f VAN PHAN Li THUYET TINH HUONG TRONG DAY HOC KHAI NIEM HDC KHONG GIAN LfiP 11 TRONG HOC PHO THONG ThS LE TRUNG TIN'''' LI luan day hpc hien dai khang dinh, bat ki qua trinli day hpc nao cung can phai di[.]
Trang 1f VAN
PHAN
Li THUYET TINH HUONG TRONG DAY HOC KHAI NIEM HDC KHONG GIAN LfiP 11 TRONG HOC PHO THONG
ThS LE TRUNG TIN'
LI luan day hpc hien dai khang dinh, bat ki qua
trinli day hpc nao cung can phai di/a vao tinh
van de ngay ben tiong tien frinh va npi dung day
hpc.Tinh van de dflpc quan mem dday khdng bi bd
gpn frong pham tnJ ti/duy, ma nded ttie bat nguon tiJr
cam xuc, trang ttiai eg ttie cua nhu eau, tfl rung cam
ttiam mTva dao dfle Tat nhien, CO sd khach quan
ehu yeu nhat cua tinh van de chinh la eac van de hpe
tap trong npidung hpc van cua mdn hpe,bai hpc, chu
de Tinh vmde khi dflpc chu ttie hda bdi ngudi hpc nd
trdthanh van de cua ca nhan ngudi hpe, trdthanh
muctieu vadpng IIJC thuc day ngudi hpc iioatdpng de
giai quyet hay chiem ^nh chung Trong day hpc, ngucrt
day cd ttie lam xuat hien tinh hudng vain de, hay xuat
hien van de d ngudi hpc thdng qua viec ttiiet ke va to'
chflc cac tinh hudng day hpc 0 day, tiiyc ehat la ngudi
day tao dtfrig moi tivdng hpc tap thuan lpi, decac yeu
tdtflmdi tiirdng cd kha nang kich hoat nhieu nhatvdn
kinh nghiem etja ngudi hpe, tao ra st/ lien he nao dd
giua nhung kinh nghiem vdi nhau, ma nhat la mdi lien
hegiua kinh nghiem ay vdivan de hpc tap.Nhung m a
lien he nay nhu chat men kich thich nhu cau tim tdi,
kham pha p ngudi hpc, de hp giai dap nhflng ban
khoan ma ehi cd ttie dat dupc ttidng qua hoat dpng
vatchatvatrituetichei/ecua ban than
I T h i e t k e t i n h huong day hpc
Theo quan d\%m cua mptsd tac gia Idn nhu Guy
Brousseau Nguyen BaKim , mpt tinh hudng cdvan
decan ttida man cac dieu kien sau: -Ton tai mdt van
de: tinh hudng phai bdc Id mau ttiu&n gifla thuc tien
v(3l tilnh dp nhan ttiflc, chtj tiie phai y thuc dupc khd
khan trong tuduy^hoae hanh ddng ma vdn hieu biet
sancdchuadudevuptqua;-Gainhu eau nhan ttiuc,
tiJe la ngudi hpc phai cam ttiay sucan thiet, tiiay minh
CO nhu cau giai quyet Tdt nhat la tinh hudng gay dupe
"cam xuc" lam eho hpc sinh (HS) ngac nhien, thay
hung tti ti ma mong mudn giai quyet; - Gay niem tin d
khanang^neu mpttinh hudng tuy co van devavan de
hjy hap dan, nhung neu HS cam thay ndvuotquaxa
so vdi kha nang eua minh ttii hpcung khong s i n sang
giai quyet Can Iam cho HS thay rd tuy hp chua cd
40 Tqp chi Giao due so 359
ngay Ic^ giai, nhung da cd mdt sd kien thflc, kT nang lien quan den van de dat ra va hptin rang neu tich ei/c suy nqhTthise giai quyet dupc
Detao ra mpttinh hudng day hpc, ngudi day co ttie sudung mptsdcachtiiucnhu:-Dudoannhdnhan xet tmc quan, thiK; hanh hoae hoat dpng tiiuc tiln; - Lat ngupe van de; - Xem xet ti/ang tti; -_ Khai quat hoa;
- Khai ttiac kien tfiut cu, dat van de dan den kien ttiflc mcS; -Neu mptbaitoan maviec giaiquyMchophep din den kien tiiuc mdi; -Tim sai lam tiong ldl giai
2 M p t s o ' v i d u vethiet k e t i n h hudng day hpc khai niem phan Hinh hoc khdng gian Idp 11 Khai niem la co sd va tien de quan trong de xay dung he thdng kien thfle Toan hpc Hinh thanh cho
HS mdt he thdng khai niem vflng chSced tae dung to Idn den viec phat tiien fri tijeva gdp phan giao dgc the gidi quan cho cac em Trong day hpc, ngudi ta phan
biet ba con dudng tiep can khai niem: - Con dudng
puy nap;xuat phat tfl mpi sd ddi tupng rieng le, giao vien dan dat HSphan tieh, so sanh, tnju ti/png hoa, khai quat hda de tim ra dau hieu dac tiung eua mpt khainiem ttiehien dnhung tardng hpp ey the'hj'dodi
den djnh nghTa l<hai niem; - Con dudng kien tfiebay
dung ddi tupng dai dien eho khai niem can dupc hinh thanh.Saudd.kiiaiguathdaguatrinhxaydi/ngddi tupng dai dien, di den dae diem dae trung cho khai
niem can hinh ttianh; - Con dudng suy dien: hinii
thanh khai niem theo con dudng suy dien la di ngay vao dinh nghTa khai niem mdi nhu mot tn/dng hop rieng ctja mpt khainiem da dupc hpc Duo^daylamptsdviduvethietketinhhUOTigday
hpe khai niem phan Hlnh hoc khong gian ldp 11: 2.1 Vidu 1:T\nh hudng^day hpe khai niem goc
gifla dudng ttiing va mat p h l n g
^ - Muc /^u.'HS hieu dupc khai niem goe giiia dudng
tiling vamatphang ddng tiicri ftjxaydtjng dflpc quy trinh xac djnh gdc g i i ^ dudng tiling va mat phlng
- Thiet ketinh hudng:
1}Cho ducmg thing a//mp{P)vaa'lahinhchieu
* TniciDgTniiig bQc pho thong chuyen Nguyen Nu^, Ha N6I
Trang 2vudng gdc ctja a fren mp (P) Xet dudng tiiang d n^m
fren mp (P) So sanh gde giua a va a' vdi gdc giOa a
vad (ki hieu (a,d))
2) Cho dudng ttiang a i mp (P) Xetdudng tiling
d nam tren mp (P) Tim gde^ifla a va d
3) Cho dudng ttiing a cat mp (P) tai A, a khdng
vuong gdc V(i(imp(P) vaa'lahinhchieu vudng goe eua
a tren mp (P) Xetdudng ttiing d nam fren mp (P) va
diqua A So sanh gdc giua a vaa'vtSii gdc gii^ a vad
4} Cho dudng thing a va mp (P) Cd the quan
niem sddo goc gifla dudng ttiing a va mp (P) blng
gia trj nhp_nhat cua sddo gdc gifla dudng ttiang a va
dudng ttiang d, trong ddd la dudng thing nim trong
mp (P) Em hay^ndu djnh nghia v l gde giua dudng
thang vamatphang
- Giao vien xac nhan kien Uiuc:
1)Doa//mp(P)n6na/a' =>(a,a') = 0"
Vay (a, d)>{a,a) dau blng xay ra khi d//a'
2} (a, d) = 90° ^
3} Tren a lay diem M khac A, Goi H, K lan lupt la
hinh chieu cua M tren a', d ttii H chinh la hinh chieu
cua lyl fren mp (P) Do MK>MHnen:
sin(a,rf) = sin MAX = > = sin MAH = sin(o,a')
MA MA
^ {a, d} ^ (a, a) dau blng xay ra khi d tiuig vo! a'
4) Ng'u a 1 mp (P) thi ta ndi (a, P) = 90° Neu a
khong vuong goc vdi mp (P) thi gdc giua a va hinh
chieu a' ctja nd tren mp (P) goi la gde giua a va
fnp(P)
2.2 Vidu2:J'\nh hudng day hpc khainiem dudng
vudng goe chung cua hai dudng thang cheo nhau va
khoang each gifla hai dudng thang cheo nhau:
•MiJctieu:HS hieu dupc khai niem ducmg vudng
goc Chung eua hai dudng thang cheo nhau, khoang
each gifla haidudng tiiang cheo nhau va nitra dupe
mpt sd phuang phap de tim khoang each gifla hai
dudng thing eheo nhau
• Thiei ketinh hudng:Cho 2^ dfldng ttiang a, b
cheo nhau nam trong 2 mat phang song song vdi
nhau (P)va(Q) Hdi:
1) Cdbao nhieu dudng thang vuong gdc vdi hai
dudng tiiang a va b?
2) Co bao nhieu dudng ttiing elt dudng tiiang a
va vuong gdc vdi hai dudng thing a, b?
3) Cd bao nhieu dudng thang eat va vuong gde
haidudng ttiang^a, b Neu each ve dudng ttilnci dd?
Giasirdudng ttiang d vudng gde haidut^g ttiang a,
b va elt a, b lan lupt tai A, B Vdi M, N lan lupt la cac
diem ttiudc a, b So sanh MN va AB
4) Doan ttiing AB dung dupc d tren dupc gpi la doan vudng gdc ehung cua hai dudng ttiang cheo nhau a va b Neu each dung doan vudng gde ehung cua haidudng thang cheo nhau bat ki?
^ 5) Neu djnh nghTa ve khoang each giite haidudng tiling cheo nhau Hay neu phuong phap tim khoang each giua hai dudng thing cheo nhau
- Giao vien xac nhan kien thuc:
^ 1) Cdvd sddudng thaig vudng goc vcri ca2 dudng
ttiang a, b Dp la tatca cac ducmg thang vudng goc vdi ca2matphlng(P)va(Q}
2) Cdvd sddudng thing vudng gdc vdi ea hai dudng ttiing a, b va cit dudng thing a Od la tat ca eac dudng thang ve tfl mdt diem^ bat ki tren dudng tiiang a va vudng gdc vdi mat phlng (Q)
3) Cd duy nhat dudng thing d cit va vudng gdc
ea hai dudng thing do Caeh ve dudng tiling d;
+ Dung a' la hinh chieu vudng goc cua a tren mat phang (Q); + Tim B la giao diem cua a' va b;_+ Tfl B, difrig dudng thing d vuong gde vdi mat phang (Q)
Khi dd, d la dudng ttiang ttida man tinh chat tren Qua phep dung tiii d la dudng thing duy nhat Qua A dung dudng thing d // MN, d cit mp (Q) tai C Khi do
4] Cach dung dudng ttiing cat va vudng gdc ca hai^dudng tiiang cheo nhau a, b bat ki; • Dung mat phlng(Q)diquadudngthlngbva(Q)//a;-ptfriga'
la hinh chieu vudng goc cua a tren mat phang (Q);
-Tim B la giao diem cua a' vab;;TflB, dung dudng thing d vudng gdc vdi mat phlng (Q) Qua phep difrig Uii dudng ttiang d la duy nhat
5) Khoang each gifla hai dudng thang cheo nhau
la dp dal doan vudng goc chung cua hai duong ttiing
dd Nhan xet: - Khoang each gifla hai dudng ttiang cheo nhau blng khoang_ each gifla mdt trong hai dudng ttiang dova matphang song song vdind chua dudng ttiang cdn lai; - Khoang each gifla hai dudng thang cheo nhau bang khoang each gifla hai mat phang song song lan lupt ehfla hai dudng thanp dd, 2.5 l//tfu3;Deday hpe phan vitri tuong ddi cua hai ducmg ttiing trong khdng gian, ta cd ttie tao lap mpttinh hudng day hpe nhusau:
^ - Muc tieu: HS hieu dupe^khai niem hai dudng
ttiing cit^nhau, hai dudng ttiang song song va hai dudng tiiang cheo nhau
-Thiet ketinh hudng:
1) Cho hinh lap phuang ABCD AJB'C'D' Hay tim mat phlnc) cliiJa ca hai dudng thing trong cae capdudngttiangsau:ACvaBD;ACvaA'C';ACva B'D'
1
Tap chi Giae due so 359 41
Trang 3frong cac cap dudng tiling sau: AC va BD; AC va
A ' C Ta ndi hai dudng ttiang AC va B'DJ la cheo
nhau.Trong khdng gian, eho haidudng thang phan
biet a va b, hay chi ra cac vj tri tuong ddi cua hai
dudng tiling dd?
3) Hai dudng tiling gpi la dong phang neu ehung
cung n i m trong mdt^mat phang Em hay neu djnh
nghTavehaidudngttiang song song, haidudng thang
cheonhau
- Giio vien xac nhan kl&i thuc:
1) AC vaBD cung n i m trong mp (ABCD); AC va
A'C'cung n i m frong mp (ACC'A'); khdng cd mat
phlng nao chfla ea hai dudng thang AC va B'D'
2 ) A C v a B D c l t n h a u , A C v a A ' C ' s o n g s o n g v d i
nhau Hai dudng ttiang phan biet a, b cd the song
song, cat nhau hoae cheo nhau
3) Hai dudng tiling gpi la song song neu chung
dqng phang va khong cd diem chung Hai dudng
tiling gpi la cheo nhau neu chung khdng dong phang
Theo tac gia Nguyin BaKim: Tn'^dckhongphii
la dieu CO the didang cho khong De daymgttn thuc
nao do, thay giio thudng khong ffietrao ngay cho
caidat tri thdc do vao nhung tinh humg ^'ichhqp de
HS chiem U'nh no thong qua hoatddng tugiac, thh cue, chu dqng va sang tao''{^; fr 127} Gidi tfiieu npi
dung day hpc vdi tu each la mpttinh hudnggpi van d i lam cho npi dung dd frd nen hap d ^ , tao kha nang kich thieh hoatddng tich ei/c eua HS.Q
(1) Nguyen B4 Kim Phuong p h a p day hoc mon Toin
NXB OaihQcsiiph(?m,\{ 2010
Tai lieu t h a m k h a o
1 E r r i n g t o n E P Developing scenario-based
learning: Practical insights for tertiary educators
Palmerslon North, N.Z Dunmore Press, 2003
2 Louise McHugh - Alina Bobarnac - Phil Reed
Teaching Situation-Based Emotions to Children with Autistic Spectrum Disorder Springer Science
Business Media, LLC 2010
SUMMARY
Situation based teaching is an interesting and practical form of teaching In this paper, theauthor presents some ways to create a situation in math-ematics teaching and design some specific situaUons that use to teach some concepts and definiUons of the solid geometry
Ttiui! trang vanliDlig yeu to
(Tiep theo trang 44)
U/danh gia dupe ket qua hpc tap qua hoat ddng TH
cua ban than thdng qua bai kiem tra, tiiao luan hay
tieu luan Tfl do, dieu chinh hpp li han neu ketqua
ehua thuc suphu hpp.Q
Tai li^u tham khao
1 NguySn Xufln Binh V^n di tu hpc cua sinh vi£n
nam thli nhSt Trucrng Cao dang Y t e ' H i N6i hi^n nay
Tgp chi Gido due, sd 270/2011
2 NguySn Canh Toan Lu$n b a n va kinh nghiem ve
t y hQC NXB Gido due, H 1999
3 Thai Duy Tuyfin Phutmg p h a p day hoc truyen
thong vfi dfl'i moi NXB Gido due Viet Nam, H 2010
SUMMAKlf
TYaining methodology in the form of credits required
students'self- study have to account for two thirds in
comparison nith the time at class hours However, how
to study effecUvely is a big problem which has been
&cingwlth current students This article mentions about
the finding of our current research The survey was
Pharmacy to determine the status ofthe operation of
self-stucfy courses Probability and StaUsUcs of students
and factors affecting such acUviUes
42 Tqp chi Gido dye so 359
Day hpc kham pha khoa hoc
(Tiep iheo trang 47)
3 Pham Xuan Qui? - NgO Difiu Nga - Nguy5n Van BiCn Nguygn Anh Thuifn Nguygn Van Nghl$p
-Nguyen Trgng Siru Tdi liiu ldp hud'n kiim Ira,
ddnh gid trong qud trinh day hgc theo djnh hudng phdt triin ndng luc hoc sinh trong trudng trung hoccasdr 2014
4 National Research Council, National Science
Education Standards 1996
SUMMARY
In reality, in Vietnam, since 2001 some acUve teaching methods have been widely used In teach-ing However, they are at the common level Teach-ers Issues, students take part In some steps to solve the problem ~ The highest level is to find and solve the problems Teachers assign, students identify problems, find the soluUon do experiments, proc^^ data and solve problem The aim of this wrltingls^ share with you the research result of teaching imj^^ cations of finding solutions in the lesson 'Refraction^-school This also helps the learners get the knovd-edge about refraction of light, develop their abllltl^ and skills