NGHIEN cDuUJ PHAT TRIEN NANG LUC PHAT HIEN VA GIAI QUYET VAN DE CHD HOC SINH THONG QUA VIEC XAY DUNG CAC BAI TAP HOA HDC Mdl TUT BAI TAP GOC BAN DAU I Odtv^ndl Trong qui trinh gil l bai t ip , giio vi[.]
Trang 1cDuUJ
PHAT TRIEN NANG LUC PHAT HIEN VA GIAI QUYET VAN DE CHD HOC SINH THONG QUA VIEC XAY DUNG
CAC BAI TAP HOA HDC Mdl TUT BAI TAP GOC BAN DAU
I O d t v ^ n d l
Trong q u i trinh gill bai t i p , giio vifn (GV) hfldng
dan hpc sinh (HS) phin tich, tdm t i t thfing qua eae dfl
kien, dau hifu dac trUng di nhan ra dang b l i va t i l n
hpc khdng chi II vifc tim ra k i t q u i cho ki thi hay dinh
g i i nang Iflc (NL) HS ma chflng ta phii hinh thinh va
phit trien dflpc NL gill quyet v i n de (GQVO) eho HS di
eung cap nhflng kt nang (KN) quan trpng budc vao cudc
song Viee giao due v i phit trien t u duy cho HS, die bift
l i tu duy khii quit hda, NL lifn k i t v i x i u chudi cle dfl
kifn, NL p h i t hien van d l l i h i t sflc quan trpng Vi vly,
n§n yfu d u HS biln ddi bai t i p thinh cle bai tap mdi cd
mflc dp khie vi^ bit tap ban dau Difu niy khfing chi rfn
chfl dfing hon trong vlfc tim hfldng GQVD ma edn giflp
ling, thieu tfl tin khi gap phai mdt bii t i p - tinh huong
mdi Trong b i i b i o nay, ehung tfii dua ra cich thflc phit
triin NL GQVO d giai doan thfl nhat eho HS la: Kham pha
van di hudng di, thfl phip, tien trinh de tifn tcfi mdt
he gifla d e dfl kien v i yfu d u , gifl:a nhflng dilu da biet
qua hoat ddng ehuyin dfii v l xly dung bai tap mdi tfl
bai t i p gde ban diu
2 Phit trien nang lUc phit hiin va giii quylt
vin d l cho hoc sinh thong qua viec xay difng bai tap
Hda hoc m6i Xit b l i t i p gfic ban d^u
2.1 Khdi niim vindng luc gidi quyit vdn di
2.1.1 Ndng tuc
Cic t i c g i i cd quan d i l m ehung v l NL nhfl sau: "NL
la td hop cle thufic tinh dfic d i o efla c i nhan, phu hpp
ddng dd cd hieu qui" NL him ehfla trong nd tinh san
sing hlnh ddng, ddng co, y chi, trich nhiem xa hdi de
sfldtjng thinh cdng v i cd trich nhiem vdi cac gill phip
Vf b i n chat NL la khi nang ehu t h i k i t hpp linh
hoat va cd to ehflc hpp li cic kiln thflc KN vdi thai dp, gia
trj, ddng co nhlm dap flng yeu d u cfla mdt hoat dpng,
(tinh hudng) nhit dinh V l bleu hifn, NL the hifn bing
vifc biet sfl dung cac kiln thfle, KN, thai dp va gia tri,
ddng CO trong mdt tinh hudng cd thuc V l thanh phin
d u tao, NL dupe c l u thinh bdi kiln thfle, KN, thai dp va
ndi d i n NL 11 ndt den khi ning thye hifn, phii bift l i m
ehfl khdng ehi biet va hiiu NL 11 nhflng kifn thflc KN,
eic g i i trj dfldc phin anh trong thdi quen suy nghT va
hanh ddng cua mdi d nhin
TS.NBUYiN THj BiCH H|£N Tnrimg Dal hoc Vinh
2.1.2 Gidi quyit vdn di
Dau the ki XXI, cpng dfing giao due qufic t l chap nhin djnh nghTa: GQVO l i khi nang suy nghT v i hanh dfing trong nhung tinh hudng khdng cd quy trinh, thu tyc, giai phip thdng thudng ed san Ngfldi GQVD cd the xic djnh dflpc muc tieu hanh dpng nhflng khdng p h i i ngay l i p tflc bilt d c h dat dflpc nd Sfl am hieu tinh viee lap kf hoaeh v i suy luan tao thinh qua trinh GQVO
Co the thay, GQVO la qua trinh tU duy phfle tap, bao gdm sfl hiiu b i l t dfla ra luln dilm, suy luln, dinh phye khd khan, thieh thfle cfla van de Trong qua trinh GQVO, chfl t h i t r i i qua hai giai doan ed bin: Khim pha van d f v i td ehflc ngufin Ifle eua chinh minh; Thflc tiifn kilm giii phap k h i c
2.1.3 Ndng li/c phdt hiin vdn de vd gidi quyit vdn di
NL phdt hien vdn de la NL hoat ddng tri t u f khi dflng
trudc nhflng van d l , nhflng bai toan eu the ed mye tifu tflduytich eye, sang tao nham tim Idi giii cho van d l
NL GQVb: Theo each truyln thdng, NL GQVO dupe
t i l p can ttieo tifn trinh GQVO va sfl chuyin ddi nhan thflc cua chti t h i sau khi GQVD Theo hfldng hifn dai, NL GQVO dflpe t i l p can theo qua trinh xfl If thdng tin, nhan manh tdi suy nghi eiia ngfldi GQVO hay "he thdng xfl li
d f l i nhung dien bien t i m li ben trong ctia ngUdi GQVO: mong mu6n (muc tieu) v i each thflc, chien Iflpc hanh Trong qua trinh GQVD, con ngUdi cd thf sfl dung each thflc, ehiln lUpc v i ed nhung kit q u i d i u ra khie nhau PISA 2012 hudng den viee GQVO mang tinh tuong tac (interactive problem solving - IPS): "GQVD 11 NL cfla mdt c i nhin tham gia v i o qui trinh nhan thfle d l hieu
va gill quyet cac tinh hudng cd van d l m l phuong phip ring Nd bao gdm sy sin sing tham gia v i o d c tinh mdt edng dan cd tfnh xay dflng va bift suy nghT" NL GQVO the hien khi nang cfla c i nhin de tfl duy, suy nghT
v l tinh huong van d l v l tim kifm, thyc hifn giii phip cho van d f dd Vi vay, NL GQVO l i khi nang el nhan
v i t h i i dd, ddng co, xue d m d l gill quyet nhflng tinh hudng van de ma d dd khdng ed sin quy trinh, thu tuc giai phip thdng thudng
Nhfl viy, q u i trinh phan tich v i tim ldi gili bai tap
hay phat hien van di de tim phUOng phip giii bli t i p la
Trang 2gili quyft Nd 11 mfit qui trinh phin i n h v l NL GQVO
2.2 Quy trinh hUdng ddn hge sinh xdy ddng bdi
tdp Hda hge mdi di phdt triin ndng lUe phdt hiin vd
gidi quyit vdn di
Budc 1: GV dfla ra mdt bai tap (co bin, dien hinh),
yeu d u HS tim hfldng giii quylt bii tap Cie bflde co
b i n cd the tim ra ldi gili
BUdc2: Xle djnh diem m l u chfit d l tim ra Idi gili
Sfldc i ; Trf n cosd diem mau ehot d c phuong trinh
hda hpe the hifn tinh ehat hda hpe cfla chat v i dfl kifn co
bin cfla bai, GV hfldng dan HS bien d6i bai t i p ban dau
thanh nhflng b l i tap mdi cd d e mflc dd khac nhau Cich
trong eic dfl kien ed trong d i l m mau ehot de gili b i i t i p
Tfldd, GV phan tieh cho HS thiy mfii quan hf cfla cle dfl
kifn mdi so vdi d c dfl kifn ban d i u hoae n l u thay doi
hoac khd hon bing d c h : Chuyin dSiddkiin tUdng minh
thdnh ddkien dn: Cieh thfle niy se cd duoc b i i tap mdi
khd hon so vdi bai t i p ban diu, sd an thudng t i n g len
Chuyin ddkiin Sn thdnh cdc ddkien tUdng minh: Phuang
phap niy se eho ra bii tap de hdn
Budc 4: Sau khi cd dflpc ndi dung b i i tap mdi, GV
t i p trung phan tich mfii quan he gifla cac dfl kifn efla
bai tap mdi xiy diing v l gifla d c yfu clu ban d i u vdi
bat tap mdi v i bai t i p quen thupc trude dd, nhan thflc
ra kiln thflc cu tren mdt hifn tflpng mdi d l tim ra dfldc
hfldng gili quylt bai t i p Dfing thdi HS hinh thanh dupe
NL phit hien v l GQVO thdng qua viee nhan ra moi quan
hf gifla cie d i u hifu, sy v i t hien tfldng d l tim ra hfldng
GQVD khi g i p mot tinh hudng mdi
Bude 5: Rflt ra nhan xet v i kit luln khoa hpe Cic ket
luln khoa hpe nhlm cflng cd hoac khai quit hda kiln
thflc cho HS; ed t h i l i nhflng kien thfle de gay nhlm lan
cho HS hoac mdt phuong phip gili b i i tap Hda hpc mdi
Vidu: Budc 1: GV eho mdt b i i t i p goe nhu sau: Cho
m gam KL Na tdc dung vda du vdi dung dich cd chda 36,5
gam axit Clohidric Hdy tinh sd moi khi Hydro dugc gidi
phdng vd so moi Na dd tham gia phdn dng?
HS cd t h i dya v i o dfl kifn cua HCl v i phflOng trinh
phin flng hda hpc di tinh so moi khf Hidro thoat ra v i
eiia phin flng hoac dya vao sfl b i o toan khfii Iflpng cfla
Hidro HS cd t h i dya vao Ojnh luit Bio toan electron de
tinh sfi moi Na tham gia:
2Na + 2HCI->2NaCI + H,t
0,1 0,1 -> 0.05 moi H
Bflde2: Xic dinh dilm m l u chdt di gili bai toin: Tfl
sfi moi HCl de tfnh sd moi H^
Budc 3: GV hfldng dan HS bien doi b l i t o i n bing
cich bifn dfii cic dfl kifn khdng nim trong d i l m mau
chfit cfla bai toan trfn eo sd xae djnh dupe d i l m mau
chdt ciia bii Cy t h i : Van d l khac di nlu chflng ta phan
gam hdn hpp 2 kim loai kiem" Cae dfl kif li edn lai v l yeu
yfu d u HS giiL Bai t o i n phit bleu lal nhfl sau: Cho m (g)
hon hgp 2 kim logi kiem tde dung vda du vdl dung dich cd
chda 36,5g axit Clohidric Hdy tinh sd moi khf Hidro duac
gidi phdng vd sd moi 2 kim loai kiem dd tham gia phdn
ifng?
Theo tfl duy tnidc dly, HS sf viet d c phfldng tfinf hda hpc cfla phin flng Sau dd, HS dat ^n de gpi kM
Ifldng mdl kim loal, tfl dd l i p h f phflbng trinh de g&
nhlm tim sfi moi moi kim loai, tinh tong sd moi ehiing
da tham gia va sd moi H^ Suqc tao thinh NhUng bai
HS gap khd khin
Sfldc 4; GV yfu c l u HS phin tfch mdi quan hf giQa
d c dfl kifn mdt dflpc bien ddi v i dfl kifn gdc baii diu Sau dd, GV yfu d u HS ddi chilu vdi diem mau chfit de gill bii t i p d trfn HS nhan t h i y ring dfl kifn cCia bat tap
da thay doi phfle tap hon Bii t o i n tfldng khd hem nhUiig
b i n chit khfing thay doi vl b i i t o i n khfing yfu d u xac djnh 2 kim loai ma chl tinh t h i tfch khf Hidro HS sf tim ra Idi gill ctia b l i t o i n m i khdng can dfla vio khdi lupng cu
t h i efla moi kim loai kiem trong moi phin flng LOe nay, hpc dfldc v i l t lai thanh 1 phfldng trinh hda hpc Bii toan trd nfn de ding nhfl bai tap gfic ban diu Oilii niy khiln
HS hflng thii vdi boat dpng g i i i b i i toin Odng thdi, HS
d m thiy hao hung khi tim ra Idi glli va nhin tfifle duoc
mpt phflong phap gilt mdi nhanh hon, thdng minh han
va thfl vj hPn so vdi phflOng phip giii trfldc dly Dieu dfing thdi gdp phan hlnh thanh, phit trien NL giii bai tap trong hpc tap ndi rifng va NL phit hifn, GQVD noi chung trong eude song
Budc 5: GV eung cd lai kiln thflc eiia phin kim lo^l
t i c dyng vdi axit nhin manh v i gpi ten cua eae phep giii d l dupc vfn dung
Vdi cieh lim tflong ty, GV yfu d u HS tifp ti^c bien ddi b i i tap thinh mdt b i i t i p mdi khac so vdi ban dau bing d c h ehuyen ddi vai trd cfla cic dfl kifn trong diem nhau khi tiep tyc bifn doi theo quy trinh trfn Cu t h i bii
t i p ed the duoc phit bieu nhu sau: "Cho a gam'kim lodU
Na tdc dung vifa du vdi dung djch chda m gam HCl, sau k/ijfl phdn dng kit thue hdy tinh sdmol H^ duae gidi phdng vd so moi HCl dd tham gia?" (a cd gid tri cu th^ Md rfing hO^J
chiing ta ed t h i hfldng dan HS bien doi thinh bii toil) 1
cd phin flng hda hoc gifla kim loai v i mudi,
3 K i t l u l n Bing cich hfldng dan HS biln doi nfii dung bii tap,
HS hio hflng hon vdi hoat dfing tim Idi gili dong thia
giflp hiiu sau kien thfle hon v i cd dflpe phfp giii m6i Ngoii ra, HS phat trien dflpe NL gili bii t i p se khfing
t i l p nghien eflu v i xle dinh yeu d u ctia bli tap, tfl do Iflpc bd eic d i u hifu thfl y l u giy nhifu cho hoat don^ tim ldi giai HS se ehfl ddng quan sit d c dfl kifn, cic chat
d l phit hifn ra mfii lifn he gifla d e dflkien hay gifla cic
gap Qua trinh niy dfldc rfn luyfn thfldng xuyen se gip
phin hinh thinh NL GQVO cho HS trong hpc tip cung dung bai tap trong day hpc ehfl khfing don thuin ehi li tim Idi gili hay hpc mpt phflong phip gili mdi
l A l Ligu THAM K H A O
[1] Dinh Thj Kim Thoa (Chti bi^n), Tdm llhgcH^
cuang, 2009, NXB Oai hpc Qudc gia HI NpL
[2] Le Xuin Trpng - Nguyen Cflong - Ngd Ngpc An
- Od Tit Hiln, (2006), Bdi tdp Hda hoc 8, NXB Giio due
Hi Ndi
Trang 3[3] Nguyfn Thi Bich Hiln, (2016), Bdi tpp Hda hoc
vdl viic phdt triin tu duy cho hoc sinh, Giao trinh gilrig
day cho hpc vifn cao hoc NXB Oai hoc Vinh
[4] Nguyen Thj Bich Hiln, (2012), Rin ki ndng sd
dung bdi tap hda hgc trong dgy hoc eho sinh vien edc
tnidng sUphgm Luln i n tifn sT giio due hoc HI Ndi
[51 Bd Gilo due v i Gio tao, (2014), Tii'lif u Hdi thio,
Xdy dung ehuang trinh gido due trung hgc phS thdng theo
dinh hudng phdt trien ndng luc hgc sinh
SUMMARY
Teachers asked students to transform Maths exercise
iiiiiiiiiiiMiiiiiiiiiiiiiiiiniiiiiiiiiiiiitiiiiiiiiiiiMiitiiiiiiiiiiiiiiiitiiigiiiiiiiiiiitiiNiiiiiiiiiiiini
into the new ones with different levels, helped them develop competence of problem solving and creative thinking;
be more proactive in finding solutions At the same time, students overcame the barriers of perception, anxiety, and lack of confidence when encountering Maths exercise -a new situation If this process is regularly exercised, students' problem-solving competence will be developed In learning and real life
Keywords: Competence; problem solving and
exploration; Chemistry exercise; creative thinking
iiiiiiiiiiiiiiiiiiiiii
REN LUYEN CHD NGUdi HOC
d c bilu thfle cd ehfla nhflng dai difn cho cic dai Ifldng
Trfn Cd sd dd, chuyen bai toan thyc t l ve dang ngon ngfl
ndi dung thyc t l thfldng duac t i l n hanh qua d c budc
sau: Bflde 1: Chuyin bii toan thflc t l v l dang ngdn ngfl
thich hpp vdi li thuylt Toin hoe d l gili (lip md hinh t o i n
hpc efla b l i toan); Bflde 2: Gili b i i t o i n trong khudn khd
toan hpe ve ngfln ngfl efla linh vflc thyc te [2]
VI du 3: Tfl mdt milng tdn hinti vudng, ngudi ta
mudn l i m mfit chile p h l u mat ndn Hdi phii d t t h i n i o
di chile pheu cd t h i tieh Idn nhat?
Ngfldi g i l i xae djnh cic dai Iflpng va mdl lifn quan
giiia d c dai Iflpng: Chile pheu mat ndn dupe lim tfl hinh
trdn ndi tiep hinh vudng sau khi elt bd mdt hinh quat
cOa hlnh trdn dd, b i n kinh hlnh trdn bing mdt phan hai
canh hlnh vudng
Chuyen b l i t o i n thyc t l v l dang ngdn ngfl t o i n
thanh b i i t o i n sau: "Cho hinh trdn t i m (0; R) Hdi phii
elt di mdt hinh quat (tfltim 0) n h f l t h i n i o di phin cdn
lai tao thinh mpt hinh ndn cdthe tich ldn nhit"
Goi (a) (Rad) l i gdc d t i m ciia hinh quat AOB d n
cltdi(Hinh2)
Gap eung AnB dfloc diy cfla hlnh ndn cd ban kfnh
r (Hinh 3)
Oat X la dfldng cao cfla hinh ndn (0<x<R)
(Tiep theo trang 13)
t , a = 2}i-l vdi 1 =
Gpi V la t h i tfch efla khdi hlnh ndn
Khidd, V = -nr'^x = -K(R^
3 3 -x'-)x ^—(-x' + R^x)
Xem V la h i m so efla bien sd x, flng dung kiln thflc
dao him ctla h i m sd de gili bit toin.Tim dflpc Vdat gia
tri Idn nhit khi r = ^ suyra x = ^ thay vao (l)ta
3 3
Vly de chiec pheu cd t h i tieh Idn nhat phii c i t dl
hinh quat trdn ed gdc d t i m \aa = 2iT -• ^ -
5 K H l u l n
V odi ydi giio dijc Toin hpc mfit so b l i t o i n dat ra
cfla chinh mdn Toan hay b i i t o i n efla d c mfin hpc khic
hay b i i toan thye t f cufie sfing cd lien quan den Toin hpe, viec gill bai toan ddi hdi ngfldi giii phii xem xft bli
t o i n trong mdi lien he gifla d e tri thfle trong ndi bfi mdt qua hoat dfing CONN cua ITnh vyc do v f ngdn ngflToin
va van dyng linh hoat eac tri thflc Toan hpc Qua hoat hpe dflpc bdi dfldng NL phit hifn v i GQVO Hoat ddng nay gdp phin v i o vifc hlnh thanh cho ngfldi hoc d Ifla tufii niy nhin thfle: Cin xem xft nhflng sy v i t v l hifn tflpng trong nhflng mdl quan he phu thude lan nhau
TAI L i i u THAM K H A O
[1 ] Vflgdtxki L X., (1997), Tuyin tap tdm lihgc, NXB
Dai hpe Qudc gia Ha Ndi
[2] Pham Van Hoin - Nguyfn Gia Cdc -Trin Thue
Trinh, (1981), Gido due hoc mdn Todn, NXB Giao due, HI
NpL [31 Nguyen Ba Kim (Chu bifn) -Dinh Nho Chflong
- Nguyen Manh Cing - Vu Duong Thyy - Nguyen Vin
Thudng, (1994), PhUOng phdp day hoc mdn Todn, Phdn 2,
NXB Giio dye Ha NpL
14] Nguyen Ba Kim, (1998), Hoe tdp trong hogt ddng
vd bdng hogt ddng, NXB Giao due Hi Npi
SUMMARY
TTie article clarified the role of language conversion
activity in Maths exercises and some forms of language conversion activity In teaching Maths exercises This conversion helps teachers to develop bases to guide and practice students know how to express a Maths content towards solving problems Thereby, learners' competence
to explore and solve problems will be improved
Keywords: Language conversion; Maths exercises;
competence to explore and solve problems