THIET KE TIET TRA BAI UIET VAN NGHI LUAN If CHinmCTRinH TRUHG HOC PHO THOnG ThS, BUI TUY PHLfONG" 1 Khao sat van de th ret ke tiet tra bai viet van ngh j l uan (VNL)dchuang tr inh trung hoc pho thong[.]
Trang 1THIET KE TIET TRA BAI UIET VAN NGHI LUAN
If CHinmCTRinH TRUHG HOC PHO THOnG
ThS, BUI TUY P H L f O N G "
1 Khao sat van de th ret ke tiet tra bai viet van
n g h j l u a n ( V N L ) d c h u a n g trinh t r u n g hoc p h o
thong ttJ cong tac day - hoc
Qua khao sat thu'ctetu'cac giao Vien (GV) trong
to chuyen mon va cong tac thanh tra a mot so
tn/dng tnjng hpc pho thong (THPT) d Soc Trang,
chung toi nhan thay: - G V chi/a nhan thu'c dung ve
tam quan trpng cua viec ra de kiem tra cho hpc
sinh (HS), trong do co ra de VNL (thuang chi soan
de "cho co", mang nang tinh hinh thiJc, thieu chieu
sSu, thieu sang tao, doi khi mang tinh n g l u hu'ng;
chua chu trpng den cac nguyen t^c khi ra de VNL:
tinh khoa hpc, tri tue, tinh tham mT, tinh tir tirdng,
thi;c tien, He qua la HS chep van m i u kha pho
bien, chieu sau cua viec van dgng kl nang bj bo
ngo; - Cach cham bai cua GV con qua loa, khau
dpcva nhan xetchL/athatsaus§cdln den viec HS
kho phat hien dugc loi, khong biet each sua 161 hoac
khong the phat huy dupc cai hay cua mtnh, ; Giao
an tra bai kiem tra chu yeu ghi lai dan bai (vdi cac
lu$n diem, he thong y), thong ke diem, nhan xet
m§tso uu khuyet diem cua HS Muc dich cua viec
tra bai chu yeu la de "co diem" chu khong phai de
HS nhan biet dupc uu khuyet diem cua minh va
ndm vung quy trinh lam van
Hau qua tat yeu cua van de tren la viec HS hpc
thu dpng, dua vao van m i u , vao mot so cong thuc
CO san, Cac em cang hpc cang mat can ban (bdi
thuc ra GV chi cung cap kien thu'c thong bao, chua
cung cap kien thiic quy trinh) Trong khuon kho bai
viet nay, chiing toi chi tip tmng vao each thie't ke tiet
trabaikiem tra co mgt de nghi luan
2 Djnh huang thiet ke tiet tra bai VNL a T H P T
1) Nhung yeu cau mang tinh nguyen tae khoa
hgc Mot tiet tra bai phai dam bao dupc cac yeu cau:
- t n / d c khi thuc hanh viet HS da dupc GV cong bo
cac tieu chi danh gia d m6i dang de lam van cu the
(VNL.van thuyet minh, ).Dieunaygiup cho HS hinh
thanh sieu nhan thiJcvequytrinh viet van-mot trong
nhutig yeu togiup hinh thanh kTnang viet Sau day la
mpt vi dy bang tieu chi danh gia cho dang nghi luan xahoi
TUu chl
1 Lit nge phap Cd ban cnidt.clii.liL diin dai
2 KhAngcontilaasjiviliicMlilitinngaii
3 K h i ^ u mwu sai I d v i [ich sd dung lit va Miing
cu nhcu ciu khung rb ngh'a
4 DDng Itl chnh l i e ciu vin luti loiL
5 Diing Iir ngiT clii su phin Bic lii ngs chr su nhiwig
' M diu ba via giy hung n i cho ngu» doc -Tnnh bin
•Niu ouan dionie ling cglhi Bing H i hay phin bic (Drf hi(n qua can III •ttieo l i i " , ' t i l nglu' )
Thin d u e
• Nil dung ting luin difrn duoc Imh biy hrmg doan Cic y Irong doan cin gu> duan vbi t e nin macn lac, ung sua phat h«n ning cau l i n di cin nglu hiin
-Cacliphdn: -I-Oiydij -i-Cu vt du miih Ua ••-Cic
y c i phong dai, citing 6bi bcfi mta niybi tac^, , +
Phin bac, On y, chon y df bao vt guan iS6n c ^ matf
- Ga Ihich li thai di, Quan didm cili nmh dbi vdi nhing
mil tti l i u ciia van di
- Kit hijn ro ring, tidp I I Itbi cim ngti, thai di c^a
ngiHtntliUivdivindi
Ti chiic
1 Cic y mi hiin diMc muc dn^ cua ngiM net
2 Bil vin td cHilC I h u dung Ihi luac U cue l6l t i l vi
3 Cic ( phit tnen hi y hdng dtn ^ dat Bianh doan iniitibiL
4 Cu sif chuy^ y Hii chiy >1 r i i ^ i ^ Uc dun
•m
5 Cic y cftMi vi y phu CO Kn kii nhau, bi cue, clcTi trinh biy cic #,su cin di)
T Thang difm
- i ^ hiu ch nhu tinng ifng 06
- ChD diim t i l da n k bai nit d ^ flng tac yiii ciu Bin
• Tuy hhig l6i cu Ihf ngi»i chim lioBiftn/dlSTi
- Zti M cho diim mudng niu bil
v~^ CO nTiihig ciu viii hay, doc
hna ta t i chuc bil viit din nOi Ihuin hen cho ngUdi dinh gii, cin
cd khung diim chu Iitig phin Cu Ih^ + Phin md diu hnng Ung D.75iS6n, + r t i n i n i n M i h i a i g ling ? S diim + Ptiin U l bil hJUng ung 0,75 diim
- da di&n l i i di niu bii Viet dip
flng cac yiu ciu trin
- Tuy tidg l6i cu thi nguii chim
m i n i h£r diim
• Ci the cho dif m thUdng niu bil vet CO nhflng y hay, d ^ dio, nhflng din ching nub hoa Ihuyil
- M6I biu chl nho Ifldng ung 0,6
- Cbo i^eiTi til da niu bis viil dip
kit Uung hii nil, ngiMi chim c i
Ci IT^ dib diim Ihuang n(u hii
v i l i c i cich viil hay, die dio
- GV phai CO cac bade chuan bj (cham bai, nhan xet, phan loai, danh gia) mpt each cong phu trudc khi len Idp tien hanh tiet tra bai
2) Cae budc tien hinh thiet ke'tiet tra bai van nghi luan
* Chuan bi:- Cham bai theo dap an: phe bp phan/
phe loan bai; • GV chpn each danh dau cua rieng minh vao bai lam HS tren mpt so tieu chi cP ban vua neu bing ki hieu (co quy udc trudc vdi HS), Vi du, khuyen tron 0 la khen hay, "D" la dat yeu cau, gach cheo la loi diin dat, "cf la loi chinh ta,.,.; • Thong ke diem: bao nhieu diem kha, gioi, chiem bao nhieu %?; bao nhieu diem trung binh, chiem bao nhieu %?; tUPng tu, diem yeu - kem; - Nhan dinh chung ket qua
(ki2-7/2014)
* Tnrong THPT Mai Thanh Tiie, Thj tran Nga Nam - Soc Trang
Tap chi Gido dye so 338 45
Trang 2con han che phan nao?); - Vao nhap diem (neu thay
can thiet)
* Cac hoat dgng tren Idp
"dC
ai hojc
it
Hi
;
Cing ili
di«n> vi
via d i m
= •
i
r,'.::
chilril
Bi H3 biit
I t
a^^.,
diJu gi^ DSn chong d ISu^ Phan tich din cnung
M Iti nio' 8inh lutn hinh g,ing vin dl,
-.Ketluin Uitiy nio fl^vUa nhin manh luin
di,vUjninqcsovin<]lmlbiivilldiIra
';::'n,zt*n'" """'"•"""'"
r;u:rr::orr::
pilUdnq phjp
'
: : • • • • " •
TLnhiiiH-BHS
• Sl/diraviottlquibilllmcui
HS gpi I31 nhCTng HS niy [tiieo
• ' • - • • ' • •
- e i i vdi nhing HS lim nil chUi Oal SV cd thS ySo ciu vS nhi tnuchi^niaibiiviiiiin:
3) Thuc nghiem mot tiet tra bai (Ngir van 11)
• Hoat dong ) (1 -2 phut): Ghi lai de Vi du: Cam
nhan cua anh, chi ve bl kjch cua nhan vat ChiPheo
qua doan trich trong tac pham cung ten cua nha van
Nam Cao {van ban in trong Ngu van 11, bo co ban,
tap 1, NXB G/ao dye, 2007)
'Hoatdong2:Phan tich de
r r r hlfu cic
di iS t i v
dung din bii
Ciu hoi
- Ok biJ yeu uh
• Cic thao lac
• Xic dinh phim W
lu till mi dS bil
PhUOng
Chu2hS
I4«i dung
- Hai ttung
Bl kich cja Chi PheolCP)
-TUIISu Ticph^m CP,vi nhflng lie phlm cUng di
l i l Ticgli NamCao
Ketqua-GV d6] sinh vdi bii lim cua HS khan
nhflng tnidng hOp HS
l i e dinh libung chlnll neu ISn HS)
' Hoar dong 3; Lap dan bai
' Hoat dgng 4: Cong bo dap an va bleu diem, tra
baichoHS, vao diem
a) Yeu cau ve kr nang: HS biet each lam bai nghi
luan v l mot nhan vat, biet each tiep can mpt hinh
tirang nhan vatva neu nhung cam nhan cua minh ve:
46 Tap chi Giae due so 338
cd Din
nhflng
";."•"
runb hiy cicu
2'i'";:
Trinh biy cicb
to SP y, Gf can
,:ll via ds cv IH4
ce nftfflij rfrei
Cho HS nhdm (4 -BH31
• IM bil CD n»k cacti, hi Ci l i l tmng
:P d i n M c l u J n d i v i c p h i n r o d b i i
- lim t i l ngin gun nbi dung tac phim
rdhihiri btiu hi£n In^ng bi kich cui CP^ IqcbbitflctiDlquyiniamngUdllQC ) Cach giai quyet bl kich (DC )
• Luan diSm 3 Cim nbjn va gii m tac pba'm + V 1 Bl hich diin hinb cua
|DC ), + V 2 Nghe Ihuil i l y dulii nhJnvJtIDC )
GV d6i sinli vdi khen nhflng HS
hiKng hdp IHS
Ihilu y, net Hi
ISp lujn, cam nbjn sib ling, lin HSI
- Khia canh "bi kjch" cua nhan vat ay; - Nghethuattao (dung bi kich cho nhan vat cua nha van; - T u tirdng tinh cam ma nha van the hien qua "bi kjch" cua nhan vat, Ket cau bai viet chat che, diln dat luu loat; khong m^c loi chinh ta, dung td, ngu phap
b) Yeu cau ve kien thifc: Tren co so nhung hieu
biet ve nha van Nam Cao, truyen ngSn ChiPheo,dac
biet la bi kjch cua nhan vatCP, HS co the trinh bay theo nhieu each, nhung can dat nhung tieu chi sau:
- N^u d j a c v j n ah cJn nqhi Itiln
- Bl krch 1^ qi^ Nhtiliq bieu hi^n trong bl kich ciia CP
• Bl kich ciJa CP Bl klct bi ta ctiSi quyen l^m ngUSi, bi kieli Iha tttja c i c h gl^i
• CS1T1 nhan ve g\i tn eda tJc p h f m {S\A tn noi dung ntiin i^a hl^n Swii gid
tri nghS tliiiSt|
• Ginh gifl chung vk nliSn vat vA t i c pbam
1,0
3,0
3,0
1,0
Lull i Cbo diem tht/ing neu HS co nhiJng sang t^tj ttong cSch dung \U ngii, d i l n ij^t <f
W n g hSp dSn hoac bSc ba ihu vi,
* hioat dgng 5: Giao nhiem vij ve nhi: HS yeu
viet lai bai nghj luan nay (co the chia thanh tung phan nho de dam bao tinh "vda sde" doi vdi trinh do HS
yeu!) HS kha, gioi co the thuc hien de bai: Cam nhin cua anh chi vey kie'n: CP mgt lin gio dgc, CP mgt gii'cmalanh!
Trabaikiem tra noichungvatrabaiVNL noi rieng
la tiet hgc dugc quy djnh trong chuong trinh Ngu van THPT, song vi nhieu li do ca khach quan lan chu
quan no chua dugc quan tam dung mdc, Sinh vien d
cac trudng dai hgc khong dugc trang bj nhieu kien thdc ve phan nay Cf tafdng pho thong, hoat dgng cua
GV trong mot tiet tra bai con chua thong nhat, dong thuan, con tinh trang "mdi ngudi mgt ve"! Tdkinh nghiem giang day thucte, ngudi viet manh dan djnh hudng thiet ke cho mot gid tra bai kiem tra,
cu the la tra bai de bai VNL vdi hi vong ducfc dong nghiep gan xa cho them nhirng y kien dong gop, trao ddihOuIch-Q
(Xem tiep trang 56)
Trang 3moiquan he giua kien thiic cu va kien thdc mcfl ma con
ren luyen cho cac em khanang sang tao Vivay, DHKP
cong thiic tinh khoang each tii mot die'm den mpt mat
ph§ng thong qua phep SLTT la hoan toan kha thi
PPDHKP mang lai nhieu loi ich doi vdi HS boi n6
giup cac em phat tnen tu duy, tri nho va tao duoc moi
lien he giua kien thdc mdi vdi kien thiic cu Bac biet,
DHKPb§ngSLTTdaehdng minh dupc hieu qua cua
no trong qua trinh hpc tap, kham pha tri thiic mdi ciia
HS Vivay, viec nghien cifu, phattrien vavan dyng
phuong phap nayvao qua trinh DH laeanthiet.Q
{]) Nguyen Phu Lflc Gido tnnh Xii Im&ng day hoe
khdng truyin ihd'ng Truiyng Dai hoc Can Tha, 2010
(2) Hoang Chung L o g k hpc pho thiing NXB Gido
ducH 1994
(3) Nirah Halivah Teaching for effective iearning in
higher education Ktuwer Acadeniie Publishers The
Nelherland.s 2000
Analogical Reasoning for the Concept of Translation,
Joumal of Scienee and IWalhemmalic Educalion in Southeast Asia Vol 31 2 No 164-177 Faculty of
Science & Technology, Sultan Idris University of Educalion Malaysia, 2008
Tai lieu t h a m Ithuo Tran Van Hao {tOng chu bien) Hinh hoc 12 NXB
Giaoduc VietNam H.2010
SUMMARY
Currently, tenching by discovery and analogy are applied a lot in leaching maths Moreover If teach-ers combine these elements into teachmg they not only review the old knowledge but also help students
to build the new knowledge easily The General Model
of Analogy Teaching (GMAT) is used to discover the new knowledge effectively In this article, we applied the GMAT model m teaching the formula of calculat-ing the distance from a point to a plane through an pedagogical experiment
Thiet 1(6 tiettra bai
(Tiep theo trang 46)
Tai liSu tham Ichao
I Dir an ViCl - Bi Day va hpc
tich circ, mpt so p h u o n g p h a p
va lii thuat day hpc NXB Dai
hoe supham, H, 2010
2 Nguyfin Thiinh Thi Chuyen
de btii d u ^ n g giao vien t r u n g
hpc pho thong Soc Trang, 2011
3 Nguyen H6ng Nam 'Thia't k^
cau hoi day hoc Van - M6t thir
thach vai giao viCn" Tap chi
Gido due, %6 147,2006
SUMMARY
In the current schools,
pay-ing for student tests is not
enough attention The
imple-mentation of this class a
per-consistency has led many
stu-dents miss the opportunity to
fix weaknesses, strengths, and
promote the process of writing
office hours pay discourse to
promote the highest efficiency
of this class
Sir dung hinh hoc cao cap
(Tiep Iheo trang 50) _ 6 ldi giai tren ta thay, cac cap diem ( 0 ' ; M), {N'; R) va {S'\ P) lan lugt
nam tren cac ducftig trung tuyen eua A/1'S'C'nen anh cua chiing qua anh
xa afin / ' la cac cap diem { 0 ; l\4), (A/; fl), (S; P) ciJng n^m tren cac dudng trung tuyen eua AABC vi phep bien doi afin bao toan cac dudng tmng tuyen Day ehinh la co sd cho viec si) dyng S r 2 d e tim Idi giai cho BT1
Trong qua trinh day hpc, neu GV thudng xuyen khai thae cae kien thdc cua HHCC nhim soisang cac kien thde cua HHSC sectiiipSV hieu dupc mpt each ehinh xac, hieu diing ban chat eiing nhu nam dupc cpi nguon cac kien thde eua HHSC; tudo, SV thay dUPc mdi quan he giua HHCCvdiHHSC.Q
Tai lieu tham khao
1 v a n Nhu Cuong - Ta Man Hinh hpc Afin va hinh hpc Euclid NXB
D(ii hoc quoc gia Hd Noi, 1998
2 Trdn Viet Circ>ng - Nguyin Danh Nam G i a o trinh Hinh hpc so-cSip
NXB Gidodite VietNam, 2013
3 Dito Tam Giao trinh Hinh hoc so" cap NXB Dgi hpc suphgm, H 2004
4 Ng6 Viet Trung Giao trinh Dai so tuyen ti'nh NXB Dai hpc qud'c gia
Hd Npi 2002
SUMMARY
This paper presents some ideas of using advanced geometry in sup-porting students learning mathematics From advanced point of view, students would gel insight into some difficult problems in elementary geometry and make it clear the relationship between advanced geom-etry and elementary geomgeom-etry
Tap chi Gido due so 338