SAI LAM VA SJ^A C H i SAI LAM CUA HOC SINH KHI GIAI TOAN NHIN TU NHEEU GOC DO CUA LI LUAN DAY HOC TS NGUY§N HlJU H^U ThS, PHAM ANH GIANG "Day hgc loan la day hoal ddng loan hgc" (1; tr 12) la mgl luan[.]
Trang 1SAI LAM VA SJ^A C H i SAI LAM CUA HOC SINH KHI GIAI TOAN NHIN TU NHEEU GOC DO CUA LI LUAN DAY HOC
TS NGUY§N HlJU H ^ U - ThS, P H A M A N H G I A N G
"Day hgc loan la day hoal ddng loan hgc" (1; tr.12)
la mgl luan diem dugc mgi ngudi thua nhan Hoat
dgng giai bai tap loan Trinh do hgc loan eua HS se
duge the hign ro net qua chat lugng giai loan
Nghien cuu nhirng sai lam eua HS khi giai loan la
van decap thiet Bdi le, thuc lien su pham cho thay HS
tdi se lam rd sai lam va sua chua sai lam cua HS khi
giai loan nhin tu nhieu gde do cua li luan day hgc, gdp
phan nang eao chat lugng day hgc toan
1 Quan niem ciia phuang phap day hgc gial
quyel van de
Phuang phap day hgc giai quyet van de dua tren
tinh hud'ng cd van de Irong day hgc HS mac sai lam
luc laxualhien linh hud'ng cdvande.cdthedoGV fao
ra hoac tu nd nay sinh tu logic ben trong cua viee gjai
loan Sai 1am eua HS lao ra mau thuan va mau thuan
eua HS, lam nay sinh nhu eau tu duy ma theo
)(,.l.Ruhins\e\n:"Tuduy sang tao ludn batdau bang
mpttinh hudng gai van dd' (2; tr.151}, Theo {3; tr.14),
nhdm nang lue phat hien va giai quyet van de trong
hge loan cd "Nang iuc phat hien va sua chua sai iam,
nhuacdiem trong each gial bai loan, trong qua trinh
tim hieu gidi han each giai quydt van de"
Suxuaithien sai lam eua HS ggi hoalddng hgc lap
ma HS se duoc hudng dieh, ggi ddng co de tim ra sai
lam va diidi Idi giai dung Tim ra cai sai cua ehlnh minh
hay eua ban minh deu lasukham pha Tusukham pha
nay, HS chiem linh duge tri thu'c mdt each trgn ven hon
2 Quan niem eua lithuyet tinh hud'ng
Li thuye't tinh hudng cd ba kieu chudng ngai:
Chudng ngai khoa hgc luan xual hien bdi ban chat
cua chinh eac khai niem loan hge, chudng ngai su
pham xual hien do ban chal day hgc va GV, chudng
trien cathecilaHS.tuylheo ngudn gdc Mgtsdcliudng
ngai cd the tranh duge, mdt so khac thi khdng Xac
djnh cac chudng ngai, ngudn gdc ciia no trong dgiy
hgc mdn Toan la viec het sue can thiet Nhddo, GV co
Oietim ra cae bien phap su pham thich hop de giai
quye't tCmg chudng ngai
521 Tap chi Giao due so 314
ChSng han, de xac djnh chudng ngai trong day hgc khai niem loan hgc, la cd cac each sau dSy: ' Nghien cuu ljch sti phat trie'n eua khai nidm d l phat hien chudng ngai ma cac nha toan floe da gap phai trong qua trinh phat trien khai niem dd Chudng ngai khoa hgc luan) eua HS khi hoc tap khai nidrn do ' Nghien edu nhimg sai lam cocung ban chS'tcua
da soHS xung quanh khainiem ddcd the giiip phat hign cac chudng ngai (4; tr.86-96)
' Tie'n hanh day mdt khai niem nao do thso nhiJng each khac nhau, Ihdng qua viec so sanh vadanh gii ke't qua hgc tap cua HS giiia cac each day khac nhau
lu do phal hien ra nhirng chudng ngai su pham cf^, each day hoc nay hay each day hgc khac gay ra Sau
dd, G V sudung day hgc phan hoa khiday ti)ng Idp eg
the, GV cd the day each nay hay each khac vk cS,
nhiing bien phap han che nhiJng sai lam giijp H'S chiem linh tri thdc mgl each tot hon
*Dacdiem ngdn ngi/va van hoa cdlhegay chudng ngai cho nhan thii'c
Theo Nguyen Ba Kim, chudng ngai su pham la loai chudng ngai tranh dugc neu la thuc hien nhihig bien phap ehuyen hoa su pham mgt each hi;^ liv Chudng ngai tam - sjnh li dii khdng tranh duoc, nhung' chung ta cd the khic phi^c d nhimg thai diem thioh' hgp(2;tr.238)
3 Quan niem cua thuyet hanh vi
Thuyet hanli vi quan niem rang; Sai lam cua HS ia
mgl hign tugng tieu cue, ed hai cho viec Ifnh hdi kien thdc va do do can tranh, neu gap thi can khic phgd-/ Trong day hgc, mgt sdrhagiaoducngUi^Di^cma' tieu bieu la Aphagut Lai ciing cho rang "Viec chu-^ den cac sai lam cua HS trong gid hgc cd anh hudng xau den viec tiep thu bai giang' Sac biet, quan dilm iam cung cdthem sai lam trong y thuc cua HS Con nguyen nhan sai lam thudng dugc cho la HS mO h6, IhLfc, do vd y khong can trgng, D6i khi, thuy^ hflnh'
• , '-Viti 1
'b-U •'
'TnrSigfUibqcHonslliifc
-(kl2-7/2013}
Trang 2vi chp rang do GV trinh bay khdng chinh xac, day
quanhanh hay giai thich khong du rd rang,.,,
Oeday hgc phu hgp vdi quan ni^m nay, muc lieu
day hgc dugc phan nlid thanh cae muc tieu bg phan,
giiip MS cd the dan dan linh hdi kien thuc, lan lugt \is
don gian den phue tap ma khdng pham sai lam nao
Ngudi la tim mgi each de tranh sai lam; cdn neu sai
lam xuat hien thi each thdng Ihudng la day dn lai hay
cung cap cac kie'n thu'c bdtrgcho den khi HScd cau
tra Idi dung Vi du: Nguyen nhan sai lam eiJa HS
khong nam vung cae khai niem, dinh li, thieu cac
kie'n thirc ve logic, , Bien phap sda chifa saJ lam nay
dinh li:di/doan va phdng tranh sai ldm, biet sudung
caequytic suy luan,
4 Quan niem ciia thuyet kien tao
Thuye't kien tao quan niem rang "Sai iam khdng
don gian do thie'u hieu bie't, mo hd hay nglu nhien
sinh ra ma cdn la hau qua ciia mgt kien thue trudc day
da timg cdhiru ich va dem lai thanh cdng, nhung bay
gid td ra sai hoac don gian la khdng cdn thich hop
niia.Trong hoalddng eiia GVciJng nhu ciJa HS,sai
cua kien thuc linh hdi dugc" (5; lr.27)
Ngoai viec chira ngudn goc can ban ciia sai lam,
thuyet kie'n tao cung xet den cac nguyen nhan khae
nhuhanchevetam li.ve nhan thdc cua chu
the,.-Theo thuyet nay, sai lam thuc sudong vailrdquan
trgng trong hoc tap Dac biet, vl nd la hau qua ctja
nhung chudng ngaihinh thanh tukien thu'ceO Van de
khong phai la phdng tranh sai lam ma la ehiJ dgng to
chifc cho HS gap sai lam va si/a chua nd Quan diem
dophu hgp vdi R.A.Axanop: Viec tiep thu tri thuc mdt
cachcdythLfcdugekiehlhiehbdivieetuHS phan tich
HS pham phai, giai thich ngudn gdc cua cac sai lam
nay valu duy, li luan veban ehat etia cac sai lam Ben
canh do, A.A.Soliar cung da dat ra mdt sd bai loan
tlnh hud'ng HS de mac sai lam khi giai loan va khang
tren cac sai lam, khi eac sai (am cua HS xual hien
G-Bachelard eung nhan manh "Can phai tochuc day
hgc thdng qua viec pha huy mdt each cd he thd'ng cac
sai lam^" (6; tr.32 j
Diem khae biet co ban giira Ihuyet hanh viva
cac quan diem khac la each thdc su'a chifa sai lam
gia tang luyen tap cung cd, nhan manh de'n vaitrd
cua GV thi cac quan diem khac chu truong sua
chifa sai lam bang each dal HS vao nhifng linh huong hgc tap gan lien vdi sai lam do Tinh hudng phep hg tunhan ra khdng chi sai lam ma chu yeu sedan tdi nhifng ket qua mau thuan hay nghjch li ngudi hgc trong viec sira chifa sai lam, dilu nay hoan loan phu hgp vdi djnh hudng ddi mdi phuang phap day hgc hien nay
Trong qua trinh truyen thu tri thde va ren luyen kT nang toan hgc, can quan tam tap luyen cho HS nhifng
HS Ihudng gap nhifng khd khan, vudng mac hoac sai lam trong viec Ihuc hien cac hoal ddng nay GV can
HS duoe thuihach vdi nhifng sai lam dd.Q
(ki 2-.7/2013)'
(I) A A SlOlieir Giai) due hfit Toan hoc (Iifi'ng Nga)
NXB Giri;.'(/wf.l^insk 1969
12) Nguyfn Ba Kim Phutmg phap day hoc mon Toan
NXB Dai hpc supham H 2007 (3) Nguyen Anh Tuin Boidumig ndng luc phdi hien irong day hoc khdi niem Todn hoc (the hien qua mpt sd'khdi niSm Dai sdd Irung hpc coso) LuSn an T\€n
si, Vien Khoa hoc giao due, Ha NOi 2003 (4) Le Thj Hoai Ctiau "Deii mdi ngi dung va phumig
phap dho tao qua mon Li luan day - hgc mOn Toan a
Truang dai hpc Sir pham" Ki yeu h6i thao khoa hgc
Ddi mdi ndi dung vd phirong phdp dgy hpc d cdc tru&ng dai hoc xtr pham tr 86 - 96, H 2004
(5) G Brousseau Les obstacles episltmologiques et les problems en matbematiques Recherches en
Pcnsee Sauvage, Grenoble, 1983
(6) G Bachelard Essai sur la connaisscance approchee (third edition) ParisftVrin, 1968 Tai lieu tham khao
I Nguyen Van Thuan (chii liien) - NguySn Hifu Hau
day hpc Dgi s6' • Giai (ich a truvng pho (hOng NXB
Dgilipc.wphpm.H.20]0
SUMMARY
In this article, we have not satisfactorily answer all the related mistakes Especially, we do not make clear how the conflict situation awareness, initially only recognize mistakes and fix mistakes of students when accounting from many angles by teaching theory The main content of message is to show the difference of opinion theory comment on teaching about mistakes and how to repair mistakes
Tap chi Gido due so 314 | 53