1. Trang chủ
  2. » Tất cả

Dạy học khám phá công thức tính khoảng cách từ một điểm đến một mặt phẳng (hình học 12)bằng suy luận tương tự

3 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 203,32 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

DAY HOC KHAM PHA CONG THDC TINH KHOANG CACH Tif MOT DIEM JIEN MOT MAT PHANG (HINH HOC 12| HANG SUY LOAN TlTONG TO ThS BUI P H D O N G UYEN" Ngay nay, phuong phap (PP) day hpe kham pha(DHKP)vaphepsuy l[.]

Trang 1

DAY HOC KHAM PHA CONG THDC TINH KHOANG CACH Tif MOT DIEM JIEN MOT MAT PHANG (HINH HOC 12| HANG SUY LOAN TlTONG TO

ThS BUI P H D O N G UYEN"

Ngay nay, phuong phap (PP) day hpe kham

pha(DHKP)vaphepsuy luan tuong ty'{SLTT)

dugc van dung nhieu trong day hgc (DH)toan

Hon niia, neu giao vien (G V) biet ket hpp hai yeu to

nay vao DH thi khong nhiing giup hgc sinh (HS) on

tap dupc kien thirc cu ma con tao co hpi cho cac em

xay dyng kien thdc mdi Mo hinh DH tuong tutdnq

quat (GMAT) cho phep ngudi hpc su'dyng SLTT de

kham pha kien thdc mdi mgt each hieu qua Trong bai

viet nay, chiing toi van dyng mo hinh GMAT vao DH

cong thirc tinh khoang each tdmgtdiem den mpt mat

phing thong qua mgt thuc nghiem su pham

1 Quan niem v e D H K P , SLTT v a m d i quan he

giua Chung

1) Ouan niem veDHKP DHKP li mgt PPDH

khuyen khich HS dua ra ciu hoi vi tutim cau tra Idi,

hay rut ra nhdng nguyen tac tdnhdng kinh nghiem

thucfiSn TrongDHKP, noi dung DH khong dugc gidi

thieu trudc mi dugc HS tukham phi nhim tao cahgi

cho cac em tham gia tich cue vao qua trinh day hoc

(1; 24-26)

DHKP CO ba dac diem: HS khao sat va giai quyet

van de de hinh thanh, khai quat hoa kien thii'c; HS

dupe thu hilt vao cac hoatdpng hpe tap; khuyen khich

HScosulienketgidakien thuc mpi va kien thde cu

Khi su dung PPDHKP, co the giiip HS phat trien tu

duy vi doi hoi ngudi hpc phai danh gia, phan doan,

phan tich, tong hop, Ben canh do, HS hpc dupc

each kham pha tri thuc mdi va phat trien tri nhP thong

qua hoat dgng huy dpng kien thii'c da c6; ti) do, giup

HS hieu bai nhanh va khic sau dupc kien thde

2) Quan niem veSLTT Danh tir "tuong t d ' co

nguon gdc tir "ava).0Yia", mpt tir toan hpc cua Hi

Lap.Tunayc6 nghTa l a s u b l n g nhau cua haitiso' Vl

d[/.'3:4::9:12,tii'clahehais63va4tuongtuvPihehai

s d 9 v a 1 2 ( 1 ; 81-82)

SL TT li phep suy luan cin cd vao mgt sg thugc

tinh gidng nha u cua hai dgi tugng derut ra ke't luan ve

nhdng thugc tinh gidng nhau khac cua hai ddi tugng

dg (2; 87-88) SLTT con dugc dinh nghTa nhula "su

so sinh gida nhimg vit noi chung khac nhau nhung

[ Tap chi Giao dye so 338

noi bat len a su giong nhau dvai khia canh thich hgp"

(3; 163-165) Vat lam eo sP eho phep tuong tu (ddi tupng de so sanh), dUPe goi la nguon; vat dupc giai thieh nhd su'dyng phep tupngtu gpi la dich Trong DH toan, mue tieu eua viec sir dung phep tuong tula ehuyen nhdng tu tudng td kien thirc nguon thanh kien thde dich Ngoai ra, SLTT cocac irng dyng: xay dung gia thuyet, phat hien va khac phye sai lam eho HS; HS sudyng phep luong tu vao giai bai tap (BT)toan

3) Md'i quan he giua DHKP viSLTT.TrongDH

toan, GV co the sd dyng phep SLTT de kham pha kien thuc mdi, nghTa la sddung SLTT theo thugc tinh hoae theo quan he gida cac ddi tuong de dua ra gia thuyet, sau d6 tien hanh chdng minh hay bac bo Mpt trong nhung mo hinh DH tuong tu phd bien la m6

hinh giang day tuong tutong quat (The GeneralModel

ot Analogy Teaching - GPJIAT) dupc de xuait he'l

Hassan Hussein Zeitoun nam 1984 Mo hinh nay la mpt mo hinh tieu bieu bdi n6 dudng nhu la suke't hpp

gida cac y tudng cua cae mo hinh hien co Mo hinh GMA T gom ba giai doan: giai doan tie'p nhan, giai doan tuang ticva giai doan xac nhan (4; 164) Theo

chung toi, cac giai doan nay eo thedupe ey the qua sP dosau:

Hinh 1 Sa do cac giai doan eda mo f)inh Gh/IAT

va cao kis

'rm

nthu 7 vol kicn thuc dich

ho cua HS vekien Ihu quan nKuon

•GVdira

• HS Ihp Ihuc nguo ni"S

\r

^

itn

d i H S Ihao luan G V u

i n m g d l n t h o H S :h diinu SLTT de lien thjcdich Tudo, kliam Ihe dira ptia roi

>

2 S i i dung SLTT de DHKP djnh li ve khoang each t i i m o t d i a n de'n mot mat phang (Hinh hoc 12) flinh li khoang each tOf mot diem den mat phlng

dugc SGK Hinh hoc 12trinh bay trong bai: Phuang

' Khoa Sir phaiD, Inrairg Dai hoc Can Tho

Oii2-7/2014)

Trang 2

cua mat p h l n g Day la mpt trong nhiing cong thdc

dupe su dung nhieu vao qua trinh giai toan chuong:

Phuang phip tga do trong khong gian Dudi day,

chiing toi de xuat mot hudng DHKP cong^thuc tinh

khoang each td mot diem den mot mat phang bang

mo hinh GMAT:

3.ThiJcnghiem s u p h a m

6a>«i]fn

3

-Ir

(hing a m '

|BT1 sau Tiotie lifl6Aff g

plWu>â<cua (o)

na M W'

i ( ^ ) » 2 j 2 r - 2 0

Du flifm Me(™) r-ir AxVflj'-f ( i ' - , / ) 11

= 41,^,-1,4)+fl(>„-fc8H((.-,-*£•)*«-0

_|TTT7T|_Ky/^.-'>;'^

" "* p"-«-«-13-l 4

-Li,Af(ClO-l)E(/J) ,.\„)liailt6^

illlaUmi^''W ton

_|0.2ll-2(-l).N| ,

Chung toi da tien hanh thuc nghiem supham d lop

12A8, Tnj'dng THPT Chau Van Liem, TP Can ThP

(ngay 15/3/2013) Ldp 12A8 gom 45 HSva dupc chia

thanh 15 nhom Sau tiet day, chung toi ghi nhan duoc

mptsdketquasau:

Trong giaidoan tiép nhin, HS n h i c lai dung cong

thdc tinh khoang each td mpt diem den mpt dudng

thang da hgc dIdp 10; tuy nhien, nhieu em khong nhd

each chting minh cong thdc naỵ Nguyen nhan cothe

la do HS chl van dyng cong thdc vao bai tap, it su

dyng den each chung minh cong thuc nen nhanh

quen.KhidupcGVnh§clai,HS da nhd lai each ehdng

minh.Dieu nay tao dieu kien thuan lpi eho HS khi xay

dung cong thdc tinh khoang each td mpt diem den

mptmatphing

dg'iaidoan tuang tie, G V den tdng nhom theo doi

quatrinh cac nhom thao luan.9a so cae nhom dua ra

day la ghi nhan qua trinh thao luan cua nhom 7:

HS An: Khoang each nay hinh nhu tuong tu voi cong thdc tinh khoang each td mpt diem den mgt duong thang Do c6 them thanh phan z nua nen c6ng

thdcc6thela: < / ( w , ( « ) ) = l ^ ^ ; ^ i ^ ; ^ l ^

HS An: Ggi M' la hinh chieu cua M len (a) Vay, khoang each td M den («) la dp dai M M ' va each tinh

|ArM| cung se tuong tucach chiing minh khoang each

td mpt diem den dudng thang trong matphingdọ

HS Khanh: Ta co T7n7 wa s cung phupng:

M-M=knMa \n\ = ^Á + B'+c\ nen chi can tinh k

nua la xong

„-ý = kB<^ \ý = y„~

HS Phat: Ta co:

:> MXx,,-kA;y„-lcB:z„-l(C)

Do diem M ' e ( a ) nen: Ax'+Bý+Cz'+D =

>Ặx„-liA) + B{y„-kB) + C{z„-kC) + D = \J

+ By„+C:., + D

HSKhanh:* =

-+ fl +r'

(ki2-7/2014)

HS An: Tu do, tinh dupc khoang each:

_\Ax„ + By„ + Cz„ + D\

ylÁ +

B'+C'-|Ax„ + By„+Cz, + D|

HS Khanh:Vay: d(M.(a)) = ^ ", / " \ \

' V^' +

B'*C-Qua phan thao luan cua cic nhom, chung toi nhan

thay nhd su hgp tae, cac em da phan tich BT va dua

ra duoc hudng giai Nhdng y tudng giai BT dupc lien

he vdi each chdng minh cong thuc tinh khoang each

td mpt diem den dudng thang trong mat phang 0 day, HS datu luc xay dung dupc eong thirc mcfl thong qua viec sudyng phep SLTT

dgiai doan xac nhan, eae nhom da phat bieu

dugc eong thuc tinh khoang each tu mgt diem den mgt mat phing.GV khang dmh ket qua va phat bleu dinh lị HS d i dang ap dyng cong thdc vao cae vi dỵ Oieu nay chiing to HS da nam vung e6ng thiíc va biet van dyng vao giai bai tap

Nhuvay, bang each sudyng phep SLTT, HS dlop thyc nghiem on tap lai kien thuc vec6ng thiic tinh khoang each tdmptdiem den dudng th^ng Tuc6ng thuc nay,

HS kham phacong thifcmpituong ti/nhutrong khong

•Tap chi Giao dye so 338 | 55

Trang 3

moiquan he giua kien thiic cu va kien thdc mcfl ma con

ren luyen cho cac em khanang sang tao Vivay, DHKP

cong thiic tinh khoang each tii mot die'm den mpt mat

ph§ng thong qua phep SLTT la hoan toan kha thi

PPDHKP mang lai nhieu loi ich doi vdi HS boi n6

giup cac em phat tnen tu duy, tri nho va tao duoc moi

lien he giua kien thdc mdi vdi kien thiic cu Bac biet,

DHKPb§ngSLTTdaehdng minh dupc hieu qua cua

no trong qua trinh hpc tap, kham pha tri thiic mdi ciia

HS Vivay, viec nghien cifu, phattrien vavan dyng

phuong phap nayvao qua trinh DH laeanthiet.Q

{]) Nguyen Phu Lflc Gido tnnh Xii Im&ng day hoe

khdng truyin ihd'ng Truiyng Dai hoc Can Tha, 2010

(2) Hoang Chung L o g k hpc pho thiing NXB Gido

ducH 1994

(3) Nirah Halivah Teaching for effective iearning in

higher education Ktuwer Acadeniie Publishers The

Nelherland.s 2000

Analogical Reasoning for the Concept of Translation,

Joumal of Scienee and IWalhemmalic Educalion in Southeast Asia Vol 31 2 No 164-177 Faculty of

Science & Technology, Sultan Idris University of Educalion Malaysia, 2008

Tai lieu t h a m Ithuo Tran Van Hao {tOng chu bien) Hinh hoc 12 NXB

Giaoduc VietNam H.2010

SUMMARY

Currently, tenching by discovery and analogy are applied a lot in leaching maths Moreover If teach-ers combine these elements into teachmg they not only review the old knowledge but also help students

to build the new knowledge easily The General Model

of Analogy Teaching (GMAT) is used to discover the new knowledge effectively In this article, we applied the GMAT model m teaching the formula of calculat-ing the distance from a point to a plane through an pedagogical experiment

Thiet 1(6 tiettra bai

(Tiep theo trang 46)

Tai liSu tham Ichao

I Dir an ViCl - Bi Day va hpc

tich circ, mpt so p h u o n g p h a p

va lii thuat day hpc NXB Dai

hoe supham, H, 2010

2 Nguyfin Thiinh Thi Chuyen

de btii d u ^ n g giao vien t r u n g

hpc pho thong Soc Trang, 2011

3 Nguyen H6ng Nam 'Thia't k^

cau hoi day hoc Van - M6t thir

thach vai giao viCn" Tap chi

Gido due, %6 147,2006

SUMMARY

In the current schools,

pay-ing for student tests is not

enough attention The

imple-mentation of this class a

per-consistency has led many

stu-dents miss the opportunity to

fix weaknesses, strengths, and

promote the process of writing

office hours pay discourse to

promote the highest efficiency

of this class

Sir dung hinh hoc cao cap

(Tiep Iheo trang 50)

_ 6 ldi giai tren ta thay, cac cap diem ( 0 ' ; M), {N'; R) va {S'\ P) lan lugt

nam tren cac ducftig trung tuyen eua A/1'S'C'nen anh cua chiing qua anh

xa afin / ' la cac cap diem { 0 ; l\4), (A/; fl), (S; P) ciJng n^m tren cac dudng trung tuyen eua AABC vi phep bien doi afin bao toan cac dudng tmng tuyen Day ehinh la co sd cho viec si) dyng S r 2 d e tim Idi giai cho BT1

Trong qua trinh day hpc, neu GV thudng xuyen khai thae cae kien thdc cua HHCC nhim soisang cac kien thde cua HHSC sectiiipSV hieu dupc mpt each ehinh xac, hieu diing ban chat eiing nhu nam dupc cpi nguon cac kien thde eua HHSC; tudo, SV thay dUPc mdi quan he giua HHCCvdiHHSC.Q

Tai lieu tham khao

1 v a n Nhu Cuong - Ta Man Hinh hpc Afin va hinh hpc Euclid NXB

D(ii hoc quoc gia Hd Noi, 1998

2 Trdn Viet Circ>ng - Nguyin Danh Nam G i a o trinh Hinh hpc so-cSip

NXB Gidodite VietNam, 2013

3 Dito Tam Giao trinh Hinh hoc so" cap NXB Dgi hpc suphgm, H 2004

4 Ng6 Viet Trung Giao trinh Dai so tuyen ti'nh NXB Dai hpc qud'c gia

Hd Npi 2002

SUMMARY

This paper presents some ideas of using advanced geometry in sup-porting students learning mathematics From advanced point of view, students would gel insight into some difficult problems in elementary geometry and make it clear the relationship between advanced geom-etry and elementary geomgeom-etry

Tap chi Gido due so 338

(ki 2 - 7/2014)

Ngày đăng: 16/11/2022, 18:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w