C Q l NGHIEN CIJIU THIET KE CHUYEN DE DAY HOC HOAT DONG PHAT TRIEN CHirONG TRINH NHA TRII0NG CUA GIAO VIEN GOP PHAN THUC HIEN MUC TIEU DAY HOC PHAT TRIEN NANG LUC HOC SINH TS NGUYtN TIEN TRUNG Tap cti[.]
Trang 1THIET KE CHUYEN DE DAY HOC - HOAT DONG PHAT TRIEN
CHirONG TRINH NHA TRII0NG CUA GIAO VIEN GOP PHAN
THUC HIEN MUC TIEU DAY HOC PHAT TRIEN NANG LUC HOC SINH
TS NGUYtN TIEN TRUNG
Tap ctif Giao due
I.Batvindi
Hifn' nay, Bd Gilo due v i Dio tao (GD&DT) dang
thfle hifn chi dao ddi mdi can b i n v l t o i n dien giio dye
d i n kiem tra dinh g i i (DG), Odng thdi, Bd GD&DT trien
khai thi dilm vifc phit triin CT nhi trfldng, khuyin
khfch phat triin CT Idp hpc (classroom curriculum) nhu
la nhflng hoat ddng (HD) nghl nghifp quan trpng cua
giio vifn (GV) lildt trong nhflng HD dang dflpe trlln
khai l i viec thflc hifn day hpc (DH) bing cie ehuyen de
day hoe (CODtH) HO xay dUrig v i trien khai DH bang eac
CODH la mdt dang HO phit triin CJ nhi trfldng
Mfit s^ y l u td din den vife to chfle DH thdng qua
cle CDDH nhfl sau: CT GD qudc gia, dja phflong cd tfnh
nguyen tic va ben vflng trong mdt khoing thdi gian,
ludn cd tinh ddng d l phin i n n v i ed su phii hpp nhat
thfeh flng va xim nhap v i o thyc t l d ^ sdng, khdi Ifldng
theo t i l p can ning Iflc (NL) l i co sd ddi hdi GV dilu ehinh
qua trinh DH ciia minh DH tieh hdp trdng mdn Toin
cd li^n quan trong ndi bd mdn Toin; tfch hop trong DH
mdt sd van d l Toin hoc; tich hc^ mot so bai hpe trong
tien cd lien quan de dfla vio DH Toin.Thtft kf bii hoc l i
cip nhit Cdng vife niy t h i hifn NL chuyfn mdn cung
DH/GD l i d n t h i l t dd'i vdi GV Nd t h i hifn thdng qua
HD nghifn eflu mtic tifu, ndi dung CT, sich giio khoa,
d p hpe, mdn hpc, Ic^ hpc, ddi tUpng DH de xac cfinh,
OG dflpc
Hifn tai, ehfla cd nhilu nghien eflu v l DH theo chuyen
d l nhfl la mdt HD phit triin CT nhi trfldng, dac bift ddi vdf
mdn Toan Bai viet nay trinh biy tdm Iflpc ve NL, DH tilp
can NL, phat trien CT,CDDH trong DH mdn Toin
2 Nang luc v l day hoc tiep cdn n i n g Iflc
2.1.NdnglUe
Nhilu t i i lieu cho ring NL thude vao pham trii khi
nang nhfl: PISA vd cde dgng cdu hdi ctia Bp GD&OT, NL
vd edu tnic eda NL ciia Hoing Hda Binh, IVidtsd tic g i i
nhin cho phfp thflc hifn thinh cfing HD nhat cNnh Khai
nifm NL dfldc trinh biy trong Dy thio CT GD pho thong
tdng the: NL Id khd ndng thyc hiin thdnh edng HD trong
(KN) vd cdc thude tinh cd nhdn khde nhu hdng thu niim
tin, y chL NL cua ca nhin dflpc DG qua phfldng thflc va
sdng Hem nfla, GV v l HS d l hieu, de tiep can hdn vdi
nhiing triin khai day - hpc: Day kiln thfle va KN
2.2 Dgy ttgc tiip edn ndng luc nguid hoc
NLbad gdm sy vin dyng torig tidp cic'tri thflc, KN
va hlnh vi flng xfl trong thyc hlnh DH hfldng vio NL hay theo hfldng t i l p can Nl d n chfl ^ d c van de sau:
Thd nhdt, NL phii dflpc the hifn qua k i t qui cdng viec,
mflc dd dat dfloc myc dich Do do, DH theo hfldng ti^p cin NL d n quan t i m tdi HD hpc v l k i t qui HO hoc ciia
HS Thd hai, NL II sy hop thanh gifla kiln thflc, KN, th^i
trang bj kien thfle, KN cho HS vfla hinh thinh thiidi,
hanh vi flng xfl dting d i n cho d e em Thdba, kft qu'S
cdng vifc hay HD la thflde do d l 0 ^ NL cfla ci nhin
3 ChiTdng trinh, phat trien chifdng trinh vl
chuyfn di day hoc
3.1 Chiiong trinh gido due, phdt triin chuong trinh gido due
3.1.1 ehuang trinh gido due
Theo Vu Quoe Chung, CTcd d e d p dd sau; CTquoc gia, CT dia phuong va CT Idp hoc CT ldp hoc l i mdt he thfing d e k l hoaeh DH v i GD do GV thiet lie nhim dat dUdc muc tieu DH Khi thUe hien CT l ( ^ hoc, GV ddng vai trd l i chfl t h i t h i l t k l N L phit trien CT idp hpe li mfit
NL quan trpng va d n thiet d GV Do vly, cic trudng sir eho sinh vifn
NL phit triin CT ldp hpc la mdt phin eiia NL CT, gdm NL phit triin CTva NL thflc hifn CT [1].TheoehiJng thilt ke kf ho^ch b i i hoc cua GV d l dat muc tifu Dtl d mdi t i l t hoc
3.1.2 Phdt trien ehuang trinh
Phit trifn CT la q u i trinh dieu chlnh, bfi sung, cip nhat lim mdi toan bp hoac mdt sd thinh td ciia CT GD
Nd b i o d i m khi ning p h i t trien va on dinh tuong d&
theo muc tifu GD dat hifu q u i tdt n h i t phii hdp vdi dSc dilm, nhu d u phit trien cfla xa hdi v l HS Phit trien CT
Phat triin CT duac thflc hien theo ba d p dfi khie nhau, tieu tdng t h i g i n vdi t r i l t If GD cua d i t nfldc, ); eip Stf
CT nhi trfldng (CT do nhi trudng thiet ke trfn cd sd CT qudc gia); d p dd CT ldp hoc (sin phlm thift k l etia GV
trong q u i trinh DH) 'M 3.2 Chuyin di dgy hgc • 3.2.1 Quan niem ve ehuyen didm hoc S
Khi ndi d i n CODH, ta hieu l i d e ^ dO CT n h i t r f l M
va CT ldp hpc m i chu the xay dyng la tap t h i GVho^G^
ehfl khdng phii II hf thdng nhiJng nhi khoa hoc Glim
CT GD qudc gia CDDH ta mdt k f hoach tdng t h i d c H0
DH trdng mfit thdi gian xic djnh, trong dd ed muctiSu
hpe tap, pham vi va mfle do nfii dung DH, ckc phiKT"
phip va hinh thflc td chfle DH, cieh thflc DG kItfluS l i
tip Theo d c h quan niem nhfl trf n, d n chl rd mot s6m dung sau: Cic muc tifu DH c$n ehi rd kiln thflc, KN, W
dp va NL; Pham vi kiln thflc, mflc dd kiln thflc day v l N
phfl hdp vdi ddi tfldng HS, thdi Ifldng DH v i CT qu6c^
14-KHOAHQCBlAODUG
Trang 2c i c phfldng p h i p va hinh thflc t6 ehflc DH chu yeu phii
p"3 ^'"'"r ^'''^" l^^iai DH theo chuyfn d l ; Cieh thflc OG
^ *Lr ilP'^^^P * ^ ° " g qua cat^ HO v l k i t q u i HD eu the
cfla HS d f t l l p can hifu q u i q u i trinh day - hoc
Ngoii ra, can chfl y' tdi d c yfu x6 n h u ° k l hoaeh
tdng the (mye t i f u , phflong phip va eic bflde tifn hinh
thflc hifn day v l hpc); "thdi gian xle dinh" (xle dinh thdi
chuyen dl, ) M&i CDDH do GV hay t i p t h l c v t h i l t k l 11
mpt phan cfla CT n h i trudng, l i sin phlm cua qua trinh
phat trien CT nha trudng, CT Idp hpe
3.2.2 Mpt sdyiu cdu mang tinh nguyin tac ddi vdi
chuyen de day hgc
Xay dyng CDDH d i p flng yeu d u doi mdi GD hifn
nay can Iflu </ mdt sd nguyfn t i c sau: D i m b i o tinh logic
cua mach kiln thflc, tinh thfing nhit gifla cic mdn hoe
NL trong v l sau q u i trinh hoc tap theo chuyfn de; Phfl
hc^ vdi trinh dp nhan thflc ctia HS, dilu kien eu t h i dia
phflong v l kinh te, xa hdi; Cd he thdng d c chl dan cu ttie
dieu kien DH, HD chfl y l u cfla GV v i HS, )
3.2.3 Cdu trite eCia mdt ehuyen de day hoc
Ciu trfle cfla CDDH gdm cae phan chirih sau:
A NOI D U N G VA MUCTieU CUA CHUYEN Dt
1 Ndi dung
2 Muc t i f u (Kiln thflc, KN, t h i i dd, NL)
B.T(5CHCrCDH
1 Phuong phap DH
2 Chuan bj cfla GVvl HS
3 Thdi Iflong CT (thdi IflOng quy dinh v i thdi lUOng
di xuat)
4.Tiln trinh DH (cic HG cua GVvi HS)
5 Chfl )? (mpt sd nhin djnh, ehu y v f ndi dung,
phfldng phip DH, bd sung ve li luan v i ttiyc t i l n eho GV
trfldc q u i trinh DH theo chuyfn dl)
3.2.4 Cdc budc thiit kimdt chuyin di day hoe
Can cfl v i o thflc tifn t h i l t k l CDDH, cle biJrdc thift
kf mdt CDDH nhfl sau:
Bflde 1: Nghien eflu ndi dung OH d l t r i ldi cle d u
hdi: Ndi dung DH cd sy lifn he, he thdng, tflong thieh
NL thong qua d c npi dung dd cd sy tfldng dong d mfle
NL gidng nhau khong? Ndi dung DH cd the g i n vdi thUc
tien hole lifn he vdi mdn hpc khic khdng?
Budc 2: Xle dinh cic ndi dung, muc tieu DH cd b i n
Bflde 3: Thiet k f d c HD day, HD hoc cu the
Bude 4 Triin khai thye nghifm DH, thu thap thdng
tin phin hdi, difu ehinh chuyfn df
4 Vf du ve chuyfn de day hpc
Chflng tdi trinh bay vi du v f mpt CODH mdn Toin:
CDDH Vin dung ham so v l dfi thj ham sd trong thye tifn
{Oaisdl'O.CTcobln)
• A.NOlDUNGVAMUCTieUCUACHUYENDe
1 Ndi dung
Dd thi h i m so bac nhat bac hai; v f dfi thj ham sd
bie n h i t bic hai va van dung dd thi h i m sd vao mdt sd
bli toan don giin
2 Muc tieu
Kien thflc: Od thi h i m sd bae n h i t bile hai v i mfit
sfi flng dung; kiln thfle vft li, kiln thflc v l kinh te,xa hdi
KN: Xle dinh phfldng trinh ham s6, v f do thj, tinh
toan dcm giin
Thii dd: Tich eye, ehfl ddng va hflng thfl trong hoc
t i p
NL NL tfl hoc; NL giao tiep; NL cdng nghe thdng tin va truyln thfiiig (ICT); mdt sfi NL thinh phan ctia NL toan hoc (NL thu t h i p v l xfl li thdng tin toan hpc; NL tinh
t o i n , gill t o i n ; NL tflduy toan hpe; NL giao t i l p t o i n ; NL van duno t o i n hoc vao thfle tiln)
B.T5CHtJfCDH
1 Phflcmg phip DH
DH hop t i c theo nhdm, DH phit hifn v l gill quylt
v i n d l : GV ehia Idp thinh eic nhdm, td ehflc cho HS dpc internet) v l nhflng b i i t o i n cd trong cudc sdng, lifn quan d i n h i m sd va do thj h i m sfi
2 Chuan bj cfla GV va HS
- Chuan bj cia GV: May chieu, miy tinh, phdng hpc
da nang, ndi dung chuyfn d l , phin mf m ve do thj him sd
- Chuin bi ctia HS: Lim viec theo nhdm va yfu c l u
HD eua GV, biet sfl dunc| d mflc dp don giin mdt phan
m i m ve dd thi hoic phan mem v f do thi online
3 Thdi Ifldng'CT -Thdi Iflong quy dinh: 01 t i l t (Bit 4: Cie tap hdp sd, DaisdlO)
-Thdi Iflong d l xuat: 02 t i l t hoc trfn ldp, chuin bl cfla HS: 02 tuan
4 Tiln trinh DH
HO 7; Vin dung dd thi de gill bii t o i n ed ndi dung thye t i l n
GV: Chia ldp thanh cic nhdm v i thflc hifn gilt bii toan sau:
I/My; Tung mdt qui bdng thang Ifn trfn tfl kholrig each 3m so vdi m i t d i t vdi vin toe II 14m/s Gia toe trong trfldng la 9,8i m/s= (lam trdn thanh 10m/s')
1 Khoing miy gily thi q u i bdng rdi xudng dit?
2 Khoing cich ldn nhat ctia q u i bdng so vdi mat dat la bao nhieu?
HS:Thyc hifn HO theo nhdm
GV: Hfldng d i n HS thye hien nhfl sau: Bd qua sflc cin cua khdng khi, xic dmh dp cao cCia q u i bdng thdng qua bing sau:
0 6 cao ban dau Qua b d n g bay l^n vdi van tdc 14m/s Trpng Iflc k^o qua b d n a x u d n g , su thay d d i van t d c ciia q u i b d n g la mSI g i i y giam 5m/s {do da lam
t r d n , tflc la 5nri/s')
3 14t
- 5 t '
ChO y: -St' chlnti la cong thCic •{a/2)f vdi a Id gia toe trong trUUng (trong Vdt If)
Khi dd, cdng cic cfing thfle lai ta dfloc chifu cao h nhu sau: h = 3 -H4t -5t^ (t la thdi gian,don vi: giiy)
Ta ed:
DKhi bdng rot xufing dat thi h = 0,ta gill phfldng trinh3 + 14t -5t^ « - 5 t ' + 1 4 t + 3 = 0 « • t =-0,2 (loai) hoac t = 3
Vly sau khoing 3 gily qui bdng roi xudng dat 2) Mudn tfnh chilu cao nhit ciia qui bdng, GV y l u
d u HS ve hinh hoac yfu d u HS sfl dung phan m i m vf hinh de xic dinh dd cao Idn nhat q u i bdng cd t h i dat dflpc (Hinh 1)
Kit q u i : Dp eao Idn nhit q u i bdng cd the dat dflOc
l i 12,8m
GVgidt thifu cho HS mfit bai t o i n kinh t l cd t h i gill
v i mfi^hinh hoi dflpe bSng kien thflc ve him sd, do thi ham so b|c nhat^bac hat Diy la bai l o i n lien quan dlri thflc toan hpc don giin, HS cd t h i tiep cin v i hieu duoc
^ Khai nifm him d u (him xic dinh mdi tuong quan
ve nhu d u hing hol ddi vdi gia sin pham), do thj cfla
Trang 315
11
g
s
7
5 -1
3
1
- 2 - 1 ^
h
1
1
\
\ t
2 1 4 "•
nd dflpc gpi la dfldng d u
cd t h i hiiu thdng qua vi du
sau: Thdng qua vifc nghifn
cfl\j thj trfldng d c Idai xe dap
cho loai xe dap dd cd dang
Sd luong ban (Units Sold) =
70 000 - 200P (trong dd, P la
g i i xe dap, don vi tfnh la dd
hllu rd hon thdng qua do thj
"dudng clu" d Hinh 2:
Tfl dfldng d u tren^ cho
phfp OG vf mflc gia dot vdi
sin phlm Ching han, chflng
ta khdng the dat mflc gia q u i
phy thupe v i o gia Nlu mat
cd ngfldi mua Nhi sin
xult phii tinh t o i n g i i
cao nhit cd the, phijc
vu dflpe dfii tupng
nhifu nhat de dem lai
loi nhuin nhilu nhit
Ching han: Theo
him d u tren, khong
nhi sin xuat nao
mufin bin xe dap vdi
b i n vdi gia la 350USD
thi khdng ed ai mua
Gil sfl gia bin l i 310
USD thi sd Iflpng chile
dfloc l i 8.000 Chile
VI du 1: Gii sfl
doanh nghifp sin xult loai xe dap mdi Nghifn eflu thi
trudng cd dd thj bilu dien sfl tflong quan (him d u ) gifla
g i i v i sfi Iflong sin pham bin dflpc nhfl d Hinh 2 Odng
thdi, ta cd cle thfing tin nhfl sau:
1) Phil ehi t i t c i l i 700000 USD eho viec thiet k l ,
quing eio sin pham
2) Gii thinh sin xult mot chile xe la 110USD
Em hay giiip doanh nghifp tren xac dinh gia ban
chile xe dap (gii tdt nhat) sao cho ed the ban dupe
nhuin (L) = Doanh thu (DT) - Chi phi (CP)
Khi do, cd t h f to ehflc d c dang HD nhfl sau:
HD 1: HS xae lip edng thflc tfnh L = DT - CP
Kit qui mong ddi, cd t h i t h i hiln qua cae budc
nhu sau:
Sd Ifldng xe ban dflpe: 70 000 - 200x, vdl x l i gii
b i n ci^a xe
DT = sd luong xe ban dfldc x gtl
= (70 000 - 200x)x = 760OOX - 200x^
CP = 700000 + 110(70 000 - 200x)
= 8400000 - 22000X
Nhfl viy, tacd
L = DT - CP = 70000X - 200x= - (8400000 - 22000x)
= - 200x^ -I- 92000X - 8400000
Nhfl viy, lpi nhuan efla qui trinh sin xult phti
thude vio vife xle dinh gtl x efla sin pham Neu eoi x la
btlri sd thi ham ldi nhuin nhu sau:
L(x) = - 200x^ + 92b00x - 8400000
Xft dd thj ham sd L(x) nhfl Hinh 3:
Hinh 2
Hinh 3
Tfl dd thi him so, phfldng I n djnh gii de xuat cho sin pham l i : Gil ban khoing 230 USD; Idi nhuan thu dUde II L(230) = 2180000USD
Chfl y: GV hfldng dan HS chia v l bfn phii eua ham L(x) eho 200 de dfla ve vifc khio sit him sd L,(x) = -x' + 460x + 42000 cho viec tinh t o i n don giin, thuan Ipi hdn Thdng qua bli t o i n trfn, HS dUoe bift thfm v l mfit sfi khii nifm lifn quan d i n cdng vifc kinh doanh nhfl dinh g i i sin pham, xae djnh ehi phf v i Icri nhuan, him phlm v i sti dinh g i i sin pham Inh hUdng den so Iflpng him sd tfl nhflng kiln thfle, thdng tin ban dau, sfl dung
dd thj cLia him sd di g i i i b i i t o i n thuc tien,
HD 2: Khai thae eac v i n d l thflc tifn cd the gill
quylt thdng qua d e kiln thflc v f him sd, dd thj efla eae ham sd bac n h i t bie hai
GV: Yeu d u HS tU khai thae d c vin d l trong thflc tien cd t h i sfl dung cac kiln thflc v l him sd, do thj him
sd bac nhat bac hai de gill quylt Ching han, cac bii
t o i n vf gfli tifn tiet kifm, tinh Iflong phu thupc vio gid lao dpng, thdi gian th'uf nhi, difn tfch thu§ nhi, mit bing van phong kinh doanh,.,
Vidu vi bdi todn gCrl tiet kiim: Mpt gia dinh cd sfi tien
gfli t i l t kiem la 1 tl dong Hif ri cd hai ngin hing vdi cic gdi Uu dai khae nhau nhusau:
N g i n
A
B
Lai suat/nam 6,5%
5,5%
Chinh sich Uu di\ khach hang
K h d n g
T h u d n g ngay IS t r i f u tien mat eho k h i c h h i n g
Em sf tfl van cho gia dinh nfn chpn ngin hang nio
di giii tien t i l t kifm?
Vidu vibdl todn mdy bam nude: Mdt gia dinh muon
mua mdt chile miy bom Cd hai loai vdi ciing luu lUdng bom dupe trong mdt gid; loai thflnhit gia 1,5 trieu dong, nhit thi moi gid tien dien phii t r i la 1.200 dong, dOng bom Theo tian, gia dinh nfn ehpn mua loai may nio de dat hifu qui kinh te cao? [2]
5 Chdy
- Ooi vdi HD 2, GV chia ldp thinh cic nhdm roi hudng din HS khai thic cic bii toin trfn mang internet, nhdm ndp b i o cao dfldi dang bin m i m 01 file word^
- v l NL toan hoc: NL t o i n hoc bao gom mdt so NL thinh phin nhfl sau: NL thu t h i p v l xfl li thdng tin toan
Trang 4den t o i n hoc xfl If dflpc thong tin va nhd cic khii nifm,
toin, g i l l t o i n (thflc hifn cle phep t o i n bing sd va c l
nang p h i n tich, tfing hop, l i p luin logic, p h i n bifn v i
sang t^o); NL giao tiep toan: NL t h i hifn quan diern efla
HS trong q u i trinh hpe t o i n , bao gom NL giao t l l p v l
van dyng toan hpe v i o thflc tien (van dung toan v i o diH
sdng, g i i i quylt d c b i i tctan, van de thifc t i l n , cd nhilu
hpc (cd d HS^gidi t o i n , cae n h i toin hpe, la kh'l nang
toan hpc mcfi)
6 Ket luan
Viee DH theo chuyen de khdng h i n la mdt hudng
mdi trong DH d n h i trfldng phd thdng.Tuy vay, DH theo
chuyfn de nhim phat triin NL HS II can t h i l t cd y nghTa
d l xiy dyng mdt CODH Trong bai v i l t niy, chflng tdi
dfla ra quan nifm, nhflng y f u clu, d u trfle va vi du cy
t h i v l mdt CDDH mdn Toan Tfl dd, GV ed dflpc nhflng
gpi '^ ban d i u v l vlfc thyc hifn day va hpc rndn Toin
trdng nha trfldng phd thong theo cic CDDH
T A I L i i u THAM K H A O
[1] Nguyin Thj Kifn Dung (chfl bifn) - Dinh Quang
Bio - Nguyen Thanti Binh - DUdng Thj Thuy Ha - Nguyen
Hoing Doan Huy - D i o Thj Oanh - My Giang Sdn, (2015),
Ddo tgo nghiep vu sii phgm theo dinh hudng hinh thdnh pham, NXB Oai hoe Sfl pham Ha Ndi
[2] Vu Qude Chung, (2015), Bdi dudng ndng lucphdt triin ehuang trinh Idp hgc cua gido vien tieu hgc trong day hgc mdn Todn Kt ylu Hdi thio khoa hpc qufic gia Dao
tao v i phit trien ngufin nhin Iflc giio due tiiu hoc, NXB Hdng Dflc tr 195-203
[3] Bd Giio dye va D i o tao, (2012), PISA vd cdc dgng cdu hdi, NXB Gilo due Vift Nam
[4] Hoang Hoa Binh, (2015), Wdn§/flcvdc<?u(riicc(/a
ndng lUcJap chi Khoa hoc Gilo due Sfi 117, thing 6 nam
2015,tr.4-7
[5] OECD, (2002), Definition and Selection of Competencies:Theoritical and ConceptuI foundation
SUMMARY
The paper presents concepts of competence and competence-based teaching, curriculum and curriculum development, then analyzes the thematic teaching concepts, its requirements and structure, steps to design
a theme and its summary towards integration, and contribute to students'competence development
Keywords:Maths competence; teaching:competence
approach; teaching theme
IIIIIIIIKIIIIIIIIIIIIIIIII1IIIIIIIII1IIIIIIIIIIII1IIIIIIIIIIIII llllllllllllllllllllllllllllllllllllllllllllltllllllllllllllll iiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiitiiillliliiiiiiiiiiiitii
VAN DUNG THUYET UEN TOONG
nhd, gid dly nit ra v l van dung mdt each thieh hpp di
gill bii t o i n Chflng ta gpi vife nhd lat ed ehpn Ipc nhfl
vly l i sy huy ddng, viee lam eho chiing thieh flng vdi bii
toin dang giii l i sy to chfle°[7J
Trong q u i trinh giii b i i toan cy the n i o dd, dUong
nhifn khong phii Iflc n i o cung huy ddng d i n t i t c i kifn
thflc m l ngfldi gill thu t h i p dupc Dd vly, d n huy ddng
dfn kiln thfle nio, d n xem xet nhCfng moi lifn hf nio,
difu do edn phy thude v i o khi nang chpn Ipe kiln thflc
efla ngfldi giii
5 Ket luan
Qua trinh nhin thfle cfla eon ngudi 11 q u i trinh m l
ho thye hien hang loat cic lifn tfldng, dd l i lien tfldng
g i n nhau v f khdng gian v i thdi gian, lien tUdng gidng
nhau, lifn tfldng nhlh q u i Sy lien tfldng cung tuan theo
luat tuong t u v i quy luit nhan q u i Qui trinh hpc t i p
cua HS phii i i q u i trinh hp thyc hien hing loat d c lifn
tudng gifla eic kifn thflc v i kl nang da ed vdi tinh huong
tri thflc mdi t f l dd ho lam xuat hifn d c •)! t u ^ g va thUc
hifn sing Ipe eic y tudng dd de hinh thinh tri thflc mdi
eho b i n thin
lAlLieUTHAMKHAO
[1] J Piaget (1996), Tdm 11 hge vd Gido due hgc, NXB
Giio due Ha l^di
[2] Hoang Phf (ehfl bifn) va cac tac gii, (2002), TCf
diin Ving Viet, NXB O i Ning
[3] Nguyen Vin Thuan, (2004), Gdp phdn phdt trien
ndng li/c tuduy ldgic vd sddung chinh xdc ngdn ngd todn
hoc cho hoc sinh ddu cdp Trimg hgc pho thdng tmng dgy
Vinh
[4] M Alecxeep, V Onhlsuc M Crugliac (1976),
Phdttriin tUduyhgcsinh, NXB Giio due Vift Nam, Ha NpL
(Tiep theo trang 6}
[5] Nguyfn Bi Kim, (2006), Phuang phdp dgy hgc mdn Todn, NXB Dai hoe Sfl pham Hi Ndi
[6] Dio Tam, (2013), Phdi hiin vd sddung hinh trung gian didm tdi Idi gidl bdi todn hinh hocTapchiToan hoc
&Tudi trf, Sd 9,tr 34- 37, Ha Ndi
[7] G Polya, (2010), Sdng tgo todn hoc, (Ngfldi
dich Nguyen Sy Tuyln, Phan Tit O l c Hd Thuan, Nguyen Doan), NXB Gilo due Viet Nam
[81- Cruchetxki V A., (1973), Tdm lindng lUe Todn hge eda hocsinh, NXB Giio due Ha Ndi
[9] Ofle Uy, (1999), fdm lihg'c sdng tgo, NXB Dai hpc
Sfl pham Ha Ndi
[10] Alari cromer, (1997), Connect knowledge: Science, Philosophy, and £ducation, Published by Oxford
Press
[11] Connecting mathematics problem solving to the real world Center for Reseach on Mathematics and
science education, San Diego State University, U.S.A
[12] Ernest P (edited), (1994), Constructing mathematical knowledge:Epistemologyand mathematical education The Falmer Press, London
SUMMARY
The article presents an overview of associative theory and application into Maths teaching at high schools According to the author, people perform different associations In the process of human cognitive The association is also subject to the rules of proximity, similarity and cause-effect The students' learning process
is a process In which students make associations between existing knowledge and skills to new situations, then developed ideas and implemented these ideas In order to form new knowledge
Keywords: Associative theory; teaching process;
Maths; high schools
Slf 128-THi^G 5/2016- 17