H U C N G DAN QUAN LI Sl/DUNG CAC LOAl BAI TAP TINH HUONG SUDUNG TRONG DAY HOC K? THUAT NONG NGHI§P dTRUNG HOC CO Sd 1 Ddt van de Bai tgp tinh huong (BTTH) Id nhu''''ng tlnh hu6ng xdy ra trong qud trinh[.]
Trang 1CAC LOAl BAI TAP TINH HUONG SUDUNG TRONG DAY HOC K? THUAT NONG NGHI§P dTRUNG HOC CO Sd
1 Ddt van de
Bai tgp tinh huong (BTTH)
Id nhu'ng tlnh hu6ng xdy ra
trong qud trinh dgy hge dugc
ciu tnic dudi dgng bai tgp Dd
Id mgt cau true ngon ngii md
hinh hod yfiu cau ve kT thugt,
bipn phdp, phuang phdp dgy
hpc md yfiu cdu dd dang tiem
an chua dugc bgc Ig trudc
ngudi dgy khdng ed kinh
nghipm Mfl hinh ndy cd kha
ndng thiic tinh nhu cau phdn
tich nhiing khia cgnh cd lien
quan dfin mo hinh de cd djnh
hudng ddp iing yeu cdu Khi
giai BTTH thi khflng nhirng
giup HS khdc sdu kifin thiic
ma cdn ren luypn cdc ky nang
de van dyng trong thuc tifin
cugc song
Tuy nhien, hifin nay BTTH
van chua dugc sir dyng nhieu
trong day hgc ki thuat nflng
nghifip (KTNN) d THCS Vi
vgy can phdi tdng cudng sii
dyng chiing dfi nang cao hipu
qud dgy hpe bg mfln, ddp iing
mye tifiu dgy hgc ndi chung
vd day hoc KTNN ndi rieng d
THCS
2 Cdc loai BTTH trong
day hpc KTNN* THCS
Hipn nay cd nhifiu each
khdc nhau dfi phdn logi BTTH,
trong dgy hpc KTNN d THCS,
chiing toi phdn logi theo cac
cdeh sau day:
a Phdn logi difa vdo ddc
diern vd tinh chdt cda mdu
thudn xudt Men
* BTTH tao ra tu mau
thuan gifta kifin thiic cu va
kifin thiic mdi
Ngdy nhgn bdi 20/9/2012; Ngdy duyei dang 25/11/2012
Logi tlnh huong ndy xuit hifin do sy khdng phii hgp giiia kien thiic cu (cdi dd biet) vd kien thiic mdi (cdi chua bi^t)
Khi tlnh hu6ng xuit hipn, HS nhgn thiy cd khfa cgnh mdi ve tri thiic vd mgng muon dugc thda mdn nhu cau khdm phd
Gidi quyet mdu thuin ndy bdng cdeh vgn dyng nguon tri thiic mdi bp sung de ldm rfl, gidi thich van de d^t ra
Vi dy: M0t lan dgc bdo, bgn Thdo dugc bifit cd dgi
va con triing Id hai trong cde nguyen nhdn ldm gidm ndng suat Ilia nfin khi dugc cfl gido hdi "Lam thfi nao dfi ndng suat Ilia dgt miic cao nhat?" thi bgn Thao trd ldi: "Dfi ed nang suat lua cao nhdt khi gieo trflng cdn phdi diet hfit cfln triing va cfl dgi trfin rugng liia vi chung
Id nguyfin nhan Idm gidm ndng suat" Mpt sfl bgn dong
y nhung cd mgt sd bgn khdng ddng y vdi cau trd ldi cua bgn Thdo Em cd ddng y vdi cdu trd ldi cua bgn Thdo khflng?
Tgi sao?
* BTTH t^o ra tu mdu thuan giiia ly thuyfit vd thye tifin Tinh hudng ndy xudt hifin khi nhung bieu hifin cua thye tien da dgng, phong phii khflng hgp ly vdi ly thuyfit khoa hgc tuang ling Mau Uiuan ndy dgt
ra cho HS mgt nhifim vi^ cin phdi nfli nhip hai diu cdu ly thuyet va thye tien mpt each phu_ hgp Gidi quyet mau thuan ndy la phdi tim ra nhiing yfiu tfl, dieu kifin da chi phfli, anh hudng dfin bifiu hifin cua
TS NguySn Duan
Tru&ng DHSP - DHHui
thye tien
Vi dy: Trong tiet hpc v^ bdi
*Tdc dyng ciia phan bdn trong tr6ng trgt" d ldp 7E, khi nghe
CO gido ndi "phdn hOii eg dung
de bdn Idt" thi bgn Thing d Idp dd chg ring "phan hihi
CO Cling cd the bdn thiic" vi bgn ay thiy bo mp bdn nhu the trfin rugng liia nhd minh Theo em bgn Thing ndi diing khdng? Tgi sao?
* BTTH tgo ra tir mau thuan xudt hipn bdi sy lya chpn
Mau thuan ndy sinh khi
HS diing trudc sy lya chon mgt phuang dn trong sd nhieu phuang dn khdc nhau md xem
ra phuang an ndo cung cd ve hgp ly Gidi quyfit mdu thuan nay bdng each phan tich, loai
bd nhiing cai khdng ban chat dfi tim ra cau trd ldi dimg nhat
Vi dp: Khi ndi vfi d$c diem phd hgi cua con trimg, cd 2
y khac nhau: Y kifin 1: Cfln trimg pha hgi m^nh rihat d giai dogn sau non; Y kifin 2: Cfln tning pha hgi mgnh nhit d giai dogn sau trudng thdnh Em sfi chgn y kifin nao? Tai sao?
* BTTH tgo ra bdi mau thuan giQ-a ban chit va hipn tugng (nghjch ly) Mdu thuan xudt hipn khi
cd su trdi ngugc gifta yfiu tfl ban chat vdi hi^n tugng, sy kipn tuong iing, hogc trai ngugc giGa nhiing hipn tugng vdi quan nipm thong thudng
vd kifin thiic ma HS da hilu trudc dd Difiu nay se tgo ra
sy xung d0t trong tu duy cua
Trang 2HS va chinh sy nghjch I^ nay
lgi loi cufln su td md ciia HS
HS phdi di tim hi^u, phdn tich
hifn tugng, phfi phdn quan
diem sai dfi di dfin cai chan ly,
cai bdn chat cua vdn dfi
Vi dy: Bifit phan bdn cd
tdc dung ldm tdng nang suat
cay trflng vd chat lugng nflng
sdn nfin bgn Nam da bdn rat
nhifiu phdn dgm cho vudn cd
chua cua minh vdi suy_ ngh!
rdng cdng bdn phan nhifiu thi
cd ehua cdng cho nhieu qud vd
qud edng to, ndng suat se cao
Nhung sau khi bdn nhieu phdn
dam mflt thdi gian thi nhifiu
cay cd chua bj heo Id, qudn Id
va chdm phdt trifin Bgn Nam
khflng hifiu vi sao cd chua lgi
bj nhu vgy Em hay giup ban
Nam gidi dap nhiing thac mac
do
* BTTH tgo ra bdi mau
thuan giua nguyen nhdn vd kfit
qud (bdt ngd)
Tmh huong nay xdy ra
khi xuat hifin mdu thudn giiia
nguyfin nhdn vd kfit qud cua
nd, dieu nay gdy nfin su bat
ngd, ngodi dy dodn jogic ciia
HS Cdeh giai quyfit la lam
sdng to nguyen nhdn ea bdn
nhat ddn dfin kfit qud do
Vi dy: Nha bde Ndm ed
2 thira rugng cung dipn tich,
thira ruflng thii nhdt Id ddt cat
pha, thiia raflng thii hai la dat
thit nang Cung thdi difim,
trqng cimg difiu kipn thdi tifit
giflng nhau, bdc Ndm cho vao
hai mpng lua trfin mpt Iugng
nudc nhu nhau Sau mflt thai
gian kifim tra thi bac i y thiy
miic nudc d thiia rugng thii hai
con lgi nhieu han miic nudc d
thita ruflng thir nhit Bdc Nam
dem chuyfin ndy kfi vdi ban
Thing (chdu bdc Ndm) d Idp
7 0 nhung bgn Thing khflng
tin vi bgn i y cho r i n g lugng
nudc ban dau ciia hai thiia rugng bing nhau, trong dilu ki^n thdi tilt giflng nhau thi lugng nudc mat di sau mgt thdi gian eiia hai thiia rugng phdi nhu nhau Theo em, bgn Thdng ndi nhu vgy cd dung khdng? Tgi sao?
b Dua vdo mgc dich ly lugn dgy hgc
* BTTH dfi hinh thdnh kien
thiic, ky nang mdi BTTH chiia dyng ngi dung kifin thiic, ky ndng mdi dfli vdi
HS Khi gidi dugc cde bdi tgp ndy Id HS s6 ITnh hgi kifin thiic mdi vd hinh thdnh k$> ndng mdi
Vi dy: Trong cugc thi "Dfl vui dfi hgc" d ldp 7B, dgi 1 nfiu cdu dfl cho dgi 2 nhu sau:
Cd 4 chdu A, B, C, D bdng nhau: chdu A: chiia dat set;
chau B; chiia dat cat; chdu C:
chiia ddt thit; chau D: chiia dat cat pha Cho vao 4 chdu A, B,
C, D lugng nude giong nhau, trong cimg dieu kien thdi tifit nhu nhau Sau mdt thdi gian thi lugng nudc cdn lai trong chdu nao la nhieu nhat, chau ndo it nhat? Biet rang lupng dat trong mfli chau Id bdng nhau Dpi 2 tra ldi: Khong the biet dugc vi khflng thfi do dugc lugng nudc cdn lgi trong cac chgu.Theo em dgi 2 trd ldi nhu vgy diing hay sai? Neu em
la thdnh vifin cua dgi 2 em sg trd ldi nhu thfinao?
* BTTH dfi cimg cfl, hoan thipn vd he thong hod kifin thiic
Logi bai tap nay thudng sii dyng sau khi HS ITnh hpi kifin thiic mdi ,nhung cdn rdi rgc, dan lfi nham de HS khdi qudt hda, h^ thflng hda kifin thiic, dong thdi van dung kien thiic vao hoan canh tuong ty
Vi du: Trudc khi tha cd vao
ao nuoi, bgn Quflc do dp trong
va dO pH ciia nudc trong ao vdi ket qud: dp trong (do bdng dia sech xi): 25 cm; dp pH: 7 Tii dd bgn Quflc kfit lugn: Ao nufli dd hodn toan phii hgp dfi thd cd nuoi Theo em, kfit lugn cua bgn Quflc chinh xdc chua? Tgi sao?
* BTTH de kifim tra ddnh gia kfit qud hgc tgp ciia HS Logi BTTH ndy dimg dfi kifim tra ddnh gid ket qud hpe tap ciia HS sau khi da ITnh hpi mpt kien thirc nhdt dinh (mpt ehuang, mOt bdi )
Vi dy: Cd 4 mau ddt trong phdng thi nghifim da bi mat nhan nen khflng nhan biet chinh xdc togi ddt cua timg mdu Khi sir dung^ phuang phdp ve tay thi 4 mau cho ra kfit qua sau day:
Mau 1: ve dugc thdnh
thdi nhung dirt dogn; mau 2:
vfi dugc thanh thdi, khi ufln khong cd vfit nut; mau 3: vfi dugc thanh thdi, khi ufln bi dirt dogn; mdu 4: vfi dugc thanh thdi, khi ufln cd vfit mit Neu chi can cii vao ket qua ve tay nhu tren thi em cd thfi xdc djnh dugc logi dat cua mfli man trfin khflng?
c Phdn logi BTTH theo logi ky ndng nhgn thuc cua HS Sit dyng BTTH frong dgy
hgc cd tdc dyng ren luyfin cdc ky ndng nhgn thiic cho
HS nhu: Ky nang phan tich -tdng hgp, ky nang so sdnh, ky nang khdi quat hda, ky ndng suy ludn Chiing tdi tgm quy udc: BTTH dimg dfi ren luyfin
ky nang nhgn thiic ndo cua
HS thi ggi tfin theo ky nang nhan thirc dd Theo each nay
se cd cdc logi BTTH: BTTH phan tich - tflng hgp, BTTH
so sdnh, BTTH khdi quat hda, BTTH suy lugn
Trang 3* BTTH phdn tich - t6ng
hgp
Phan tich vd tong hgp Id hai
m^t cua rngt qud trinh tu duy
thflng nhit cd su lifin hp m^t
thiet vdi nhau Tong hgp sg bO
ban dau cho an tugng chung
ve doi tugng, nhd dd md xdc
dinh dugc phuang hudng
phdn tich cho_d6i tugng Tir
sy phan tich dfli tugng sfi giiip
HS CO sy nhgn thiic day dii
ban ve doi tugng, phan tich
cdng sdu thi sy tong hgp cuoi
ciing cang cag, cdng day du
Sy tflng hgp hodn chinh sS
dnh hudng den ehit lugng ciia
sy phdn tich tifip theo Cii nhu
vdy, nhgn thiic ngdy cdng tien
sau vao bdn chat ciia sy vgt vd
hifin tugng
Sii dung BTTH Id mgt
frong nhirng bipn phap quan
frgng dfi ren luyfin k^ ndng
phan - tich tflng hop cho HS
frong day hgc KTNN 6 THCS
Vl du: Khi cfl giao hdi
"Muon hieu qua phong tni
sau benh hgi cao nhat thi phai
su dyng bien phdp phong trir
nao?" Ban Hung da fra ldi
"Mufln hieu qua phdng trir sau
benh hai cao nhdt thi phai sir
dyng tflng hgp cdc bifin phdp
phdng trir" Cfl giao yfiu cau
ban Hung chiing minh y kifin
cua minh nhung bgn iy limg
tiing Nfiu em la Hung thi em
se chiing minh nhu thfi nao?
* BTTH so sanh
So sanh Id syphan tich
nhiing difim giflng nhau
vd khdc rihau giiia cdc dfli
tugng nham phan logi sy vat
hien tugng thanh nhiing logi
khac nhau Tuy myc dich md
phugng phap so sanh cd thfi
ngng vfi tim diem giflng nhau
hay khac nhau
Vi dy: Trong de kifim fra
mgt tiet, cfl giao ra de: "Hdy
tim dilm khdc nhau giiia quy trinh fr^ng edy con cd biu
vd quy trinh trong edy con rl trin" Cd m^t bgn ldm bdi vdi cdu trd ldi Id: "Quy frinh tr^ng edy con cd biu khdc vdi quy trinh trong edy con re tran id
cd budc "rgch vd bau" Theo
em cdu trd ldi dd hodn todn chinh xdc chua? Tgi sao?
* BTTH khdi qudt hda Khdi qudt hda Id hogt dflng trf tup cap cao nhim gom cdc doi tugng cd ciing thugc tinh
vd bdn chat vdo mflt nhdm
Dd Id qud trlnh chuyin tir cdi dan nhit len cdi chung
Ky ndng nay giiip HS tdch dugc cdi chung, cdi ban chdt, nhChig mfli lien h^ ben trong mang tinh quy lugt cua tdi lipu nghifin ciiu, hpc tdp
Vi du: Cd mgt bgn^ cho rdng, dya vdo cdc bdng so Hpu sau day (bdng 1 va bdng 2) se biet dugc vai frd cua giflng vat nuoi frong chan nuoi Em hay chiing minh y kifin cua bgn dd
* BTTH suy lugn Suy lu$n la hinh thiic ciia
tu duy nhd dd nit ra phan dodn mdi tir mflt hay nhilu phdn dodn theo cdc quy tdc logic xdc djnh can cii vdo cdeh thiic l§p lu|in, suy lugn dugc chia thdnh cdc logi suy lugn khdc nhau nhu suy lugn suy dien, suy luan quy ngp Suy lugn suy dien Id suy lugn frong dd lgp lugn hi cdi chung dfin cai rifing, cdi dan nhat Suy ludn quy ngp Id suy lugn frong dd lgp lugn tir cdi rifing, cdi dan nhit dfin cdi ehung BTTH
rfin luypn kf ndng suy luan
cho HS Id bai tgp dgt ra yfiu cau HS phai qua con dudng suy lugn mdi ed ldi gidi hgp 1^ frong thdi gian nhat djnh
Vi dy: Trong mgt bai kifim fra d ldp 7G ndm ngodi, cfl giao ra bdi tap: "Cd 5 logi dit: 1) Dit cdt pha; 2) Ddt thjt ndng; 3) Dit set; 4) Dit thjt trung binh; 5)
(Xem tiep trang 44)
Gi6ng gd
G i r i
Ga Dong Tao
Ga mia G4 4c
G i t r e
G i Plymouth
Ga Gold — Line
G i Rohde dfi
G i New Hamp Shire
Nang suat trimg (qui/nim/con)
8 0 - 100
5 0 - 7 0
5 5 - 6 0
7 0 - 8 0
4 0 - 5 0
1 5 0 - 1 6 0
250 - 300
1 8 0 - 2 0 0
200 - 220
Bdng 1 Ndng sudt trung cua mgt so gidng gd'
Giong b6 B6 Hoslsteni Friesian (Ha Lan) B6 Sahival
Bd Jersey
Bo nau Thuy ST (Brown Swiss)
Bo zebu
Ti I§ m9 trong sfta (%) 3,2 - 3,7
4 - 4 , 5
5 , 6 - 6
3 , 5 - 4
52
Bang 2 Ti li ma trong sira cua mgt so giong bo'
Trang 4iO GIAC' L'UC VA bk'jTALI [lA MO'I 1,'ONti HOA VA HOl '-'HU NUKiA \'I£T N.-UI
T R i r O N G C A O P A N G S i r P H A M D o d a p Tudo HwihpiiiK
l > \ N t
H j L - J H NoMinL 11.1 T^
r r ^ ^ Lop l.'ao dAnt Ni
1 - - • - - ' Anh
1 J ll«^ t^cng d n ['•iv r lt> to d v r g
^
S'n 1
Ntl
D \'ir«lunvu*liv(
s O uIAO DVC VA MO TAO HA I I'M
IRI'OUG MO BANG W PR«I
Hang 3 CONG H O \ VA HOI ( HU NGIflA \"I£T N.UI I'of l.|i Til do H.IJI phll'
11
r ) A N ( ; B \ M r
H«v»tfn U Thl Anh
NgJMinh
B-Vi-w-N m n d i H t T i i
Lop <.'4o dvtg Sn plliu
Njvih ba< Su pbvn
V C«^ b « b<r> t»ir« r d j « 9iM> Til I
gg
Bdng 4
va Danh sach", _ vblnformation End Select End Sub (Xem bang 4) + Nfiu ngudi khdc md bang tfnh ciia bgn vd thye h i ^ l^nh
in sfi cd h0p thogi cdnh bdo hi?n ra nhu hlnh trfin, xin dugc chia sfi ciing bgn dgc Tdi li^u tham khiio
I Chuong trinh Excel
2003
2 Ke hogeh cho difim cac mdn ciia trudng cao ddng, dgi hgc
CAC LOAI BAI TAP TINH HUONG SU DUNG
Ddt thit nhe Hay sdp xfip
thii ty cdc logi ddt fren theo
khd ndng giii nudc tir thdp den
cao" Nfiu em la ngudi ldm bai
td}) frfin, em s€ ed kfit qud nhu
thfi ndo? Tgi sao?
3 Ket lu^n
Cdeh phan logi cdc tinh
hudng frfin chi mang tinh
tuang dfli, mfli BTTH cd thfi
xep vdo nhifiu logi khdc nhau
Tuy theo khd nang cua GV md
HS dugc dua vao tinh hufln^
ndy hay tinh hudng khdc Dfi
tdng sy hap din eita bai hgc
va sy mem deo cua tu duy cho
HS, GV nen thudng xuyfin
thay dfli kilu BTTH mgt cdeh
hgply
Tki li^u tham khdo
1 Nguyen Duan Xdy dipig
vd su dung bdi tgp tinh huong
de dgy hgc Cong ngh? (nong nghigp) & trung hgc ca s&
Bdi gidng boi dudng gido vifin THCS, Trung tam Nghifin ciiu gido dye va Bfli dudng gido vifin, Trudng Dgi hgc Su phgm Hue, 2012
2 Phan Diic Du)^ Sic dgng
bdi tgp tinh huong de ren luy^n cho hgc sinh cdc ky ndng nhgn thuc Uvng dgy hgc sinh hgc
Ky yfiu Hgi thdo Quflc gia vfi giang dgy sinh hgc d trudng phfl thflng Vi^t Nam, NXB Gido dye, Hd Ngi, 2012
3 Phan Trgng Ngg D<iy
hgc vd phuang phdp dgy hgc trong nhd tru&ng NXB Dgi
hgc Su phgm, Hd NOi, 2005
Ghi chu: Ngu6n;http://
www.rovetco.com/?act=n
(Tiep trang 42)
ews&detail=detail&new s_id=244&cat_id=35&cat_ item_id=247&lang=vn
2 Nguon: http://www vcn.vnn.vn/PrintPreview aspx?ID=1315
Summary Situation exercises for use in teaching agricultural technology in lower secondary schools are divided into several categories based on the characteristics and nature
of the conflict appears, the piupose of teaching theory and cognitive skills of students Depending on the purpose of teaching that teachers choose situation exercises suitable for teaching and reaching the highest efficiency