Bài tập Hàm số lũy thừa Toán 12 I Bài tập trắc nghiệm Bài 1 Tìm các điểm cực trị của hàm số A x=4 và x = B x=4 C x=2 D x=2 và x = Lời giải Ta thấy y’ đổi dấu khi đi qua 2 điểm x=4 và x = nên đây là 2[.]
Trang 1Bài tập Hàm số lũy thừa - Toán 12
I Bài tập trắc nghiệm
Bài 1: Tìm các điểm cực trị của hàm số
A x=4 và x =
B x=4
C x=2
D x=2 và x =
Lời giải:
Ta thấy y’ đổi dấu khi đi qua 2 điểm x=4 và x = nên đây là 2 điểm cực trị của các hàm số đã cho
Trang 2Chọn đáp án A
Bài 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số
B.max y=2, min y=0
Lời giải:
Tập xác định D = [-1;1]
Trang 3Chọn đáp án D
Bài 3: Hàm số nào sau đây đồng biến trên (0; +∞) ?
Lời giải:
Hàm số y = xα đồng biến trên (0; +∞) khi và chỉ khi α > 0
Hàm số
nên hàm số đồng biến trên (0; +∞)
Chọn C
Bài 4: Khẳng định nào sau đây là đúng?
Lời giải:
Viết lại sao cho hai vế của mỗi bất đẳng thức đều là lũy thừa cùng số mũ Lưu ý, từ tính đơn điệu của hàm số lũy thừa y = xα , ta có
• Nếu α > 0 thì aα < bα ⇔ a < b
• Nếu α < 0 thì a < b ⇒ aα > bα
Trang 4Suy ra, D đúng
Chọn D
Bài 5: Số nào sau đây là lớn hơn 1?
Lời giải:
Lưu ý với
Trang 5Do đó, trong các số đã cho thì (0,4)-0,3 > 1
Chọn B
Bài 6: Sắp xếp các số theo thứ tự tăng dần:
A d,c,a,b
B.d,c,b,a
C c,d,b,a
D.c,a,b,d
Lời giải:
Bài 7: Tìm đạo hàm của hàm số
Trang 6Lời giải:
Bài 8: Cho α là một số thực và hàm số đồng biến trên (0; +∞) Khẳng định nào sau đây là đúng
A α < 1
B 0 < α < 12
C 12 < α < 1
D α > 1
Lời giải:
Hàm số đồng biến khi và chỉ khi
Chọn đáp án B
Bài 9: Sắp xếp các số sau theo thứ tự tăng dần:
Trang 7A b,c,d,a
B a,b,c,d
C.c,d,a,b
D d,b,c,a
Lời giải:
Viết lại các số dưới dạng cùng căn bậc 6:
Do 12 < 18 < 24 < 54 nên d < b < c < a các số theo thứ tự tăng dần là d,b,c,a
Chọn đáp án D
Bài 10: Tìm đạo hàm của hàm số
Trang 8Lời giải:
Viết lại hàm số dưới dạng lũy thừa y = (x2 + x + 1)-
Sử dụng công thức đạo hàm hàm hợp ta có
Chọn đáp án B
II Bài tập tự luận có lời giải
Bài 1: Tìm đạo hàm của hàm số
Lời giải:
Viết lại hàm số dưới dạng lũy thừa
Trang 9Bài 2: Đồ thị hàm số y = cắt đường thẳng y=2x tại một điểm nằm bên phải trục tung Tìm tọa độ điểm này
Lời giải:
Phương trình hoành độ giao điểm
Bài 3: Đường thẳng x = α ( α là số thực dương) cắt đồ thị các hàm số
lần lượt tại hai điểm A và B Biết rằng tung độ điểm A bé hơn tung độ điểm B Khẳng định nào sau đây là đúng?
Lời giải:
Trang 10Từ giả thiết suy ra f(α) < g(α)
Nhận xét Ở đây ta sử dụng tính chất:
Nếu a > 1 thì aα > aβ <=> α > β ;
Nếu 0 < a < 1 thì aα > aβ <=> α < β
Học sinh có thể không áp dụng tính chất trên mà giải tiếp:
Bài 4: Cho hàm số
Khẳng định nào sau đây là đúng?
A Hàm số nghịch biến trên (0;2)
B Hàm số nghịch biến trên khoảng (5; +∞)
C Hàm số đồng biến trên (2; +∞)
D Hàm số không có điểm cực trị nào
Lời giải:
Ta có
Trang 11Ta thấy y'(x) < 0 <=> x > 2 nên hàm số nghịch biến trên (2; +∞) , và do đó, hàm số nghịch biến trên (5; +∞)
Bài 5: Tìm các điểm cực trị của hàm số
Lời giải:
y’ đổi dấu khi qua điểm x = nên hàm số có một điểm cực trị là x =
Bài 6: Tìm các điểm cực trị của hàm số
Lời giải:
y'= 0 <=> x2 + x - 2 = 0 <=> x = -2 (loại) hoặc x = 1
y' đổi dấu khi đi qua điểm x = 1 nên hàm số có một điểm cực trị là x = 1
Bài 7: Tìm các điểm cực trị của hàm số
Trang 12Lời giải:
y’ đổi dấu khi đi qua điểm x = nên hàm số có một điểm cực trị là x =
Bài 8: Tìm các giá trị lớn nhất và nhỏ nhất của hàm số
Lời giải:
Tập xác định D = [0; 1]
Ta có:
y(0) = y(1) = 1; Từ đó max y = , min y = y(0) = 1
Trang 13Bài 9: Tìm các giá trị lớn nhất và nhỏ nhất của hàm số y = trên đoạn [1; 10]
Lời giải:
y' = 0 <=> x = 8
Ta có: y(1) = 19, y(8) = 48, y(10) = ≈ 46,6 > 19
Từ đó:
Bài 10: Với là một số thực dương và hàm số
nghịch biến trên khoảng (0; +∞) Khẳng định nào sau đây là đúng?
Lời giải:
Trang 14Hàm số
nghịch biến trên (0; +∞) nên
III Bài tập vận dụng
Bài 1
Bài 2 Tìm các khoảng đồng biến của hàm số
Bài 3 Vẽ trên cùng một hệ trục tọa độ đồ thị của các hàm số sau và nêu nhận xét về
tập xác định của chúng: y =x2 , , y = x-1
Bài 4 Tìm tập xác định của các hàm số:
Bài 5 Tính đạo hàm của các hàm số:
Trang 15Bài 6 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:
Bài 7 Hãy so sánh các số sau với 1:
a) (4,1)2,7;
b) (0,2)0,3;
c) (0,7)3,2;
Bài 8 Tìm tập xác định của hàm số sau:
Trang 16Bài 9 Vẽ trên cùng một hệ trục tọa độ đồ thị của các hàm số sau và nêu nhận xét về
Bài 10 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số: