tij BTda biet dot vdi hoat dpng BG DG la mdt qua
trinh bao gom nhieu giai doan ttong do "ttiu ttiap"va
"xd \T thdng tinja hai giai doan quan trpng Nhiing
edng eu ehu yeu dupe sd dyng trong giai doan ttiu ttiap thdng tin dd la: b a KT, phieu hpc tap, phieu quan sat, phieu hdi Dd'i vdi GV toan d tardng pho thdng, hau het quen sd dyng cac bai KT viet va cau hdi tu luan v i n 1^ hinh ttidc cau hdi chu yeu frong cac b£uKT, Mpt bai K T t ^ phy ttiudc vaonhieu yeu tovamdt frong nhiing yeu td'quan trong dd la chat lupng eau hoLDdl vd^ HS trung hpc phdttidng.deKT cau hdidmu'cdd
nhan /?/e/chie'm mpt ti le 'rt, chu yeu la cac miic dp
nhan ttidc cao hon
De KT, GV cd ttie s u dyng cac de KT tdt da cd
*Tnr0RgDai hoc Vinh
Trang 2thiet kehoan toan mdl Tuy nhien, hien nay chua cd
hpttiong ngan hangcauhoitheodung nghta cua nd
de sudung, va mpt^de KT phu hpp cho Idp ddi h/png
nay nhung chua l i i n da phu hop vol dd'i fr/png khac,
dd la chua de cap tdl viec cd cun^ m ye dieli DG hay
khdng Do dd, viec ti/thiet ke de KT d e D G la cdng
viec cua G V can lam thudng xuyen Nhuvay, viee tao
ra eac BT m di thuc su la can thiet ddi vdi G V 6e xdy
dung cdng c y D G
B T m d i d d a y c h i i n g t d i d u n g theo each hieu cua
tac gia Ton Than: "BTmdico the la BThoan toan
mdi, cung cd the la sumdrong, dao sau cua nhung
Srd'aiJ/e?'(1;fr54).Dd'ivdiSV trong quatrinh tap
luyen, thuat ngif "BT mdi" v i n chi d muc dp la mdi
vdi ban than SV hay chi tao ra dupe BT khae BT
ban dau la chu ye'u chdtuyet doi khdng ddi hdi phai
mdi dd'i vdi xahpi
Khd cd the tao ra mdt BT hoan toan khdng ed
quan he gi ve npi dung hay phuong phap vdi nhiing
BT da ed Vi vay, vide S V biet va dupc tap luyen cae
eon dudng d&n den cac BT mdi td nhimg BT da biet
la cdy nghTa ttiietthue, giup eho S V cd kha nang tao
ra dupc cac BT mdi De tu dd cdthe xay dyng dupc
bd cdng cu DG dap iifng dupc yeu cau dat ra
2.2 Mgt so con dudng xay dung BTmdi tu
BTbandau.JacQiaJon Than da td'ng ketvadua ra
5 con dudng dan de'n BT mdi td nhung BT ban dau
dabiettrong sach giao khoa la: - Lap BT tuong tuvdl
BT ban dau; - Lap BT dao cua BT ban dau; - Them
vao BT ban dau mpt sdyeu td Dac biet hoa BT ban
dau; - Bdtdi mpt sd'yeu tdcua BT ban dau Khai quat
hoa BT ban dau; -Thay ddl mdt sd'yeu tdcua BT ban
dau{1;tt53)
Do chuong trinh d tnjng hpc pho ttidng cd dua
them hai edng cy de nghien cuu Toan hpe so vdi
chuang trlnh d trung hpe co sd do la phucfng phap
vectdva phuang phip toa do, cho nen ngoai 5 eon
dudng tren, chiing tdi gidi ttiieu them cho SV con
dudng chuySn da ngon npu Khi chuyen doi ngdn
ngu'cua BT da eho ta cdttie phat b^eu BT ttiuan tijy da
cho tfianh BT cd npi dung thuc tien va ngupc lai; ed
the bien doi BT ed dai lupng cd hudng sang BT dai
lupng vd hudng; hoac cdttie chuyen ddl BT hinh hpe
sang BT dai sd; cung cd ttie ehuyen ddl BT td ngdn
ngdhinh hpc ttiong ttiudng sang ngdn ngu toa dp
Viee chuye'n ddl ngdn ngi?tten nhSm lam cho BT da
chottianh mpt BT khac cdttiede hon, cdttiekhd hon,
cd ttie ehuyen sang the loai khac phai dung phuong
phap giai khac so vdi BT ban dau
tiep dudng ttdn tam I, vdi a'='BC,b = CA,c = AB Chdng minh rang a}A+biB+clc=d" Yeu eau
SV chuyen ddl bieu ttiirc vecto (ed hudng)
aiA+blB+c7c=d sang bieu ttidc vd hudng (dp dai)
vaphathien van desau khi bien ddl
B\eT\6o\: alA+blB+clc=d^(alA + blB + clef =0 c= a-M- + fiVB- + c-IC- + labRlB + IbclBJC + IcalC W = 0
<^alA'{a*b*c)*blB'{a'rb + c) + clC'{a + b + c)-abc{a*b + c) = Q oa/A'+ blB' + c/C' = abc
Van de dupc phat hien: "Ne'u I la tam dudng trdn
ndi tiep M B C thi aiA' + biB' + dc^ = abc trong do
a = BC,b = CA,c = AB"
2.3 Mgt so chu y trong tap luyen hoat dgng tao raBTmdituBTban dau
2.3.1 Viec tip luyen can duac quan tim tich hgp trong nhieu hgc phan i<hac nhau va co quy trinh cu ffie Viee tap luyen hoat ddng nay cd the tien hanh
frong khi DH cac hpc phan Toan socap (Hinh hpc so eap,Daisocap), PPDH monToan (phan dai cuong)
va PPDH cac npidung cuthe mdn Toan hoac cdthe trong cac chuyen de tuchpn thupe linh vue NVSP Chung tdi da tien hanh tap luyen cho SV hoatdpng xay dung BT md^ td BT ban dau ttieo quy trinh sau
day: - Budc 1) Trang hi tn ffidc: - Trang bi cho SV
nhung kien fridc coban vekhaiquathoa, dac biethoa, taru ttrpng hoa, tuong tin -Gidi thieu cho S V cac con dudng cd ttil xay dung BT mdi id BT ban dau va minh hoa ttidng qua hudng d i n SV cung khai thac;
- Budc 2) Cho S V tip luyen theo tdng con dudng xay di/ng BtmdI Budc nay cd the cho tiJng ca nhan
hoac chia nhdm deSV ttiyc hanh ttieo tung con dudng
xay dmig BT mdl; - Budc 3) Tap luyen tong hgp
Budc nay cd tfie tie'n hanh nhu sau: - GV chia Idp ttianh cac nhdm va giao BT can khai thae; - Moi ea nhan bong nhdm tie'n hanh khai thac ttieo cac con dudng xay dung BT mdi da biet va giai quyet cae BT mdi roi cung ttBO doi ca nhdm; - Cac thanh vien trong nhdmttidngnhattong hpp ketqua cua nhdm;-Giang vien dieu hanh eac nhdm ttiao luan ait ra ket luan chung cho ca Idp
Budcl, budc 2 can dupc ttiuc hien sdm frong hpc phan PPD/ymd/7roan(hayLiluanDH monToan), cdn budc 3 ed the dupc ren luy&n bat ki trong hpc phan nao ttong cac hpe phan ndi tren
Tap chi Gido dgc so 367 I 39
Trang 3BTco ngidung tht/c tiin Trong chuong trinh ddl
mdi d trudng phd' ttidng cung da chu y hon den
mang van dyng toan hpc vao ttiuc tien Tuy nhien,
dieu nay cung ehua dupc nhieu T d tti u c t e d tmdng
phd'ttidng cho tfiay G V ngai day va H S ngai hpc cac
BT cdndi dung lien quan den ttiue tidn Mdt trong
nhi?ng nguyen nhan dd la he thd'ng bai tap, bai tap
mau edn it dan den day va hpc gap khdng it khd
khan, nhung nguyen nhan quan trpng dan den tinh
trang tren la do viec day va hpc phan nhieu nham
vao muc dieh tfii eu', ma de ttii ed BT lien quan den
ndi dung ttl ue tien hay giaiquyet eac van dettiuc tien
la rat it Day la mpt dieu khae biet dd'i vdi mdtsd ki thi
cua tiie gidl Chang han nhu "Programme for
international Student Assessment- Chuong trinh
D G H S quocte (PISA)" (2),thayviKTsuthude bai
theo cac chuong trinh giao dye eu the', PISA chii
trpng viee xem xetOG ve eac nang lue eiia HS trong
viee dng dung cac kie'n thdc va kTnang pho'thdng co
ban vao cac tinh hud'ng thuc tien
Trong tinh hinh hien nay, mdt trong nhi/ng giai
phap thao gdtinh trang tren la can quan tam dung
mdc vipe dua BT ed npi dung thuc t i l n vao trong
eae de KT thudng xuyen, djnh ki va de thi cap
quoe gia Dleu dd cung can dupe luu y trong viec
chuan bj cho SV d t r u d n g s u p h a m d e d a p dng
dupe mong mudn tren
Trong qua trinh tap luyen eho SV xay dung eac
BT cd ndi dung ttiuc tiln can luu y:
- Quan titp khai ffiac cac BTco ngi dung, tinh
huong ffii/c tiSn deiam vidu minh hoa trong DH kien
thdc vePPDH (dai cuang va cac phan cu tfje).-+ Cac
chu de ttiudng gap cd ttie khai thac eae BT cd ndi
dung ttiyc tiln, vi dy va tinh hudng thue tiln: chu de
phuong trinh, bat phuong tfinh, he phuong trinh;
dao ham; ttidng ke, to'hpp, xac suat; day so, cap sd
cpng, cap so nhan; vecto; phep bie'n hinh; da giac;
dudng frdn; khdi da dien; mat trdn xoay; + Su dung
cac tinh hud'ng thuc tien minh hoa cho hoatdpng gpi
dpng CO m d dau khi DH mpt chuong, mdt bai hay
mpt don vj kie'n tfidc cy tfie tao nen su hung ttiii trong
hpc tap cua HS; +Sudyng eac vidy vatinh hudng cd
ndi dung ttiuc tien de m inh hoa ttong cac budc xay
dung va cung cokien tfidc
- Cho SVtap phat bieu cac BTco ngidung tht/c
tiSn khac nhau xuatphathymgtmo hinh toan Vidu:
Xua't phat td BT T i m cac sdx va y ttioa man he bat
phuong trinh fSO s a o c h o / ( ; ( ; ; ' ) = 4.r + 3^Cd gia trj Idn nhaf, yeu eau S V phat bleu eac BT cd npl dung ttiuctien
Cac BT dua ra can gan gui, sat thue tiln Tranh dua ra nhiing BT phi thirc tien
- G ldi Uiieu va tap luyen cho S V xay dyng kieu cau hdi cua PISA
3 Tap luyen cho SV nganh su pham Toan hpc cac hoat ddng lien quan den hoat dpng DGKQHT cua HS trong qua trinh DH, cac hpc phan NVSP giiip eho SV thay dupc mdi lien he chat che gida OG va giang day, sutac dpng eua DG tdi cac thanh td khac trong quatrinh DH va ed eo hpi ren luyen cae kTnang
D G Hon nira, kien thu'c va kTnang DG dupc cung co tai nhieu ttidi diem khac nhau cung tao tinh hudng cho
SV tuDG viec hieu bie't cua ban than veDG.TO'dd, dua ra quyetdjnh can tim hie'u lai, tim hieu them nhiJng van de gi nu'a, n h i ^ g hoat ddng nay gdp phan phat trien nang luc tudao tao, tt/ nghien cdu giup cac em
phattrien nang luc DGKQHT Q {1) Tfin Than Xdy dung h$ thd'ng cdu hdi vd bdi t^p
nhd.m bdi du&ng mdt s6 yiu t6 cua lu duy <idng tgo cho hgc sinh khd - gioi & tru&ng ph6 thdng trung hgc
ca s& Viit Nam Lu^n 3n Phb ti^n si khoa hpc Su
pham - Tam li, Vi^n Khoa hgc GiSo dye, H 1995 (2) Vian Khoa hoc Giao due Vi^t Nam - Vdn ph6ng
PISA Viet Nam SS tay PISA ddnh cho cdn bp qudn li
gido diic vd gido viin (Luu h&nh npi b$), H 2011
Tai lieu tham khdo
1 Nguyen Ba Kim Phinmg phdp day hpc m6n TO^D
NXB Dgi hgc Suphgm, H 2002
2 Hoang Anh - D6 Thj Chau Tir h^c ciia sinh vifin
NXB GidoducH 2008
3 Le Thfing Nhil R^n luyin ndng luc gidi todn cho
hgc sinh trung hpc phd thdng qua viic phdn tich vd sira chira sai ldm cho hgc sinh khi gidi todn Lu3n in
Pho li^n sT khoa hpc Sur pham - Tftm !i - Tru&ng D^i hpc Supham Vinh 1996
4 Marielle Anne Martinet, Danielle Raymond
Clermont Gaulhier Teacher training - Orientation •
Professional competencies, Que'bec 2001
5 Richard J Stiggins; Nancy FairesConklin 'Teacher
training in assessment", Portland, OR: Northwest
Regional Educational Laboratory 1988
40 Tqp chi Giao due so 367