1. Trang chủ
  2. » Tất cả

Vận dụng lý thuyết tình huống trong dạy học khái niệm phần hình học không gian lớp 11 trung học phổ thông

3 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 142,38 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

f VAN PHAN Li THUYET TINH HUONG TRONG DAY HOC KHAI NIEM HDC KHONG GIAN LfiP 11 TRONG HOC PHO THONG ThS LE TRUNG TIN'''' LI luan day hpc hien dai khang dinh, bat ki qua trinli day hpc nao cung can phai di[.]

Trang 1

f VAN

PHAN

Li THUYET TINH HUONG TRONG DAY HOC KHAI NIEM HDC KHONG GIAN LfiP 11 TRONG HOC PHO THONG

ThS LE TRUNG TIN'

LI luan day hpc hien dai khang dinh, bat ki qua

trinli day hpc nao cung can phai di/a vao tinh

van de ngay ben tiong tien frinh va npi dung day

hpc.Tinh van de dflpc quan mem dday khdng bi bd

gpn frong pham tnJ ti/duy, ma nded ttie bat nguon tiJr

cam xuc, trang ttiai eg ttie cua nhu eau, tfl rung cam

ttiam mTva dao dfle Tat nhien, CO sd khach quan

ehu yeu nhat cua tinh van de chinh la eac van de hpe

tap trong npidung hpc van cua mdn hpe,bai hpc, chu

de Tinh vmde khi dflpc chu ttie hda bdi ngudi hpc nd

trdthanh van de cua ca nhan ngudi hpe, trdthanh

muctieu vadpng IIJC thuc day ngudi hpc iioatdpng de

giai quyet hay chiem ^nh chung Trong day hpc, ngucrt

day cd ttie lam xuat hien tinh hudng vain de, hay xuat

hien van de d ngudi hpc thdng qua viec ttiiet ke va to'

chflc cac tinh hudng day hpc 0 day, tiiyc ehat la ngudi

day tao dtfrig moi tivdng hpc tap thuan lpi, decac yeu

tdtflmdi tiirdng cd kha nang kich hoat nhieu nhatvdn

kinh nghiem etja ngudi hpe, tao ra st/ lien he nao dd

giua nhung kinh nghiem vdi nhau, ma nhat la mdi lien

hegiua kinh nghiem ay vdivan de hpc tap.Nhung m a

lien he nay nhu chat men kich thich nhu cau tim tdi,

kham pha p ngudi hpc, de hp giai dap nhflng ban

khoan ma ehi cd ttie dat dupc ttidng qua hoat dpng

vatchatvatrituetichei/ecua ban than

I T h i e t k e t i n h huong day hpc

Theo quan d\%m cua mptsd tac gia Idn nhu Guy

Brousseau Nguyen BaKim , mpt tinh hudng cdvan

decan ttida man cac dieu kien sau: -Ton tai mdt van

de: tinh hudng phai bdc Id mau ttiu&n gifla thuc tien

v(3l tilnh dp nhan ttiflc, chtj tiie phai y thuc dupc khd

khan trong tuduy^hoae hanh ddng ma vdn hieu biet

sancdchuadudevuptqua;-Gainhu eau nhan ttiuc,

tiJe la ngudi hpc phai cam ttiay sucan thiet, tiiay minh

CO nhu cau giai quyet Tdt nhat la tinh hudng gay dupe

"cam xuc" lam eho hpc sinh (HS) ngac nhien, thay

hung tti ti ma mong mudn giai quyet; - Gay niem tin d

khanang^neu mpttinh hudng tuy co van devavan de

hjy hap dan, nhung neu HS cam thay ndvuotquaxa

so vdi kha nang eua minh ttii hpcung khong s i n sang

giai quyet Can Iam cho HS thay rd tuy hp chua cd

40 Tqp chi Giao due so 359

ngay Ic^ giai, nhung da cd mdt sd kien thflc, kT nang lien quan den van de dat ra va hptin rang neu tich ei/c suy nqhTthise giai quyet dupc

Detao ra mpttinh hudng day hpc, ngudi day co ttie sudung mptsdcachtiiucnhu:-Dudoannhdnhan xet tmc quan, thiK; hanh hoae hoat dpng tiiuc tiln; - Lat ngupe van de; - Xem xet ti/ang tti; -_ Khai quat hoa;

- Khai ttiac kien tfiut cu, dat van de dan den kien ttiflc mcS; -Neu mptbaitoan maviec giaiquyMchophep din den kien tiiuc mdi; -Tim sai lam tiong ldl giai

2 M p t s o ' v i d u vethiet k e t i n h hudng day hpc khai niem phan Hinh hoc khdng gian Idp 11 Khai niem la co sd va tien de quan trong de xay dung he thdng kien thfle Toan hpc Hinh thanh cho

HS mdt he thdng khai niem vflng chSced tae dung to Idn den viec phat tiien fri tijeva gdp phan giao dgc the gidi quan cho cac em Trong day hpc, ngudi ta phan

biet ba con dudng tiep can khai niem: - Con dudng

puy nap;xuat phat tfl mpi sd ddi tupng rieng le, giao vien dan dat HSphan tieh, so sanh, tnju ti/png hoa, khai quat hda de tim ra dau hieu dac tiung eua mpt khainiem ttiehien dnhung tardng hpp ey the'hj'dodi

den djnh nghTa l<hai niem; - Con dudng kien tfiebay

dung ddi tupng dai dien eho khai niem can dupc hinh thanh.Saudd.kiiaiguathdaguatrinhxaydi/ngddi tupng dai dien, di den dae diem dae trung cho khai

niem can hinh ttianh; - Con dudng suy dien: hinii

thanh khai niem theo con dudng suy dien la di ngay vao dinh nghTa khai niem mdi nhu mot tn/dng hop rieng ctja mpt khainiem da dupc hpc Duo^daylamptsdviduvethietketinhhUOTigday

hpe khai niem phan Hlnh hoc khong gian ldp 11: 2.1 Vidu 1:T\nh hudng^day hpe khai niem goc

gifla dudng ttiing va mat p h l n g

^ - Muc /^u.'HS hieu dupc khai niem goe giiia dudng

tiling vamatphang ddng tiicri ftjxaydtjng dflpc quy trinh xac djnh gdc g i i ^ dudng tiling va mat phlng

- Thiet ketinh hudng:

1}Cho ducmg thing a//mp{P)vaa'lahinhchieu

* TniciDgTniiig bQc pho thong chuyen Nguyen Nu^, Ha N6I

Trang 2

vudng gdc ctja a fren mp (P) Xet dudng tiiang d n^m

fren mp (P) So sanh gde giua a va a' vdi gdc giOa a

vad (ki hieu (a,d))

2) Cho dudng ttiang a i mp (P) Xetdudng tiling

d nam tren mp (P) Tim gde^ifla a va d

3) Cho dudng ttiing a cat mp (P) tai A, a khdng

vuong gdc V(i(imp(P) vaa'lahinhchieu vudng goe eua

a tren mp (P) Xetdudng ttiing d nam fren mp (P) va

diqua A So sanh gdc giua a vaa'vtSii gdc gii^ a vad

4} Cho dudng thing a va mp (P) Cd the quan

niem sddo goc gifla dudng ttiing a va mp (P) blng

gia trj nhp_nhat cua sddo gdc gifla dudng ttiang a va

dudng ttiang d, trong ddd la dudng thing nim trong

mp (P) Em hay^ndu djnh nghia v l gde giua dudng

thang vamatphang

- Giao vien xac nhan kien Uiuc:

1)Doa//mp(P)n6na/a' =>(a,a') = 0"

Vay (a, d)>{a,a) dau blng xay ra khi d//a'

2} (a, d) = 90° ^

3} Tren a lay diem M khac A, Goi H, K lan lupt la

hinh chieu cua M tren a', d ttii H chinh la hinh chieu

cua lyl fren mp (P) Do MK>MHnen:

sin(a,rf) = sin MAX = > = sin MAH = sin(o,a')

MA MA

^ {a, d} ^ (a, a) dau blng xay ra khi d tiuig vo! a'

4) Ng'u a 1 mp (P) thi ta ndi (a, P) = 90° Neu a

khong vuong goc vdi mp (P) thi gdc giua a va hinh

chieu a' ctja nd tren mp (P) goi la gde giua a va

fnp(P)

2.2 Vidu2:J'\nh hudng day hpc khainiem dudng

vudng goe chung cua hai dudng thang cheo nhau va

khoang each gifla hai dudng thang cheo nhau:

•MiJctieu:HS hieu dupc khai niem ducmg vudng

goc Chung eua hai dudng thang cheo nhau, khoang

each gifla haidudng tiiang cheo nhau va nitra dupe

mpt sd phuang phap de tim khoang each gifla hai

dudng thing eheo nhau

• Thiei ketinh hudng:Cho 2^ dfldng ttiang a, b

cheo nhau nam trong 2 mat phang song song vdi

nhau (P)va(Q) Hdi:

1) Cdbao nhieu dudng thang vuong gdc vdi hai

dudng tiiang a va b?

2) Co bao nhieu dudng ttiing elt dudng tiiang a

va vuong gdc vdi hai dudng thing a, b?

3) Cd bao nhieu dudng thang eat va vuong gde

haidudng ttiang^a, b Neu each ve dudng ttilnci dd?

Giasirdudng ttiang d vudng gde haidut^g ttiang a,

b va elt a, b lan lupt tai A, B Vdi M, N lan lupt la cac

diem ttiudc a, b So sanh MN va AB

4) Doan ttiing AB dung dupc d tren dupc gpi la doan vudng gdc ehung cua hai dudng ttiang cheo nhau a va b Neu each dung doan vudng gde ehung cua haidudng thang cheo nhau bat ki?

^ 5) Neu djnh nghTa ve khoang each giite haidudng tiling cheo nhau Hay neu phuong phap tim khoang each giua hai dudng thing cheo nhau

- Giao vien xac nhan kien thuc:

^ 1) Cdvd sddudng thaig vudng goc vcri ca2 dudng

ttiang a, b Dp la tatca cac ducmg thang vudng goc vdi ca2matphlng(P)va(Q}

2) Cdvd sddudng thing vudng gdc vdi ea hai dudng ttiing a, b va cit dudng thing a Od la tat ca eac dudng thang ve tfl mdt diem^ bat ki tren dudng tiiang a va vudng gdc vdi mat phlng (Q)

3) Cd duy nhat dudng thing d cit va vudng gdc

ea hai dudng thing do Caeh ve dudng tiling d;

+ Dung a' la hinh chieu vudng goc cua a tren mat phang (Q); + Tim B la giao diem cua a' va b;_+ Tfl B, difrig dudng thing d vuong gde vdi mat phang (Q)

Khi dd, d la dudng ttiang ttida man tinh chat tren Qua phep dung tiii d la dudng thing duy nhat Qua A dung dudng thing d // MN, d cit mp (Q) tai C Khi do

4] Cach dung dudng ttiing cat va vudng gdc ca hai^dudng tiiang cheo nhau a, b bat ki; • Dung mat phlng(Q)diquadudngthlngbva(Q)//a;-ptfriga'

la hinh chieu vudng goc cua a tren mat phang (Q);

-Tim B la giao diem cua a' vab;;TflB, dung dudng thing d vudng gdc vdi mat phlng (Q) Qua phep difrig Uii dudng ttiang d la duy nhat

5) Khoang each gifla hai dudng thang cheo nhau

la dp dal doan vudng goc chung cua hai duong ttiing

dd Nhan xet: - Khoang each gifla hai dudng ttiang cheo nhau blng khoang_ each gifla mdt trong hai dudng ttiang dova matphang song song vdind chua dudng ttiang cdn lai; - Khoang each gifla hai dudng thang cheo nhau bang khoang each gifla hai mat phang song song lan lupt ehfla hai dudng thanp dd, 2.5 l//tfu3;Deday hpe phan vitri tuong ddi cua hai ducmg ttiing trong khdng gian, ta cd ttie tao lap mpttinh hudng day hpe nhusau:

^ - Muc tieu: HS hieu dupe^khai niem hai dudng

ttiing cit^nhau, hai dudng ttiang song song va hai dudng tiiang cheo nhau

-Thiet ketinh hudng:

1) Cho hinh lap phuang ABCD AJB'C'D' Hay tim mat phlnc) cliiJa ca hai dudng thing trong cae capdudngttiangsau:ACvaBD;ACvaA'C';ACva B'D'

1

Tap chi Giae due so 359 41

Trang 3

frong cac cap dudng tiling sau: AC va BD; AC va

A ' C Ta ndi hai dudng ttiang AC va B'DJ la cheo

nhau.Trong khdng gian, eho haidudng thang phan

biet a va b, hay chi ra cac vj tri tuong ddi cua hai

dudng tiling dd?

3) Hai dudng tiling gpi la dong phang neu ehung

cung n i m trong mdt^mat phang Em hay neu djnh

nghTavehaidudngttiang song song, haidudng thang

cheonhau

- Giio vien xac nhan kl&i thuc:

1) AC vaBD cung n i m trong mp (ABCD); AC va

A'C'cung n i m frong mp (ACC'A'); khdng cd mat

phlng nao chfla ea hai dudng thang AC va B'D'

2 ) A C v a B D c l t n h a u , A C v a A ' C ' s o n g s o n g v d i

nhau Hai dudng ttiang phan biet a, b cd the song

song, cat nhau hoae cheo nhau

3) Hai dudng tiling gpi la song song neu chung

dqng phang va khong cd diem chung Hai dudng

tiling gpi la cheo nhau neu chung khdng dong phang

Theo tac gia Nguyin BaKim: Tn'^dckhongphii

la dieu CO the didang cho khong De daymgttn thuc

nao do, thay giio thudng khong ffietrao ngay cho

caidat tri thdc do vao nhung tinh humg ^'ichhqp de

HS chiem U'nh no thong qua hoatddng tugiac, thh cue, chu dqng va sang tao''{^; fr 127} Gidi tfiieu npi

dung day hpc vdi tu each la mpttinh hudnggpi van d i lam cho npi dung dd frd nen hap d ^ , tao kha nang kich thieh hoatddng tich ei/c eua HS.Q

(1) Nguyen B4 Kim Phuong p h a p day hoc mon Toin

NXB OaihQcsiiph(?m,\{ 2010

Tai lieu t h a m k h a o

1 E r r i n g t o n E P Developing scenario-based

learning: Practical insights for tertiary educators

Palmerslon North, N.Z Dunmore Press, 2003

2 Louise McHugh - Alina Bobarnac - Phil Reed

Teaching Situation-Based Emotions to Children with Autistic Spectrum Disorder Springer Science

Business Media, LLC 2010

SUMMARY

Situation based teaching is an interesting and practical form of teaching In this paper, theauthor presents some ways to create a situation in math-ematics teaching and design some specific situaUons that use to teach some concepts and definiUons of the solid geometry

Ttiui! trang vanliDlig yeu to

(Tiep theo trang 44)

U/danh gia dupe ket qua hpc tap qua hoat ddng TH

cua ban than thdng qua bai kiem tra, tiiao luan hay

tieu luan Tfl do, dieu chinh hpp li han neu ketqua

ehua thuc suphu hpp.Q

Tai li^u tham khao

1 NguySn Xufln Binh V^n di tu hpc cua sinh vi£n

nam thli nhSt Trucrng Cao dang Y t e ' H i N6i hi^n nay

Tgp chi Gido due, sd 270/2011

2 NguySn Canh Toan Lu$n b a n va kinh nghiem ve

t y hQC NXB Gido due, H 1999

3 Thai Duy Tuyfin Phutmg p h a p day hoc truyen

thong vfi dfl'i moi NXB Gido due Viet Nam, H 2010

SUMMAKlf

TYaining methodology in the form of credits required

students'self- study have to account for two thirds in

comparison nith the time at class hours However, how

to study effecUvely is a big problem which has been

&cingwlth current students This article mentions about

the finding of our current research The survey was

Pharmacy to determine the status ofthe operation of

self-stucfy courses Probability and StaUsUcs of students

and factors affecting such acUviUes

42 Tqp chi Gido dye so 359

Day hpc kham pha khoa hoc

(Tiep iheo trang 47)

3 Pham Xuan Qui? - NgO Difiu Nga - Nguy5n Van BiCn Nguygn Anh Thuifn Nguygn Van Nghl$p

-Nguyen Trgng Siru Tdi liiu ldp hud'n kiim Ira,

ddnh gid trong qud trinh day hgc theo djnh hudng phdt triin ndng luc hoc sinh trong trudng trung hoccasdr 2014

4 National Research Council, National Science

Education Standards 1996

SUMMARY

In reality, in Vietnam, since 2001 some acUve teaching methods have been widely used In teach-ing However, they are at the common level Teach-ers Issues, students take part In some steps to solve the problem ~ The highest level is to find and solve the problems Teachers assign, students identify problems, find the soluUon do experiments, proc^^ data and solve problem The aim of this wrltingls^ share with you the research result of teaching imj^^ cations of finding solutions in the lesson 'Refraction^-school This also helps the learners get the knovd-edge about refraction of light, develop their abllltl^ and skills

Ngày đăng: 17/11/2022, 22:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm