1. Trang chủ
  2. » Tất cả

TOP 30 đề thi giữa học kì 2 toán lớp 12 có đáp án hay nhất

174 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 174
Dung lượng 2,96 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĐỀ SỐ 1 (90 phút) Câu 1 ( )23x 1 dx+ bằng A 33x x C+ + B 3x x C+ + C 3x C+ D 3 x x C 3 + + Câu 2 Họ tất cả các nguyên hàm của hàm số f(x) = 2cosx – sinx là A 2sin x cosx C− + B 2sin x cosx C− − + C 2[.]

Trang 1

ĐỀ SỐ 1 (90 phút) Câu 1 ( 2 )

Trang 3

Câu 7 : Cho hàm số f (x) thỏa mãn 3x( )

x 2

− − bằng

Trang 5

Diện tích hình phẳng giới hạn bởi đồ thị hàm số f(x) và trục Ox được tính theo công thức nào sau đây?

1 1

1 1

= + và đường thẳng y = x + 1 Ta có

Câu 20 Hình vẽ dưới đây là một mảnh vườn hình Elip có bốn đỉnh là I; J; K; L, ABCD,

EFGH là các hình chữ nhật; IJ 10m,KL=6m= , AB 5m,EH= =3m Biết rằng kinh phí trồng hoa là 50000 đồng/m2, hãy tính số tiền (làm tròn đến hàng đơn vị) dùng để trồng hoa trên phần gạch sọc

Trang 7

x dx



Câu 25 Cho a, b là hai số thực dương Gọi (H) là hình phẳng giới hạn bởi parabol y=ax2

và đường thẳng y= − Quay (H) quanh trục hoành thu được khối có thể tích là Vbx 1, quay (H) quanh trục tung thu được khối có thể tích là V2 Tìm b sao cho V1 = V2

v t = −t 8t +17t 10− , trong đó t được tính bằng giây

Tổng quãng đường mà hạt đi được trong khoảng thời gian 1 t  là bao nhiêu? 5

A 32m

71m

38m

71m

6

Câu 27: Biết F(x) là một nguyên hàm của hàm số ( ) 3

f x =4x +1 và F(0) = 1 Tính giá trị của F(1)

Trang 8

A 30 B 10 C 22 D 2

Câu 31 Trong không gian Oxyz, cho u=(2; 3;4− ), v= − −( 3; 2;2) khi đó u.v bằng

Câu 32 Trong không gian Oxyz, cho A 1;0;6 , ( ) B 0;2; 1( − , ) C 1;4;0 Bán kính mặt ( )

cầu (S) có tâm I 2;2; 1( − và tiếp xúc với mặt phẳng (ABC) bằng )

Trang 9

Câu 35 Trong không gian Oxyz cho hai điểm A( 2;1;0)− , B(2; 1;4)− Phương trình mặt cầu (S) có đường kính AB là

Câu 37 Trong không gian Oxyz, cho mặt cầu (S) có tâm thuộc trục Ox và đi qua hai

điểm A 1;2; 1( − và ) B 2;1;3( ) Phương trình của (S) là

Trang 10

Câu 40 Trong không gian với hệ tọa độ Oxyz, cho hai điểm E 1;1;3 ;F(0;1;0) và mặt ( )

phẳng (P) : x+ + − = Gọi M(a;b;c) (P)y z 1 0  sao cho 2ME−3MF đạt giá trị nhỏ nhất Tính T=3a+2b+ c

Câu 41 Trong không gian Oxyz, cho hai điểm A(1;2;5),B(3;0; 1)− Mặt phẳng trung

trực của đoạn thẳng AB có phương trình là

Trang 11

C 4x+ − = y z 0

D 4x+ − + = y z 6 0

Câu 43 Trong không gian Oxyz, gọi (P) là mặt phẳng đi qua điểm M(−4;1;2), đồng thời vuông góc với hai mặt phẳng ( )Q : x−3y+ − = và z 4 0 ( )R : 2x− +y 3z 1 0+ = Phương trình của (P) là

A 1;0; 2 , B− − −1; 1;3 Mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với (P) có

phương trình dạng ax by cz 5 0− + + = Khẳng định nào sau đây đúng?

A a b c 21+ + = B a b c 7+ + = C a b c + + =− D a b c21 + + =− 7

Trang 12

Câu 46 Trong không gian Oxyz, cho ba điểmA 0;1;2 , B 2; 2;1( ) ( − ), C(−2;1;0) Khi đó mặt phẳng (ABC) có phương trình là

A (Oxy) B (Oyz C ) (Oxz ) D x − = y 0

Câu 49 Trong không gian Oxyz, cho bốn điểmA 1;0;0 , ( ) B 0;2;0 , ( ) C 0;0;4 , ( )

B 4;3; 2− Gọi M a;b;c( ) ( ) P sao cho MA = Mb và góc AMB có số đo lớn nhất Khi

đó đẳng thức nào sau đây đúng?

Trang 13

A c 0 B a+2b= − 6 C a+ = b 0 D a b 23

5+ =

ĐỀ SỐ 1 (90 phút)

I BẢNG ĐÁP ÁN

1.B 2.C 3.A 4.C 5.A 6.C 7.C 8.C 9.C 10.D 11.A 12.B 13.B 14.A 15.C 16.C 17.D 18.A 19.D 20.C 21.C 22.C 23.B 24.B 25.D 26.D 27.D 28.D 29.D 30.A 31.B 32.C 33.A 34.B 35.C 36.A 37.A 38.A 39.A 40.C 41.B 42.D 43.C 44.A 45.D 46.A 47.A 48.C 49.C 50.D

II ĐÁP ÁN CHI TIẾT

Trang 17

Ta có ( ) 2 2 ( ) ( )

1 1

Trang 19

Phương trình hoành độ giao điểm của đồ thị hàm số f x và trục Ox là ( )

S= x 1 2− −x x +1 dx 2 ( )( ) ( )

2 1

Trang 20

Gọi Elip đã cho là ( )E

Dựng hệ trục Oxy như hình vẽ, khi đó ( )E có phương trình là

1

25+ 9 = Suy ra

+ Phần phía trên trục Ox của ( )E có phương trình là y 3 25 x2

Trang 21

1 0

Trang 22

Thể tích khối tròn xoay nêu trên là b 2( ) 2 2

Trang 23

Phương trình hoành độ giao điểm của parabol và đường thẳng đã cho là ax2 = − bx

Do ax2 = −bx 2

x 0

bxa

Trang 26

Lời giải

Do (S) có đường kính AB nên nó nhận trung điểm I của AB làm tâm và AB

2 làm bán kính

Gọi H là tâm đường tròn ngoại tiếp ABC

Vì ABCD là tứ diện đều nên DH là trục của đường tròn ngoại tiếp ABC

Mặt phẳng trung trực của cạnh AD cắt DH tại I suy ra ID là bán kính của mặt cầu ngoại tiếp tứ diện ABCD

Gọi M là trung điểm cạnh AD ta có DMI∽DHA

Trang 27

Vậy thể tích của khối cầu ngoại tiếp tứ diện ABCD là

3

3 3

Vậy phương trình của (S) là ( )2 2 2

(S) tiếp xúc với (P)d I, P( ( ) ) bằng bán kính của (S)

Vậy phương trình của (S) là ( ) (2 ) (2 )2

Trang 28

Vì diện tích tam giác ABC bằng 3

Trang 29

Ta có 2ME−3MF = 2(MI+IE) 3(MI− +IF) = IM =MI.

2ME−3MF đạt giá trị nhỏ nhất, M(P) MI nhỏ nhất, M(P)  là hình chiếu Mvuông góc của I trên (P)

Trang 30

Tọa độ M là nghiệm của hệ

2a3

Gọi M là trung điểm AB thì M 2;1;2 ,( ) AB=(2; 2; 6− − )

Mặt phẳng trung trực của đoạn AB đi qua M nhận AB làm vectơ pháp tuyến, do đó nó

Vì (Q) // (P) nên n=(4;1; 1− cũng là một vectơ pháp tuyến của mặt phẳng (Q) )

Mặt phẳng (Q) đi qua điểm A(−1;2;4), có vectơ pháp tuyến n=(4;1; 1− nên nó có )

Trang 31

n( ) R =(2; 1;3− ) là một vectơ pháp tuyến của (R)

Vì ( )P ⊥( )Q nên n( ) P ⊥n( ) Q ,

( )P ⊥( )R nên n( ) P ⊥n( ) R

n( )P =n( )Q , n( )R = − −( 8; 1;5)

  một vectơ pháp tuyến của (P)

(P) đi qua điểm M(−4;1;2)có vectơ pháp tuyến là n( )P = − −( 8; 1;5) nên nó có phương trình là

Vì (P) tiếp xúc với (S) tại A nên IA=(2;1; 2− là một vectơ pháp tuyến của (P) )

Ta có (P) đi qua A 1;3; 1( − nhận ) IA=(2;1; 2− làm vectơ pháp tuyến nên (P) có phương )trình là 2 x 1( − +) (1 y 3− −) (2 z 1+ =) 0 2x+ −y 2z 7− = 0

Trang 32

Trên hình vẽ, ta có tam giác IHA vuông tại H  2 2 2

Trang 33

Vì MA = MB nên M thuộc mặt phẳng trung trực (Q) của đoạn thẳng AB

Ta có (Q) đi qua trung điểm I(3;1; 1)− của AB và có véctơ pháp tuyến là AB=(2;4; 2)−

nên (Q) có phương trình là

2(x 3)− +4(y 1)− −2(z 1)+ =  +0 x 2y z 6− − = 0

Vì M(P) và M (Q) nên M thuộc giao tuyến ∆ của (P) và (Q)

(P) có véctơ pháp tuyến n( )P =(0;0;1), (Q) có véctơ pháp tuyến n( )Q =(1;2; 1)−

Khi đó ∆ có véctơ chỉ phương u [n ,n= ( )P ( )Q ] ( 2;1;0)= −

Chọn N(2; 2; 0) là một điểm chung của (P) và (Q)

∆ đi qua N nên có phương trình

Trang 35

ĐỀ SỐ 2 (90 PHÚT) Câu 1 Cho hàm số y = f(x) liên tục trên và có bảng xét dấu của đạo hàm như hình vẽ:

Hàm số đã cho đồng biến trong khoảng nào dưới đây?

A x= − 3 B x= −1 C y= − 3 D y= 4

Câu 3 Cho hàm sốy = f(x) có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng ?

A Đồ thị hàm số có2đường tiệm cận ngang

B Đồ thị hàm số có đường tiệm cận ngang y = 4

C Đồ thị hàm số không có tiệm cận

D Đồ thị hàm số có đường tiệm cận đứng x = 0

Câu 4 Cho hàm số y = ex Mệnh đề nào sau đây sai ?

A Đồ thị hàm số đi qua điểm A(1; 0)

B Tập xác định của hàm số làD =

C Hàm số có đạo hàmy'=e , xx  

D Đồ thị hàm số nhận trục hoành là tiệm cận ngang

Câu 5 Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2a Khoảng cách giữa hai

đường thẳng AB'và CD' bằng

Trang 36

A 2a B a C 2 2a D 2a

Câu 6 Cho hình hộp chữ nhật ABCD.A'B'C'D' có BA=a;BC=2a;BB' 3a= Thể tích

V của khối hộp chữ nhật ABCD.A'B'C'D'bằng

A V=2a3 B V=3a3 C.V=6a3 D.a 3

Câu 7 Cho khối lăng trụ ABC.A B C   có diện tích đáy bằng 2

2a , đường cao bằng 3a Thể tích khối lăng trụ ABC.A B C   là

Câu 8 Cho hàm số f(x) xác định trên \ 0 , liên tục trên mỗi khoảng xác định và có  

bảng biến thiên như sau

Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m – 1 có ba nghiệm thực phân biệt

Trang 37

Câu 13 Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như sau

Mệnh đề nào sau đây sai?

A Đồ thị hàm số không có tiệm cận

B Gía trị cực tiểu của hàm số bằng 1

C x = 5 là điểm cực đại của hàm số

D Hàm số có ba điểm cực trị

Câu 14 Biểu thức

8 4 3 3

a : a viết dưới dạng luỹ thừa với số mũ hữu tỷ là

4 3

Trang 38

Câu 16.Hàm số nào sau đây đồng biến trên ?

Câu 19 Trong không gian Oxyz, cho các điểm A 2;0;0 , B 0;4;0 , C 0;0;6 Tính thể tích ( ) ( ) ( )

V của tứ diện OABC?

Trang 39

Câu 22 Số cách chọn đồng thời 4 người từ một nhóm có 11 người là

Trang 40

Câu 27 Cho hình nón có bán kính đáy bằng r, đường sinh bằng l và chiều cao bằng h

Diện tích xung quanh của hình nón đó bằng

Trang 41

x 1

=

xy

x 1

=+

Câu 31 Trong không gian Oxyz, cho A 1;0; 2 , B 2; 3;1( − ) ( − ) Tọa độ vectơ BA là

A (3; 3; 1− − ) B (−1;3; 3− ) C (1; 3; 3− − ) D (1; 3;3− )

Câu 32 Cắt một hình trụ bằng một mặt phẳng qua trục của nó, ta được thiết diện là một

hình vuông cạnh 3a Diện tích xung quanh của hình trụ đó là:

2

9 a2

Trang 43

Câu 38 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a Biết

SA =3 SB = 4 SC = Mặt phẳng 5 (A 'B'C' cắt SG tại G' Giả sử ) G ' a;b;c( )

Giá trị của biểu thức a + b + c bằng

A 19

29

Câu 40 Gọi S là tập hợp tất cả các số tự nhiên gồm 8 chữ số đôi một khác nhau được lập

từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 Chọn ngẫu nhiên một số từ tập S Tính xác suất để số được chọn có chữ số hàng đơn vị chia hết cho 3 và tổng các chữ số của số đó chia hết cho 13?

Trang 44

Câu 43 Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, SA vuông góc với mặt

phẳng (ABCD) và SA = a Gọi M, K lần lượt là trọng tâm tam giác SAB, SCD; N là trung điểm của BC Thể tích khối tứ diện S.MNK bằng

Câu 45 Cho hình nón có chiều cao bằng 3a, biết rằng khi cắt hình nón đã cho bởi một

mặt phẳng đi qua đỉnh hình nón và cách tâm của đáy hình nón một khoảng bằng a, thiết

Trang 45

diện thu được là một tam giác vuông Tính thể tích của khối nón được giởi hạn bởi hình nón đã cho bằng:

A 15 a 3 B 9 a 3 C

3

45 a4

20212

Câu 49 Trong không gian Oxyz, cho các điểm A(−3;0;0), B 0; 4;0( − ) Gọi I, J lần lượt

là tâm đường tròn nội tiếp và ngoại tiếp của tam giác OAB Tính độ dài đoạn thẳng IJ

Trang 46

Số nghiệm của phương trình f (3sinx)=3 cos x trên 0;9

II ĐÁP ÁN CHI TIẾT

Trang 47

xlim f (x)0+ 4, lim f (x)x 0− 4, lim f (x)x 3− 1, lim f (x)x 3+ 1

Gọi I; J lần lượt là trung điểm của AB'và CD'

Suy ra J lần lượt là trung điểm của DC', do đó IJ // AD;IJ AD 2a= = (1)

Trang 50

Lời giải

Dựa vào bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 3 và x = 7, đạt cực tiểu tại x

= 5 nên “x = 5 là điểm cực đại của hàm số” là mệnh đề sai

Trang 51

Vậy x = 4 là tiệm cận đứng của đồ thị hàm số

Nên tổng số đường tiệm cận của đồ thị hàm số là 2

Câu 22 Đáp án D

Lời giải

Số cách chọn đồng thời 4 người từ một nhóm có 11 người là C 114

Câu 23 Đáp án C

Trang 54

Tiệm cận đứng là đường thẳng có phương trình x = 1 nên loại A, D

Nhìn vào đồ thị ta thấy x= −  = suy ra loại C Vậy chọn đáp án B 1 y 0

Trang 55

3 3 3

Trang 57

B A

H

Trang 58

Áp dụng hệ thức lượng trong tam giác vuông AHA ta được: 12 1 2 1 2

Dựng hình hộp chữ nhật SEKI.ADCB như hình vẽ Gọi O là hình chiếu của A trên BD

Khi đó AI⊥(BCES ;AO) ⊥(BDEI)

K I

B

O

Trang 59

Vì S,G ',G thẳng hàng nên tồn tại k  sao cho SG=kSG ' (1)

Vì G trọng tâm tam giác ABC nên SA SB SC+ + =3SG hay 3SA'+4SB' 5SC'+ =3kSG '

3G 'A' 4G 'B' 5G 'C' 3k 12 SG '

G' C'

B' A'

G A

B

C S

Trang 60

Mà G 'A ',G 'B',G 'C' là ba vectơ có giá nằm trên mặt phẳng (A 'B'C') và SG ' có giá cắt

mặt phẳng (A 'B'C' tại G ' nên )

3G 'A ' 4G 'B' 5G 'C' 03k 12 SG ' 0

Ta có a8 chia hết cho 3 nên a83;6;9

Mà 1 2 3 4 5 6 7 8 9+ + + + + + + + =45

Trang 61

Theo giả thiết a1+a2+a3+a4 +a5 +a6 +a7 +a8 chia hết cho 13

+ −  −

với  x +) Bảng biến thiên

Trang 62

ln(x 1) 2

a2

ln(x 1) 2

x 0d(VN)

Trang 63

Câu 43 Đáp án C

Lời giải

Trang 64

Gọi E là giao điểm của SM và AB, F là giao điểm của SK và CD

Suy ra E, F lần lượt là trung điểm của AB, CD

Ta có S ENF 1SEBCF 1a.2a a2

M

B A

S

Trang 69

Gọi OD và AE lần lượt là các đường phân giác trong của góc O và Acủa OAB (DAB

x

74

Trang 71

 − − là tâm đường tròn nội tiếp OAB

Do OAB vuông tại O nên J là trung điểm của AB J 3; 2;0

Câu 50 Đáp án A

Lời giải

Ta có: f (3sinx)=3 cos x f (3sinx)= 9−(3sinx)2

Đặt t 3sin x= thì phương trình trên thành f (t)= 9−t2 , với t −[ 3;3]

Trang 74

ĐỀ SỐ 3 (90 phút) Câu 1 Tìm nguyên hàm của hàm số ( ) x

Câu 2 Cho hai mặt phẳng (P): x + my + (m – 1)z + 1 = 0 và (Q): x + y + 2z = 0 Tập hợp

tất cả các giá trị của m để hai mặt phẳng này không song song là:

Câu 4 Trong không gian Oxyz, cho ba điểm A(1; – 2; 3), B(4; 2; 3), C(3; 4; 3) Gọi

(S1), (S2), (S3) là các mặt cầu có tâm A, B, C và bán kính lần lượt bằng 3, 2, 3 Hỏi có

bao nhiêu mặt phẳng qua điểm I 14 2; ;3

Trang 75

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho H(1; 2; 3) Viết phương trình mặt

phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A, B, C sao cho H

là trực tâm tam giác ABC

Câu 7 Người ta làm một chiếc phao như hình vẽ (với bề mặt có được bằng cách quay

đường tròn (C) quanh trục d) Biết OI = 30 cm, R = 5 cm Tính thể tích V của chiếc phao

I=x 4−x dx và đặt t= 4−x2 Khẳng định nào sau đây sai?

Trang 76

A I= 3 B

3 2

0

tI2

3 2 0

I= t dt D

3 2

0

tI3

Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -2; 3) và B(5; 4; 7)

Phương trình mặt cầu nhận AB làm đường kính là:

A (x – 6)2 + (y – 2)2 + (z – 10)2 = 17

B (x – 1)2 + (y + 2)2 + (z – 3)2 = 17

Trang 77

C (x – 3)2 + (y – 1)2 + (z – 5)2 = 17

D (x – 5)2 + (y – 4)2 + (z – 7)2 = 17

Câu 12 Trong không gian Oxyz, cho hai mặt phẳng (P): x – y – z + 6 = 0; (Q): 2x + 3y –

2z + 1 = 0 Gọi (S) là mặt cầu có tâm thuộc (Q) và cắt (P) theo giao tuyến là đường tròn

có tâm E(-1; 2; 3), bán kính r = 8 Phương trình mặt cầu (S) là:

2 2 1

Trang 78

Câu 16 Cho hàm số y = f(x) liên tục trên đoạn [a; b] Diện tích hình phẳng giới hạn bởi

đường cong y = f(x), các đường thẳng x = a, x = b là :

Câu 17 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (3; 2; -1) và đi

qua điểm A(2; 1; 2) Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

Trang 79

Câu 19 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 3y + 4z – 5 = 0

và điểm A(1; -3; 1) Tính khoảng cách d từ điểm A đến mặt phẳng (P)

Câu 21 Trong không gian với hệ tọa độ Oxyz, gọi (α) là mặt phẳng cắt ba trục tọa độ tại

ba điểm A(4; 0; 0), B(0; -2; 0), C(0; 0; 6) Phương trình mặt phẳng (α) là:

Trang 81

Câu 29 Một ô tô đang đi với vận tốc lớn hơn 72km/h, phía trước là đoạn đường chỉ cho

phép chạy với tốc độ tối đa là 72km/h, vì thế người lái xe đạp phanh để ô tô chuyển động chậm dần đều với vận tốc v(t) = 30 – 2t (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh Hỏi từ lúc bắt đầu đạp phanh đến lúc đạt tốc độ 72km/h,

ô tô đã di chuyển quãng đường là bao nhiêu mét?

Câu 31 Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi Parabol (P):

y = x2 và đường thẳng d: y = x xoay quanh trục Ox bằng:

0

x x dx

 −

Trang 82

Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(1; 2; 3), B(-2; 4; 4), C(4; 0; 5) Gọi

G là trọng tâm tam giác ABC Biết điểm M nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất Tính độ dài đoạn thẳng GM

Trang 83

Câu 38 Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y=f (x), trục hoành

và hai đường x a,x b,(a b)= =  (phần tô đậm trong hình vẽ) tính theo công thức:

Câu 39 Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a Gọi M,

N lần lượt là trung điểm của các cạnh AB và B’C’ Mặt phẳng (A’MN) cắt cạnh BC tại P

Trang 84

Thể tích khối đa diện MBP.A’B’N’ là:

3

7 3a

.32

Câu 40 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường

A u(1;2;3). B u(0; 2;6).− C u(0;1; 3).− D u(0;1;3)

Câu 41 Cần phải làm cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ

nhật, có chu vi là a mét (a chính là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi đường kính của hình bán nguyệt) Gọi d là đường kính của hình bán nguyệt

Câu 42 Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứa các điểm biểu diễn

Ngày đăng: 16/11/2022, 23:26

🧩 Sản phẩm bạn có thể quan tâm

w