Ty ll$u tham khao sojynam^ui^ THI T R A C NGHIpM TRONG DANH GIA, KIEM TRA KtT QUA LOGIC HQC GPC NHIN TlT THV''''C TIEN TRUdN(; D^I Hpc LUAT T H A N H P H O H O CHI MINH PHAM THI MINH HAI'''' TAM TAT Trong h[.]
Trang 1THI T R A C NGHIpM TRONG DANH GIA, KIEM TRA
KtT QUA LOGIC HQC - GPC NHIN TlT THV'C TIEN
TRUdN(; D^I H p c LUAT T H A N H P H O H O CHI MINH
PHAM THI MINH HAI'
T A M TAT
Trong hdi viii ndy chung Idi Irinh bdy nhiing uu dicm vd hgn che cua hinh thue Ihi
udc ii.vhii'in \uiii phdt til Ihifc lien kiem Ira ddnh gid ki'l qud hgc Igp mdn Logic hgc ciia
sinh vien Trudng Dgi hgc l.iidi Thdnh phii lid ( hi Minh (TPHCM) ddng thai, tren ca sd
nhirng hgn chi dd chiing tdi dua ra mgl sd gidi phdp Ihirc lien mang linh khac phuc de
gdp phdn phdt huy hifU qud cua hinh Ihirc Ihi Irdc nghifm trong lh\rc lien gidng dgy vd hgc
Igp mdn Logic hgc
Tir khda thi trdc nghiem, hinh thue kiem tra, kiem tra logic hpe
AB.STRACT
I '%itig objective lest in evaluating and assessing students' perfgrmance in Logic
- a view based on reality of teaching and learning Lggic
in Ho Chi Minh City University of Law
In this article Ihe resegrcher presents advantages and disadvantages of objective
lest, based on the reality of testing and evaluating sludenls' performance in Logic in Ho
Chi Mmh city University of Law Based on presented disadvantage^,, the researcher
suggests some practical solutions to enhance the efject of objective test in leaching and
learning Logic
Keywords' objective test, kinds of examination, logistics test
1 Dan nhap nhanh, ehinh xdc Igp lugn chdt ehe,
Hien nay, logic hpc la mdn hpc co ehung minh, bde bd mpt each thuyit
bdn dupc "phu sdng" khd rpng rdi d cdc phyc, trinh bdy tu tudng ngdn gpn, khiic
trudng dai hpe Tgi Trudng Dai hpe Ludt chiet, rd rdng, mgch Igc, bijt phdt hien
TPHCM, logic hpc dupe xem Id mdn hpe nhiing dung, sai, ddo trd, nguy bien trong
tien quyet, nen tdng va Id mdn hiem hoi Igp lugn cua ngudi khde
dupe gia nguyen sd lupng tin chi' Diiu Ngoai ra, vdi ddi tupng ngudi hpc
dd cho thdy vai trd quan trpng eua mdn ddc thu la sinh vien ngdnh Luat, ndi dung
hpc ndy ddi vdi sinh vien ndi ehung vd hpc va thi edn dupc thiSt kS theo xu
sinh vien ngdnh lugt ndi rieng Logic hpc hudng cung edp phuang phdp va kT ndng
se cung cdp cho sinh vien nhthig kien thyc te trong cae tinh buong ludt, xay
thue, phuong lien tdi thieu de ren luvC-n dyng dp nhay cam cdn thiit trong cac
vd ndng cao kT ndng tu duy giup tu duy thao tdc tu duy vd nhanh chdng nhan biet
nhiing bdy tu duy trong thye ti hpc tap,
• ThS Trudng Ogi hgc Ludt TPHCM '^^ ^'*<^- O * ' ' " " g ^^ '^^^ "ghe nghiep
tuong lai cua cdc em, ddc biet Id vdi
Trang 2Phgm Thi Minh Hai
nhihig ngudi tr\rc tilp tham gia vipc dilu
tra, xet xii, nSng l^rc tir duy vk nSng l^rc
chuyen mdn sS 1^ hai yeu t6 song h ^ h
anh hudng r^t Idn tdi sy chinh xic cua
cac quyet djnh cd Hen quan tdi s6 p h ^
cua con ngudi (thao tac dinh tpi danh)
Dieu nay ddi hdi giang vien khdng ehi cd
CO vai trd truyen dat nhthig kiln thue
logic thong thudng mk edn 1^ ngudi eung
eip cac kl nSng tu duy vdi vai trd nhu la
kim chi nam de ngudi hpe ty tin sir dpng
trong thyc tl hpc tgp va nghe nghipp
Trong qud trinh giang dgy va su
dyng hai hinh thiic thi trSe nghiem va ty
luan, chiing tdi hi?n dang md rpng ip
dyng hinh thue thi trSe nghi?m va tien tdi
hgn ehe dan hinh thde thi ty l u ^ Thyc
tien giang day da ngay cang chiing minh
tinh diing dan eiia hinh thde thi nay
2 U'u diem
27 Phfim vi rgng, npi dung bao qudt
Day la diem manh cua hinh thiic
trac nghiem LTu diem nay the hipn kha ro
trong mdn hpc ed eau true npi dung vira
phirc tap, dan trai lai vua lien ket nhau
nhu logic hpc Cu the, giang vien ed the
de cap trong de thi tu kien thue li thuyet
tdi thyc hanh, tu cac md hinh edng thiic
tdi viec giai quyet cac tinh huong thyc te,
tir nhimg van de rieng le, chuyen biet tdi
nhiing ndi dung mang tinh cau triic, khai
quat Co nhiing cau hdl "thuan tuy li
thuyet ve lich six mdn hpc:
Vi dit: Ai duac coi la cha de cua
Logic hpc?
A: Aristote B Platon
C Soerate D Hegel
Tdi nhihig v4n dl li thuyit ma sinh
vien can phai ghi nhd:
K/rffi; Ki hifu A =A Id ki hifu cua
lugt tu duy ndo?
A: Dong nhdt B Cdm mdu thudn
C Trift tam D Li do day du
V& cAc tinh huong gii djnh:
Vi dfi: Ong X, cifu bp trudng mpt
Bp np, sau khi bf cdc dgi bieu Quoc hpi chi trich rdt nhieu ve vifc khong thue hifn nhiing dieu dd cam kit, ong dd noi mpt cdu noi nhu sau: "Toi khong hua nda, toi xin hua vdi quoc hpi day" Ong
X da vi phgm:
A Lugt Cdm mdu thudn
B Ludt Dong nhdt
C Ludt li do ddy dii
Hinh thire thi nay se dam bao eho
su "phu sdng" toan dipn npi dung mon hpc Do dd, nhihig phan trpng tam ma sinh vien nam viing la dieu kien can ban
de sinh vien cd dupe sd diem can thiet, tuy nhien, hieu biet toan dien ve mon hpc mdi la dieu kien tien quyet de sinh vien dat diem tdi da Viee sinh vien hpc tu, hpe vpt de dgt dupe so diem cao la dieu hoan toan khdng thi xay ra
Trong khi dd d de thi ty luan, do han chl vl thdi gian va dae trung cua hinh thirc thi, vdi s6 lupng eau hoi han ehl, giang vien kho co the dua vao ndi dung thi t4t ea eac npi dung mon hpe, chi
dl cap mpt sd yeu to mang tinh chat dai dien ma trong qua trinh giang day, chung tdi nhae nhd sinh vien ring do la eac npi
dung trpng tam dk thi cu Ngudi ra dl
cung phai can nhSc viec cho kiem tra ndi dung gi va bd qua npi dung gi
2.2 Phil hpp v&i muc dich vd yeu cdu gidng day
Trang 3Ttf ll$u tham khSo
Vdi ddc tnmg cua mdn hpc Id chi ra
dudng l6i vd phucmg phdp tu duy dung,
do dd, gin nhu khdng ddi hdi sy sdng tgo
cua ngudi hpc - von rat phu hpTi vdi hinh
thue thi ty lujn - md ddi hdi sy hiiu vd
vdn dyng linh hogt cdc quy lu$t vd hinh
thue tu duy sdn ed vdo thye ti MJt khde,
doi tupng hpc tgp Id sinh vi6n ngdnh Lu^t
ddi hdi nhflng kiin thde logic phdi dupe
truyen dgt theo mpt cdch thde cd sy liSn
ket vdi npi dung eua ngdnh Lu^t nhdm h5
trp cho vi?c tu duy trong cde mdn hpc
chuyen ngdnh Do dd, vdi cau true tieu dc
neu ra npi dung tinh hudng ludi vd cdc
cdu nhieu Id edc lya chpn, hinh thue trdc
nghipm ndy dd td ra khd hipu qud trong
viec ddnh gid ndng lyc xu II tinh huong
da dgng eiia sinh vien Chdng hgn, di
kiem tra kien thue vd vgn dyng hiiu phan
ludt tu duy, thay vi di vdo dinh nghTa hay
npi dung tung yeu cdu cy thi, thi de chu
Upng dua ra cac tinh hudng
Vi du: Truoc tda bd Mmh ndi "Tdi
dongy bdn nhd giiip con trd ngr" Thir ki
phien tda ghi: "Tdi dong y bdn nhd trd
nagiupcon" Vdy thu ki Ida dd vl phgm ludt:
A Ddng nhdt B Cdm mdu thudn
C LI do ddy du D Trift tam
Dgng cdu hdi cd tinh kl ndng nay
bupc sinh vien vua phdi nhd li thuyit - vi
niu khdng nhd thi s5 khdng thi xac djnh
dupc lugt tu duy ma nd vi phgm, vira
bupc sinh vien phdi cd kT ndng "hiiu" li
thuyet de gidi quyit tinh huong gid djnh
md de dua ra
Vdi viec dua ra rdt nhieu cdu hdi ed
tinh kT ndng, thu hep sd lupng cau thudn
li thuyet trong di thi edn giup ngan ngua
tinh trgng hpc thudc long, tinh trang dpe
chip dang dien ra trong mpt bp phgn sinh vi8n Do dd, vdi hinh thue thi ndy, dii muiin hay khdng ngudi hpc cung bu^c phai thay doi edeh hpc thi truyen thong
vd hpc cdch tu duy ddcc Igp, ty chu, linh hogt di di ddng dng phd vdi cdc cdu hdi trong di
2.S Hinh Ihirc Ihl mang tinh nhf nhdng, khdng gdy cdng thdng cho Ihi sinh
Da phan sinh vi6n khi dupc hdi thudng cd cdm gide it cdng thdng hem khi thi trdc nghipm Mpt phan li do mang tinh tiSu cyc Id tdm li hSn xui may rdi dya vdo
sd lupng lya chpn cd sdn Tuy nhien, da phan sinh \icn sau khi hpc xong mdn hpc, li do lya chpn hinh thue thi trdc nghipm xuat phdt tu tdm the ehu ddng,
quen thupc vi dd dupc tin luypn thudng
Mis en trong cae budi hpc tren Idp Ngay
tu budi hpc ddu tien, chung tdi dd neu quan diem gidng dgy: hpe gt thi na>: mot
so npi dung trpng tdm phuc tap s5 dupc ddnh nhiiu thdi lupng gidng dgy hon nhiing phan khdng phdi trpng tdm, hodc nhiing ph4n cd npi dung dem gidn ma gido trinh dd the hipn rd \a sinh vien hodn todn ed the Hr dpe d nha Do dd, khi ket thue mdn hpc, sinh vien khdng bj bo ngd vdi phuang phdp hpc, hinh thue thi
vd npi dung cau hdi thi
Thyc te gidng dgy cung chi ra mpt ddc diem ddc trung cua sinh vien Ludt khi hpe logic hpe: rat hao hue khi giang
\ icn dua ra edc tinh hudng gid dinh de xu
li, nhung khd trdm lang vdi nhttng tiSt hpc thudn tuy li thuyet Dieu dd cho thdy, vipc cd nhdi nhet kiin thue li thuyit thudn tuy tai Idp se khdng thi mang lai hieu qud hpc tap cao bang cdch giang li
Trang 4Phgm Thi Minh Hai
thuyit thdng qua cdc tinh huong gpi md
Thiet ki de thi trdc nghipm theo phucmg
phap ndy se lam gidm dp lyc phai hpc vd
ghi nhd nhOng npi dung li thuyit ddi
dong, khd khan, cd tinh sdch vd Do dd,
di thi chi thyc su nhp nhdng vdi nhdng
dii tupng hpc bdnh nghiem tuc, hieu bdi
thdu ddo vd van Id birc trucmg thdnh khd
CO the vupt qua vdi nhiing doi tupng
trong chd sy dn may hay hpc tu, hpc vpt
Xet cho ciing, myc dich cua thi cu khdng
hdn Id ehuypn ddnh gid diem so nhdt thdi,
ma la cdch nhdc nhd, thue day sy dpe lap
va van dyng tu du>' logic dd dupc hpc
vao trong thye ti chuyen mdn mdt edeh
tu nhien, gdn bd nhu ctrni dn, nude udng
hdng ngdy
2.4 Rut ngdn thdi gian kiem tra, gia
lang sir nhgy ben, linh hogt trong xu li di
Hien nay, chung tdi dang dp dyng
then lupng thi ddnh eho trdc nghiem nhu
sau: Thi giiia ki 10 eau trong 10 phut cho
noi dung Tam dogn lugn; thi cudi ki 33
cau trong 50 phut eho todn bp ndi dung
da hpe Chung tdi nhdn thdy: nhiing sinh
vien tham dy day du ede budi hpc vd lam
day du cdc bdi luyen tap se ldm bdi xong
sdm hon thdi gian quy djnh; nhdng sinh
vien cd hieu nhtmg khdng tich cue luyen
tap cd the khdng dii thdi gian; nhung sinh
vien cdn Igi thi hodn todn bj Idng tung giOa ddp dn vd cde cdu nhilu nen thudng
cd xu hu<!mg chpn dgi Do dd, vipc dua ra thdi gian tuong doi hgn hpp edn Id mpt cdch di chung tdi kiim tra thao tdc tu duy - tdc muc dp rta luypn trong edc gid luyen tap eua sinh vien do Doi tupng dupc diim tii da chdc chdc phdi cd mpt
sy am hiiu li thuyit vd tu duy nhay b6n, linh hogt nhat djnh Day Id mpt kT ndng rdt cdn thiet cua mdn logic hpc ma chung tdi muon sinh vien phdi trang bj dupc -hpc de vgn hdnh trong thye tiln nghi nghiep chu khdng don thuin hpc di thi
2.5 Phdn hda dugc ngi dung mdn hgc
vd trinh dg sinh vien
Thye ra, vipc phdn hda trinh dp sinh vien khdng phdi Id uu thi cua thi trdc nghiem vi bdn than thi ty ludn ciing dam nhdn dupc chuc nang nay Tuy nhien, muc dp phdn hda trinh dp trong hinh thue thi trdc nghiem dupc hien thi chinh xdc
vd ehi tiet hon thdng qua sy da dang cua cdc cdu hdi, muc dp khd de trong timg
cdu va each thue quy hoach pham vi eua
cdc cdu hdi dd Chdng ban, vdi de thi 33 cau trdc ngbipm vd 6 chuang bai hpe^, ngudi ra de de dang phdn hda theo hudng chu trpng phan trpng tdm nhung van dan trdi deu khdp cde npi dung Chdng han^: Npi dung chuong
Bai cuong ve Logic hpe
Nhiing ludt ca bdn ciia tu duy
Khai niem
Phan dodn
Suy ludn
Chung minh - bde bd - nguy bien
So lupng eau trac nghifm 2/33 8/33 4/33 4/33 10/33 5/33
Trang 5Tu- li$u tham khSo
6 mSi m^t nhdm cau hdi cua timg chuomg, cd the tgo igp mirc dp khd - de de
phan hda trinh dp hilu biet ciia ngudi hpc Chflng hgn, d nhdm suy lu$n, cd thi xay
dyng mirc dO cSu khd dl nhu sau:
Cftu hdi thi kilm tra suy lu|n d6ng hay sai I Yeu c^u cSn nftm
Mpi ngirai deu phdi chet Gd khong Id ngudi
Vgy gd khong chet Suy lugn ndy:
A Dung B Sai do T trdi dau C sai do
M hai Idn trir D Sai do D trdi dau
Ddn dng thong tri the gidi Ddn bd thdng trj
ddn ong Vgy ddn bd thdng trf the giai
A Dung B Sai do T trdi dau C sai do
Mhai lan trie D Sai do D trdi ddu
Nam vihig ba quy t3c chung cua Tam dogn l u ^ don
Nam vChig ba quy tflc chung ciia tam dogn lu^n don
Nh§n bilt dupc hi?n tupng danh trao khai ni^m: c6 hai han tir na ni nhau va phai dupc xem la hai ban tir
(thong trj the giai \k thong trj ddn
' ' " ^ ' ) - _ ^ _
Chi eo nam giai mdi Id ehu the true tiep eua
tpi hiip ddm A la nam gidi Vdy A Id chu the
true tiip cua tpi hiep ddm
A Dung B Sai do tiiu tiin de phd djnh
tien tir C Sai do tieu tien de khdng dinh
hdu tir
Tir tii la ngudi thdnh nien Td- tii Id ke phgm
tpi Vdy nguai vj thdnh nien khong Id ke
phgm tpi
A Sai do Ttrdi ddu B A C, D deu sai
C Dung D Sai do D trdi ddu
Ni^ni vihig hai quy tac cua lam dogn lugn dieu kj?n
Nam vihig dgng d^c biet cua phan
doan dieu kien: Chi co P m&i Q 0 dgng nay, phai dua ve md hinh "Neu
khong P thi khong Q" rdi mdi xet tam
dogn lugn
Nam viing 3 qu>' tac chung cua tam dogn lugn dcoi
Nhgn biet hi^n tupng dinh trao
khai nipm (nguai thdnh nien va ngudi
vj thdnh nien)
KT nang su> luan nhanh de dinh vi chinh xac dap an trong sd cae cau nhilu (dap an B)
Tiiy theo trinh d0 ciia sinh vien va
yeu cau eua giang vien, ti lp cau hoi khd
-de cd the dupc thay ddi
2.6 Thugn tifn trong cdng tdc chdm
thi vd phiic khdo
Cham thi trSe nghiem chilm it thdi
gian, dp chinh xac g^n nhu tuypt d6i, dac
biet d mdt s6 trudng da ty dpng hda hai
khau nay bang may mde
3 Nhirng ton tai va cich thiic khk phyc
3.L De ddng sao chep, nhin bdi cua nhau
Mpt trong nhimg ban ehe kho tranh eua thi trfle nghiem la mflc dii sinh vien khd cd thdi gian quay edp trong sach v6 nhimg lai dl cd co hpi copy bai ciia nhau
Dflc biet neu chi cd trao thu ty ma vin
Trang 6Phgm Thi Minh Hai
gii? nguyen npi dung cflu hdi vfl n^i dung
cac lya chpn thi tinh khflch quan cua
ddnh gia sg bj anh hudng Trong thyc te
giang dgy, chiing tdi ciing thyc hlpn vipc
trao thur ty cau hoi nhung chi coi dd la
bi?n phap hd trp Hi^n chung toi dang sir
dung hai bien phap chu dgo sau: thay ddi
npi dung cau hdi vfl thay ddi lya chpn
tren co sd dam bao vin co sy tucmg ddng
ve miie dp khd - dl nhung kh6 de nhin
bai nhau Chflng hgn, tir mpt tam doan
lugn don "Vgn chuyin trdi phep chdt ma
tdy Id CO hdnh vi trdi phdp lugt Ong Maxell vgn chuyen trdi phep chdt ma tiiy
Vdv chdc chdn ong Maxell cd hdnh vi
trdi phdp lugt'"' chdng t6i tgo tbflnh nhilu
"biin thi" vdi n$i dung khflc nhau, do dd
cd thi hinh thue cdc lya chpn giong nhau
d eflc ma de, nhung lya chpn diing lai khflc nhau, co the cflu nhieu cua dl nfly Ifl dflp dn cua de kia vfl ngupe lai Cy Ihl: Cach thu'c bien doi
Tam dogn lugn gde
Them mpt hgn tu
(bang each bd di tu trai
phep) trong phan doan
tien de
Doi chat cua phan
doan tieu tien de
Lay ket luan eiia TDL
goe lam tieu tien de
ciia TDL mdi va
ngupe lai
I'DL sau khi bien doi Vgn chuyen tifli phep chat ma tuy Ifl c6 hflnh
vi trfli phap lugt Ong Maxell van chuyen trfli phep chat ma tiiy Vgy, chfle ehfln dng Maxell cd hanh vi trai phflp luat
Vgn chuyen trai phep chat ma tuy Ifl co hanh
vi trai phap luat Ong Maxell van chuyen
chdt ma tuy Vay, chfle ehfln dng Maxell ed
hanh vi trai phap luat
Van chuyen trfli phep chat ma tiiy la co hanh
vi trai phap luat Ong Maxell khong van
chuyen trai phep ehat ma tuy Vgy, chfle chan dng Maxell khdng co hanh vi trai phap lugt
Van ehuyin trai phep chflt ma tuy la co hanh
vi trfli phap lugt (i>ng Maxell co hdnh vi trdi
phdp ludt Vdy, chdc chdn ong Maxell da van
chuyin trdi phep chdt ma tuy
Dapfln
Suy luan diing
Suy lugn sai
do cd 4 han tu (quy tflc 1)
Suy lugn sai
do D trfli dau
Suy lufln sai
do M hai lan mang dflu trir Cdch trao cau true nay cung giup
han che tinh trang ed dp venh khd de
giiia cdc ma de neu chung ta thiet ke ndi
dung edu hdi hodn todn khde nhau giiia
cae ma de ay
3.2 Khd dp dgng cdc tinh huong phiic
tgp vdo irong bdi hiem tra
Mdt de thi qua ddi se keo theo
nhieu he lyy tieu cyc ve tam li ngudi Idm
bai, thao tdc in sao di, thdi gian kiim
tra ma cdc tinh hudng thue te, dae biet
Id tinh hudng luat ludn cd su phuc tap vd
dp ddi nhdt dinh Chdng hgn d tinh hudng
Phd vu dn cudng hiep bdo ve danh du
cho ddng ho Ken-na-di [3, tr.239] duac
mieu td trong gdn 4 trang gido trinh, viec dua todn bd tinh hudng vdo bdi thi la viec bdt khd thi Do dd, giao vien chi cd thi lya chpn nhiing tinh hudng cd chat ngan gpn, trdnh cho sinh vien cam gide bj qud tdi vi di ddi, ddng thdi phu hpp vdi khudn khd giay kiim tra De khde phye
105
Trang 7hgn chi ndy, chiing tdi dua nhiing tinh
huong phuc tgp vdo trong gid gidng
nhung tdng cudng cdc tinh hu6ng ngdn
gpn trong di kiem tra Qua dd, cdc em
Idm quen vdi tinh hu6ng ngdn gpn trong
di nhung dong thdi cflng cd kT ndng gidi
quyit cde tinh hu6ng thyc ti phdc tgp cd
lien quan trong thyc ti
J I Khd kiim Ira cdc kt ndng diin dgi
vd tu duy sdng tgo
l);i\ Id nhupc diim chung eua hinh
thue trdc nghiem dd dupc nhiiu nhd
nghien ciru nhdc din Cyc doan hem, mpt
s6 ngudi coi hinh thue thi trdc nghipm
nhu mpt mdn dn sdn Idm thui ch^t khd
ndng dien dgt vd tu duy dpe Igp cua
ngudi hpe Tuy nhien, nhin nhgn van de
na\' ddi hdi cdi nhin da chieu trong dd cd
chuyen bdn than mdn hpc ay cd cdn phdi
the hipn tu du\ sdng tgp hay khdng \'di
logic hpc, cdu tra Idi nghieng hdn ve
khdng vi ddy Id mdn rdn kT ndng theo md
hinh dung chu khdng bdt ngudi hpc phdi
dung cdi tdi de di tim cdi mdi me, cdi
ehinh kiin rieng tu De bd trp eho sy the
hien tu duy ay bdng ngdn ngii, Truimg
Dgi hpc Ludt TPHCM dd bdt dau dua vdo
mpt mdn hpc mdi Id KI ndng nghien cdu
vd lap lugn - dupc kiem tra dudi hinh
thue thi ty lugn Do dd, khodng trdng cua
vipe ty bieu dat tu duy trong logic hpc sS
dupc mdn hpe ndy hd trp Chung tdi coi
vipe song hdnh cua hai mdn niiy nhu mpt
li nude md logic hpe Id nude, cdn mdn KT
ndng nghien cim va lap ludn la cdi li Niu
thieu edi li, chdc chdn nude s5 khdng tdn
tai vd djnh hinh Ngupe, Igi, cdi li ma
khdng ed ehiic ndng chua dyng nude thi
nd cung trd nen vd nghTa
3.4 Hgn hfp vi khung thdi gian biiu cho vifc gidng dgy
Chi vdi 15 budi hpc tucmg duong
30 tiit dgy vd mpt npi dung trai ddi sau chuong [3], trong dd cd nhiing chuong mang tinh trpng tam vdi sinh vien Lugt nhu: Nhiing Iu4t co bdn cua tu duy {edn thiit trong cdng tdc tgo Igp cac vdn ban phdp lugt vd xu li cdc tinh huong phdp lu^t): chuang Su\ lu?n (quan trpng trong
cdc tu duy lien quan tdi xit xu) Vdi mpt thdi lupng len \dp khdng nhiiu vijc
trinh bay todn bp kien thue cdc chuang Id diiu khdng the, chua ke bdt bupc phai co
sy san se gida cde tiit gidng Ii thuyet va r^n luypn tinh hudng Chung tdi xu li vdn
di na\ bdng giai phdp bdt bupc sinh vien phai ed dpng tde dpe sdch trudc d nha Gidng vien kiem tra qud trinh ty hpc nay thdng qua edc bdi tgp nhd \'i du:
\'di mdi mpt lugt tu duy, anh (chj) hdy dua ra mpt tinh hudng cd lien quan
V a li gidi sy lien quan day
Cho mpt phan dodn dgng A I, E, 0
\ a xdc djnh tinh chu dien cua cdc hgn tit trong phdn dodn
Lay \i dy minh hpa eho mdi mpt
md hinh eua Tam dogn ludn (Hinh I, H, III, l\') vd xet tinh dung sai cua chiing
Lini y: Cdc tinh hudng, vi dy dua ra
phai khde nhau \a khde vdi cac tinh hudng dd cd trong gido trinh; va viee nop bdi phdi dupe thye hien trude budi giang eua npi dung hpc cd lien quan
De thyc hien dupc yeu cau ciia gidng vien, sinh vien bupc phdi ed khau
tu nghien cim gido trinh trudc d nha Do
dd, thdi gian d tren ldp khdng bi trdi dii thdnh thdi gian giang day nhihig gi da co
106
Trang 8trong sflch ma Ifl thdi gian de giang vien
giang nhthig phan trpng tam, d6ng thdi
gd rli nhihig vudng mflc ciia sinh vien vfl
giai quyet eflc tlnh huong gia djnh
3 Ket lu^n
Nhin ehung, doi vdi eflc mdn hpc
noi ehung vfl logic hpc ndi rieng, khdng
CO hinh thde thi nflo dupc xem Ifl uu vipt
tuyet doi Vipe lya chpn hinh thirc thi phy
thupe rat nhieu vflo dflc trung ciia mdn
hpe, cua ddi tupng ngudi hpe va quan
diim giang dgy cua mdi ngudi dgy
Chinh vi the, m^c dii khung chucmg trinh
dao tgo eua Bp e6 linh thong nhat ehung
nhung gan nhu khdng cd sy bflt bupc ve
hinh thue kiem tra Tir thyc tien eua
Trudng Dgi hpc Lugt TPHCM, thdng qua nhthig phan tieh nhu tren, chung tdi nhan thay hinh thiic thi trfle nghipm la hinh thue uu vi^t vfl phii hpp nhat de do Iudng, danh gifl kit qufl giang day doi vdi
bp mdn logic hpc
Vipe xac djnh hinh thue thi nfly cung ddi hdi giang vien va sinh vien trong qua trinh hpc can co sy dieu ehinh
ve phucmg phflp truyin dat va phucmg phap hpc tap cho phii hpp, de vipc kiem tra khong chi mang tinh danh gia ket qua nhat thdi mfl cdn thyc sy dem Igi nhiing kit qua lau dai, gop phan vao vipc thyc hanh kT nflng nghe nghipp cua sinh vien trong tuong lai
' Hien t^i, chuang trinh dir thao cua cdc 16p Ch^t lufjmg cao dang duoc dieu chinh theo hirdng giam so luong
tin chi ciia cac mon khoa hpc co ban v i mpt s6 mon chuyen nginh 6k mo r^ng XW\ lugmg hoc cho cdc m6n
ngoai ngu nhu tieng Anh, tieng Phdp
" S6 lupng va npi dung cac chucmg tiiy thupc \ko timg gido trinh (5 day, chiing toi can cii vao tai li?u giang d^y chinh tai Trirdng D^ii hpc Luat TPHCM "Logic - Phi logic trong &i3'\ thuimg vd phap luat" ciia tdc gia Le
Duy Ninh
' Sy phan chia nay co ti'nh chdt tham khao, tiiy thupc vdo yeu ciu thyc tiln ciia timg doi tupng ngudi hpc vd quan diem cua ngudi gidng day
TAI LIEU THAM KHAO
1 Nguyin Phung Hoang, Vo Ngpc Lan (1997), Phuemgphdp trdc nghiem trong kiem
tra vd ddnh gid thdnh qud hpc tap, Nxb Giao due
2 Le Dire Ngpc (2004), Gido due dgi hpc (Quan diim vd gidi phdp) Nxb Dai hpc
Quoc gia Ha Npi
3 Le Duy Ninh (2012), Logic-phi logic trong dai thuang vd phdp ludt, Nxb Dai hpc
Qu6e gia TPHCM
4 Duong Thieu T6ng (2005), Trdc nghiem vd do luang thdnh qud hpc tap, Nxb Khoa
hpc xa hpi
(Ngdy T6a soan nh$n difQC b^r 24-5-2012, ngdy phdn bi$n ddnh gid 28-6-2012;
ngdy ch4p nhdn ddng 29-8-2012)
107