1. Trang chủ
  2. » Tất cả

Phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh thông qua việc xây dựng các bài tập hóa học mới từ bài tập gốc ban đầu

3 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 161,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

NGHIEN cDuUJ PHAT TRIEN NANG LUC PHAT HIEN VA GIAI QUYET VAN DE CHD HOC SINH THONG QUA VIEC XAY DUNG CAC BAI TAP HOA HDC Mdl TUT BAI TAP GOC BAN DAU I Odtv^ndl Trong qui trinh gil l bai t ip , giio vi[.]

Trang 1

cDuUJ

PHAT TRIEN NANG LUC PHAT HIEN VA GIAI QUYET VAN DE CHD HOC SINH THONG QUA VIEC XAY DUNG

CAC BAI TAP HOA HDC Mdl TUT BAI TAP GOC BAN DAU

I O d t v ^ n d l

Trong q u i trinh gill bai t i p , giio vifn (GV) hfldng

dan hpc sinh (HS) phin tich, tdm t i t thfing qua eae dfl

kien, dau hifu dac trUng di nhan ra dang b l i va t i l n

hpc khdng chi II vifc tim ra k i t q u i cho ki thi hay dinh

g i i nang Iflc (NL) HS ma chflng ta phii hinh thinh va

phit trien dflpc NL gill quyet v i n de (GQVO) eho HS di

eung cap nhflng kt nang (KN) quan trpng budc vao cudc

song Viee giao due v i phit trien t u duy cho HS, die bift

l i tu duy khii quit hda, NL lifn k i t v i x i u chudi cle dfl

kifn, NL p h i t hien van d l l i h i t sflc quan trpng Vi vly,

n§n yfu d u HS biln ddi bai t i p thinh cle bai tap mdi cd

mflc dp khie vi^ bit tap ban dau Difu niy khfing chi rfn

chfl dfing hon trong vlfc tim hfldng GQVD ma edn giflp

ling, thieu tfl tin khi gap phai mdt bii t i p - tinh huong

mdi Trong b i i b i o nay, ehung tfii dua ra cich thflc phit

triin NL GQVO d giai doan thfl nhat eho HS la: Kham pha

van di hudng di, thfl phip, tien trinh de tifn tcfi mdt

he gifla d e dfl kien v i yfu d u , gifl:a nhflng dilu da biet

qua hoat ddng ehuyin dfii v l xly dung bai tap mdi tfl

bai t i p gde ban diu

2 Phit trien nang lUc phit hiin va giii quylt

vin d l cho hoc sinh thong qua viec xay difng bai tap

Hda hoc m6i Xit b l i t i p gfic ban d^u

2.1 Khdi niim vindng luc gidi quyit vdn di

2.1.1 Ndng tuc

Cic t i c g i i cd quan d i l m ehung v l NL nhfl sau: "NL

la td hop cle thufic tinh dfic d i o efla c i nhan, phu hpp

ddng dd cd hieu qui" NL him ehfla trong nd tinh san

sing hlnh ddng, ddng co, y chi, trich nhiem xa hdi de

sfldtjng thinh cdng v i cd trich nhiem vdi cac gill phip

Vf b i n chat NL la khi nang ehu t h i k i t hpp linh

hoat va cd to ehflc hpp li cic kiln thflc KN vdi thai dp, gia

trj, ddng co nhlm dap flng yeu d u cfla mdt hoat dpng,

(tinh hudng) nhit dinh V l bleu hifn, NL the hifn bing

vifc biet sfl dung cac kiln thfle, KN, thai dp va gia tri,

ddng CO trong mdt tinh hudng cd thuc V l thanh phin

d u tao, NL dupe c l u thinh bdi kiln thfle, KN, thai dp va

ndi d i n NL 11 ndt den khi ning thye hifn, phii bift l i m

ehfl khdng ehi biet va hiiu NL 11 nhflng kifn thflc KN,

eic g i i trj dfldc phin anh trong thdi quen suy nghT va

hanh ddng cua mdi d nhin

TS.NBUYiN THj BiCH H|£N Tnrimg Dal hoc Vinh

2.1.2 Gidi quyit vdn di

Dau the ki XXI, cpng dfing giao due qufic t l chap nhin djnh nghTa: GQVO l i khi nang suy nghT v i hanh dfing trong nhung tinh hudng khdng cd quy trinh, thu tyc, giai phip thdng thudng ed san Ngfldi GQVD cd the xic djnh dflpc muc tieu hanh dpng nhflng khdng p h i i ngay l i p tflc bilt d c h dat dflpc nd Sfl am hieu tinh viee lap kf hoaeh v i suy luan tao thinh qua trinh GQVO

Co the thay, GQVO la qua trinh tU duy phfle tap, bao gdm sfl hiiu b i l t dfla ra luln dilm, suy luln, dinh phye khd khan, thieh thfle cfla van de Trong qua trinh GQVO, chfl t h i t r i i qua hai giai doan ed bin: Khim pha van d f v i td ehflc ngufin Ifle eua chinh minh; Thflc tiifn kilm giii phap k h i c

2.1.3 Ndng li/c phdt hiin vdn de vd gidi quyit vdn di

NL phdt hien vdn de la NL hoat ddng tri t u f khi dflng

trudc nhflng van d l , nhflng bai toan eu the ed mye tifu tflduytich eye, sang tao nham tim Idi giii cho van d l

NL GQVb: Theo each truyln thdng, NL GQVO dupe

t i l p can ttieo tifn trinh GQVO va sfl chuyin ddi nhan thflc cua chti t h i sau khi GQVD Theo hfldng hifn dai, NL GQVO dflpe t i l p can theo qua trinh xfl If thdng tin, nhan manh tdi suy nghi eiia ngfldi GQVO hay "he thdng xfl li

d f l i nhung dien bien t i m li ben trong ctia ngUdi GQVO: mong mu6n (muc tieu) v i each thflc, chien Iflpc hanh Trong qua trinh GQVD, con ngUdi cd thf sfl dung each thflc, ehiln lUpc v i ed nhung kit q u i d i u ra khie nhau PISA 2012 hudng den viee GQVO mang tinh tuong tac (interactive problem solving - IPS): "GQVD 11 NL cfla mdt c i nhin tham gia v i o qui trinh nhan thfle d l hieu

va gill quyet cac tinh hudng cd van d l m l phuong phip ring Nd bao gdm sy sin sing tham gia v i o d c tinh mdt edng dan cd tfnh xay dflng va bift suy nghT" NL GQVO the hien khi nang cfla c i nhin de tfl duy, suy nghT

v l tinh huong van d l v l tim kifm, thyc hifn giii phip cho van d f dd Vi vay, NL GQVO l i khi nang el nhan

v i t h i i dd, ddng co, xue d m d l gill quyet nhflng tinh hudng van de ma d dd khdng ed sin quy trinh, thu tuc giai phip thdng thudng

Nhfl viy, q u i trinh phan tich v i tim ldi gili bai tap

hay phat hien van di de tim phUOng phip giii bli t i p la

Trang 2

gili quyft Nd 11 mfit qui trinh phin i n h v l NL GQVO

2.2 Quy trinh hUdng ddn hge sinh xdy ddng bdi

tdp Hda hge mdi di phdt triin ndng lUe phdt hiin vd

gidi quyit vdn di

Budc 1: GV dfla ra mdt bai tap (co bin, dien hinh),

yeu d u HS tim hfldng giii quylt bii tap Cie bflde co

b i n cd the tim ra ldi gili

BUdc2: Xle djnh diem m l u chfit d l tim ra Idi gili

Sfldc i ; Trf n cosd diem mau ehot d c phuong trinh

hda hpe the hifn tinh ehat hda hpe cfla chat v i dfl kifn co

bin cfla bai, GV hfldng dan HS bien d6i bai t i p ban dau

thanh nhflng b l i tap mdi cd d e mflc dd khac nhau Cich

trong eic dfl kien ed trong d i l m mau ehot de gili b i i t i p

Tfldd, GV phan tieh cho HS thiy mfii quan hf cfla cle dfl

kifn mdi so vdi d c dfl kifn ban d i u hoae n l u thay doi

hoac khd hon bing d c h : Chuyin dSiddkiin tUdng minh

thdnh ddkien dn: Cieh thfle niy se cd duoc b i i tap mdi

khd hon so vdi bai t i p ban diu, sd an thudng t i n g len

Chuyin ddkiin Sn thdnh cdc ddkien tUdng minh: Phuang

phap niy se eho ra bii tap de hdn

Budc 4: Sau khi cd dflpc ndi dung b i i tap mdi, GV

t i p trung phan tich mfii quan he gifla cac dfl kifn efla

bai tap mdi xiy diing v l gifla d c yfu clu ban d i u vdi

bat tap mdi v i bai t i p quen thupc trude dd, nhan thflc

ra kiln thflc cu tren mdt hifn tflpng mdi d l tim ra dfldc

hfldng gili quylt bai t i p Dfing thdi HS hinh thanh dupe

NL phit hien v l GQVO thdng qua viee nhan ra moi quan

hf gifla cie d i u hifu, sy v i t hien tfldng d l tim ra hfldng

GQVD khi g i p mot tinh hudng mdi

Bude 5: Rflt ra nhan xet v i kit luln khoa hpe Cic ket

luln khoa hpe nhlm cflng cd hoac khai quit hda kiln

thflc cho HS; ed t h i l i nhflng kien thfle de gay nhlm lan

cho HS hoac mdt phuong phip gili b i i tap Hda hpc mdi

Vidu: Budc 1: GV eho mdt b i i t i p goe nhu sau: Cho

m gam KL Na tdc dung vda du vdi dung dich cd chda 36,5

gam axit Clohidric Hdy tinh sd moi khi Hydro dugc gidi

phdng vd so moi Na dd tham gia phdn dng?

HS cd t h i dya v i o dfl kifn cua HCl v i phflOng trinh

phin flng hda hpc di tinh so moi khf Hidro thoat ra v i

eiia phin flng hoac dya vao sfl b i o toan khfii Iflpng cfla

Hidro HS cd t h i dya vao Ojnh luit Bio toan electron de

tinh sfi moi Na tham gia:

2Na + 2HCI->2NaCI + H,t

0,1 0,1 -> 0.05 moi H

Bflde2: Xic dinh dilm m l u chdt di gili bai toin: Tfl

sfi moi HCl de tfnh sd moi H^

Budc 3: GV hfldng dan HS bien doi b l i t o i n bing

cich bifn dfii cic dfl kifn khdng nim trong d i l m mau

chfit cfla bai toan trfn eo sd xae djnh dupe d i l m mau

chdt ciia bii Cy t h i : Van d l khac di nlu chflng ta phan

gam hdn hpp 2 kim loai kiem" Cae dfl kif li edn lai v l yeu

yfu d u HS giiL Bai t o i n phit bleu lal nhfl sau: Cho m (g)

hon hgp 2 kim logi kiem tde dung vda du vdl dung dich cd

chda 36,5g axit Clohidric Hdy tinh sd moi khf Hidro duac

gidi phdng vd sd moi 2 kim loai kiem dd tham gia phdn

ifng?

Theo tfl duy tnidc dly, HS sf viet d c phfldng tfinf hda hpc cfla phin flng Sau dd, HS dat ^n de gpi kM

Ifldng mdl kim loal, tfl dd l i p h f phflbng trinh de g&

nhlm tim sfi moi moi kim loai, tinh tong sd moi ehiing

da tham gia va sd moi H^ Suqc tao thinh NhUng bai

HS gap khd khin

Sfldc 4; GV yfu c l u HS phin tfch mdi quan hf giQa

d c dfl kifn mdt dflpc bien ddi v i dfl kifn gdc baii diu Sau dd, GV yfu d u HS ddi chilu vdi diem mau chfit de gill bii t i p d trfn HS nhan t h i y ring dfl kifn cCia bat tap

da thay doi phfle tap hon Bii t o i n tfldng khd hem nhUiig

b i n chit khfing thay doi vl b i i t o i n khfing yfu d u xac djnh 2 kim loai ma chl tinh t h i tfch khf Hidro HS sf tim ra Idi gill ctia b l i t o i n m i khdng can dfla vio khdi lupng cu

t h i efla moi kim loai kiem trong moi phin flng LOe nay, hpc dfldc v i l t lai thanh 1 phfldng trinh hda hpc Bii toan trd nfn de ding nhfl bai tap gfic ban diu Oilii niy khiln

HS hflng thii vdi boat dpng g i i i b i i toin Odng thdi, HS

d m thiy hao hung khi tim ra Idi glli va nhin tfifle duoc

mpt phflong phap gilt mdi nhanh hon, thdng minh han

va thfl vj hPn so vdi phflOng phip giii trfldc dly Dieu dfing thdi gdp phan hlnh thanh, phit trien NL giii bai tap trong hpc tap ndi rifng va NL phit hifn, GQVD noi chung trong eude song

Budc 5: GV eung cd lai kiln thflc eiia phin kim lo^l

t i c dyng vdi axit nhin manh v i gpi ten cua eae phep giii d l dupc vfn dung

Vdi cieh lim tflong ty, GV yfu d u HS tifp ti^c bien ddi b i i tap thinh mdt b i i t i p mdi khac so vdi ban dau bing d c h ehuyen ddi vai trd cfla cic dfl kifn trong diem nhau khi tiep tyc bifn doi theo quy trinh trfn Cu t h i bii

t i p ed the duoc phit bieu nhu sau: "Cho a gam'kim lodU

Na tdc dung vifa du vdi dung djch chda m gam HCl, sau k/ijfl phdn dng kit thue hdy tinh sdmol H^ duae gidi phdng vd so moi HCl dd tham gia?" (a cd gid tri cu th^ Md rfing hO^J

chiing ta ed t h i hfldng dan HS bien doi thinh bii toil) 1

cd phin flng hda hoc gifla kim loai v i mudi,

3 K i t l u l n Bing cich hfldng dan HS biln doi nfii dung bii tap,

HS hio hflng hon vdi hoat dfing tim Idi gili dong thia

giflp hiiu sau kien thfle hon v i cd dflpe phfp giii m6i Ngoii ra, HS phat trien dflpe NL gili bii t i p se khfing

t i l p nghien eflu v i xle dinh yeu d u ctia bli tap, tfl do Iflpc bd eic d i u hifu thfl y l u giy nhifu cho hoat don^ tim ldi giai HS se ehfl ddng quan sit d c dfl kifn, cic chat

d l phit hifn ra mfii lifn he gifla d e dflkien hay gifla cic

gap Qua trinh niy dfldc rfn luyfn thfldng xuyen se gip

phin hinh thinh NL GQVO cho HS trong hpc tip cung dung bai tap trong day hpc ehfl khfing don thuin ehi li tim Idi gili hay hpc mpt phflong phip gili mdi

l A l Ligu THAM K H A O

[1] Dinh Thj Kim Thoa (Chti bi^n), Tdm llhgcH^

cuang, 2009, NXB Oai hpc Qudc gia HI NpL

[2] Le Xuin Trpng - Nguyen Cflong - Ngd Ngpc An

- Od Tit Hiln, (2006), Bdi tdp Hda hoc 8, NXB Giio due

Hi Ndi

Trang 3

[3] Nguyfn Thi Bich Hiln, (2016), Bdi tpp Hda hoc

vdl viic phdt triin tu duy cho hoc sinh, Giao trinh gilrig

day cho hpc vifn cao hoc NXB Oai hoc Vinh

[4] Nguyen Thj Bich Hiln, (2012), Rin ki ndng sd

dung bdi tap hda hgc trong dgy hoc eho sinh vien edc

tnidng sUphgm Luln i n tifn sT giio due hoc HI Ndi

[51 Bd Gilo due v i Gio tao, (2014), Tii'lif u Hdi thio,

Xdy dung ehuang trinh gido due trung hgc phS thdng theo

dinh hudng phdt trien ndng luc hgc sinh

SUMMARY

Teachers asked students to transform Maths exercise

iiiiiiiiiiiMiiiiiiiiiiiiiiiiniiiiiiiiiiiiitiiiiiiiiiiiMiitiiiiiiiiiiiiiiiitiiigiiiiiiiiiiitiiNiiiiiiiiiiiini

into the new ones with different levels, helped them develop competence of problem solving and creative thinking;

be more proactive in finding solutions At the same time, students overcame the barriers of perception, anxiety, and lack of confidence when encountering Maths exercise -a new situation If this process is regularly exercised, students' problem-solving competence will be developed In learning and real life

Keywords: Competence; problem solving and

exploration; Chemistry exercise; creative thinking

iiiiiiiiiiiiiiiiiiiiii

REN LUYEN CHD NGUdi HOC

d c bilu thfle cd ehfla nhflng dai difn cho cic dai Ifldng

Trfn Cd sd dd, chuyen bai toan thyc t l ve dang ngon ngfl

ndi dung thyc t l thfldng duac t i l n hanh qua d c budc

sau: Bflde 1: Chuyin bii toan thflc t l v l dang ngdn ngfl

thich hpp vdi li thuylt Toin hoe d l gili (lip md hinh t o i n

hpc efla b l i toan); Bflde 2: Gili b i i t o i n trong khudn khd

toan hpe ve ngfln ngfl efla linh vflc thyc te [2]

VI du 3: Tfl mdt milng tdn hinti vudng, ngudi ta

mudn l i m mfit chile p h l u mat ndn Hdi phii d t t h i n i o

di chile pheu cd t h i tieh Idn nhat?

Ngfldi g i l i xae djnh cic dai Iflpng va mdl lifn quan

giiia d c dai Iflpng: Chile pheu mat ndn dupe lim tfl hinh

trdn ndi tiep hinh vudng sau khi elt bd mdt hinh quat

cOa hlnh trdn dd, b i n kinh hlnh trdn bing mdt phan hai

canh hlnh vudng

Chuyen b l i t o i n thyc t l v l dang ngdn ngfl t o i n

thanh b i i t o i n sau: "Cho hinh trdn t i m (0; R) Hdi phii

elt di mdt hinh quat (tfltim 0) n h f l t h i n i o di phin cdn

lai tao thinh mpt hinh ndn cdthe tich ldn nhit"

Goi (a) (Rad) l i gdc d t i m ciia hinh quat AOB d n

cltdi(Hinh2)

Gap eung AnB dfloc diy cfla hlnh ndn cd ban kfnh

r (Hinh 3)

Oat X la dfldng cao cfla hinh ndn (0<x<R)

(Tiep theo trang 13)

t , a = 2}i-l vdi 1 =

Gpi V la t h i tfch efla khdi hlnh ndn

Khidd, V = -nr'^x = -K(R^

3 3 -x'-)x ^—(-x' + R^x)

Xem V la h i m so efla bien sd x, flng dung kiln thflc

dao him ctla h i m sd de gili bit toin.Tim dflpc Vdat gia

tri Idn nhit khi r = ^ suyra x = ^ thay vao (l)ta

3 3

Vly de chiec pheu cd t h i tieh Idn nhat phii c i t dl

hinh quat trdn ed gdc d t i m \aa = 2iT -• ^ -

5 K H l u l n

V odi ydi giio dijc Toin hpc mfit so b l i t o i n dat ra

cfla chinh mdn Toan hay b i i t o i n efla d c mfin hpc khic

hay b i i toan thye t f cufie sfing cd lien quan den Toin hpe, viec gill bai toan ddi hdi ngfldi giii phii xem xft bli

t o i n trong mdi lien he gifla d e tri thfle trong ndi bfi mdt qua hoat dfing CONN cua ITnh vyc do v f ngdn ngflToin

va van dyng linh hoat eac tri thflc Toan hpc Qua hoat hpe dflpc bdi dfldng NL phit hifn v i GQVO Hoat ddng nay gdp phin v i o vifc hlnh thanh cho ngfldi hoc d Ifla tufii niy nhin thfle: Cin xem xft nhflng sy v i t v l hifn tflpng trong nhflng mdl quan he phu thude lan nhau

TAI L i i u THAM K H A O

[1 ] Vflgdtxki L X., (1997), Tuyin tap tdm lihgc, NXB

Dai hpe Qudc gia Ha Ndi

[2] Pham Van Hoin - Nguyfn Gia Cdc -Trin Thue

Trinh, (1981), Gido due hoc mdn Todn, NXB Giao due, HI

NpL [31 Nguyen Ba Kim (Chu bifn) -Dinh Nho Chflong

- Nguyen Manh Cing - Vu Duong Thyy - Nguyen Vin

Thudng, (1994), PhUOng phdp day hoc mdn Todn, Phdn 2,

NXB Giio dye Ha NpL

14] Nguyen Ba Kim, (1998), Hoe tdp trong hogt ddng

vd bdng hogt ddng, NXB Giao due Hi Npi

SUMMARY

TTie article clarified the role of language conversion

activity in Maths exercises and some forms of language conversion activity In teaching Maths exercises This conversion helps teachers to develop bases to guide and practice students know how to express a Maths content towards solving problems Thereby, learners' competence

to explore and solve problems will be improved

Keywords: Language conversion; Maths exercises;

competence to explore and solve problems

Ngày đăng: 16/11/2022, 14:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w