1. Trang chủ
  2. » Tất cả

Tổ chức toán học đối với định lý sin một khảo sát theo cách tiếp cận nhân chủng học trong didactic toán

8 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 240,14 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tgp chi Khoa hgc Trudng Dgi hpc Cdn Tho Phdn C Khoa hpc XS hgi Nhdn vdn vd Gido due 33 (2014) 90 97 Tap chl Khoa hpc TriTdng €)ai hpc Can Thd website sj ctu edu vn TO CHlTC TOAN HOC DOI VOI ©INH SIN M[.]

Trang 1

Tap chl Khoa hpc TriTdng €)ai hpc Can Thd

website: sj.ctu.edu.vn

TO CHlTC TOAN HOC DOI VOI ©INH SIN: MOT KHAO SAT THEO CACH

TIEP CAN NHAN CHIING HOC TRONG DIDACTIC TOAN

Nguydn Phii Loc' va Diep Van Hoang^

' Khoa Suphgm, Trudng Dgi hgc Cdn Tha

^ Ldp Cao hgc khda 19 - Chuyin ngdnh Ly lugn vd Phucmg phdp dgy hgc bg mdn Todn, Khoa Suphgm

Thong tin chung:

Ngdy nhgn: 03/05/2014

Ngdy chdp nhgn: 29/08/2014

Title:

Mathematical organizations

of sine theorem: An

investigation based on an

anthropological approach

into mathematical didactics

Tu khda:

Dfnh ly sin, dgy hgc djnh ly,

to chiec todn hgc, didactic

todn, tiip can nhdn chiing

trong Didactic todn

Keywords:

Sine theorem, theorem

teaching, mathematical

organization, mathematical

didactics, anthropological

approach into mathematical

didactics

ABSTRACT

Sine theorem in the triangle is an important theorem in geometry curriculum in secondary schools Content of this theorem indicates the relationship between the angles, edges and circumscribed circle's radius

in a Piangle Thus, in applications to sine theorem for problem solving, it

is possible to change a problem on the relationship among the sides of the triangle to the problem on the relationship among the angles and vice versa In addition, the sine theorem has many practical applications; it is

an opportunity that teachers can take advantage of to educate "realistic mathematics" for their students Sine theorem has many meanings as stated, what are mathematical organizations of the theorem in current textbooks? While solving the problems, have stiuients used this theorem as

a strategy? This paper will report the results of investigations of into textbooks and students in Phan Ngoc Hien secondary school, Bac Lieu province

Dinh ly sin trong tam gidc la mgt nhdng dinh ly quan trgng trong chuang trinh Hinh hgc a trudng trung hgc phd thdng Ngi dung dinh ly ndy^ biiu thi mdi quan hi giiia cdc gdc, cgnh vd ban kinh vdng tidn ngogi tiip ciia chuyin ddi bdi todn vi mdi liin hi giiia cdc cgnh cita tam gidc sang bdi todn biiu thi mdi lien he giiia cdc gdc vd ngugc lgi Ngodi ra, dinh ly sin

cd nhiiu ung dyng trong thuc liin; ddy la ca hdi md gido vien cd the tdn dung di gido dye tinh thuc tiin cua todn hgc cho hgc sinh Dinh ly sin cd nhieu y nghta nhu da neu, thi thi cdc "td chirc todn hgc " dinh ly sin trong sdch gido khoa hiin hdnh ra sao? Trong gidi todn vi tam gidc, hgc sinh co khuynh hudng chgn dinh ly sin nhu Id mgt chiin luge gidi hay khdng? Bdi bdo se tudng thudt kit qud khdo sdt sdch gido khoa vd khdo sdt hgc sinh d Trudng trung hgc phd thdng Phan Nggc Hien, tinh Bgc Lieu

1 CO S d L Y THUYET

Ll Tidp cdn nhSn chdng hi^c trong Didactic to^n

Tiep cdn nhan chiing hpc ttong Didactic toan

tdp trung nghidn cftu mdi quan he gifta tti thftc va

toan hpc dugc xem nhu mOt sinh vdt sdi^; do v^y,

nd cung trdi qua cac giai doan: phat sinh, tdn tgi, phdt ttidn, mat di MOt doi tugng todn hpc khdng thd "sdng" ddc lap, md nd ludn cd nhieu mdi quan

he vdi cdc ddi tugng khdc vd gan lien vdi thd chd

Trang 2

ma ddi tugng nay ndm ttong Y ChevaUard (1992)

da vidt: "MOt tri tiiftc khdng tdn tgi ttong xd hOi

"rong", mgi tri thftc ddu xudt hidn d mot thdi didm

xdc dinh, trong mdt thd chd va dugc edm sau vao

mOt trong nhidu thd chd" (ddn theo (Trdn Anh

Dung, 2013))

Do cdch nhin nhdn vd tri thftc nhu ttdn ndn cdch

tidp can nhan chftng hpc ttong Didactic todn nghien

cftu xoay quanh hai khdi nidm "tri thftc" vd "thd

chd", vd nd dugc cu thd hda thdnh ba ngi dung

nghien cuu chinh la: Ly thuydt vd chuydn ddi

didactic (Nguydn Phu Lpc, 2008), ly tiiuydt vd

quan hd thd chd vd quan hp cd nhdn (Bessot vd ctv,

2010), vd td chftc todn hpc (Bessot vd ctv., 2010;

TrdnAnh Dung, 2013))

Trong khudn khd bdi bdo nay, chftng tdi chi de

cap vd dp dyng eac lugn didm vd td chftc todn hpc

ttong Didactic todn

1.2 To chirc toan hpc

Tft quan didm xem hoat dOng toan hoc nhu mOt

hogt dpng cua con ngudi: chft thd thyc hidn mOt

Bl Kieu

nhiem vu (neu

dang toan can

xem xet)

B2 Ky thuat

(trinh bay each giai cho dang toan neu a Bl)

Cdch thuc thicc hien nhiem VM

(hoac qiiy trinh hdnh ddng di

hodn thdnh nhiem vu)

kidu nhidm vu ndo dd frong mdt tiid chd xdc dmh,

Y Chevallard (1999), tiieo (Bessot va ctv., 2010),

lap ludn rdng khi tien hanh mOt nhidm vu toan hpc, chu thd phai biet "each thftc" thyc hidn (know -how, hay praxis) vd dua ra rtiiirng ly gidi cho qud trinh hdnh ddng tten ca sd ly thuydt todn hpc lidn quan (knowledge, hay logos); vd tft dd dng da dua

ra khdi niem "td chftc todn hpc" (tidng Anb: praxeology hoac organization; tidng Ph^: praxeologie) gdm bdn thdnh phdn: kidu nhidm vy

T, ky thudt T, cdng nghd 0, ly thuydt 0 va dupe

md hinh hda nhu sau:

Md hinh nay ed y nghia Id: mdi boat dOng ciia con ngudi ddu nhdm thyc hidn nhidm vy t tiiupc

kidu nhidm vu T nao nd nhd sft dung ky thudt T,

T dugc gidi thich bdi cdng nghd 0 vd cudi cung cdng nghd d duge hpp tiiuc hda bdi IJ thuydt 0

Nhu vdy, md hinh (1) cd the didn gidi Igi nhu sau (xem Hinh 1)

B3 Cong nghe

(neu ra cac tri thuc Iam ca scr;

ly giai cho ky

thuat giai a B2)

B4 Ly thuyet

(hop thiic hoa trithucab.3; chi ro ly thuydt lam CO sor cho

tri thuc d B3)

Tri thiic vd ly thityet duac dung

ly gidi cho cdch thuc thuc hien nhiem vw

Hinh I: Sof dd dien giai "td chirc toan hpc" (praxeology) frong Didactic toan theo cdch tidp c$n nhdn

chung hpc

2 PHAT BIEU VAN DE NGHIEN CUtJ

Dinh ly sin ttong tam giac (Hinh hpc 10), mdt

dinh IJ "da ddng thftc", nd bidu thj mdi quan h?

gifta ba cgnh vdi ba gdc vd ca ban kinh vdng ttdn

ngo^ tidp efta mdt tam g i ^ Cftng vdi djnh ly

eosin, dinh ly sm ludn cd mat ttong cac sach giao

khoa ve Hinh hpc qua cdc th6i ky khac nhau eua

vide thay ddi sdch Do dinh ly sin cd vi tti quan

ttpng ttong chuong trinh HInh hpc nhu vdy, vd

Didactic toan cho phep chftng ta thyc hi^n nhftng khao cim vd td chftc toan hpc xoay quanh mdt doi tugng toan hgc mOt cdch sdu sdc Dd gdp phdn hidu quan ddn dinh Iy sin, chung tdi khdo sdt dinh ly sin vdi hai cdu hdi nghidn ctiu sau ddy:

Cdu hoi thu nhdt: Theo cdch tidp can nhdn

chftng hpc ttong Didactic toan, td chftc toan hpc ddi vdi djnh Iy sin ttong ttong hai bd sdch giao

Trang 3

Cdu hdi thu hai: Sau khi hpc djnh Iy sin mdt

thai gian dai, khi giai tam gidc cd nhidu hpc sinh

dp dung dinh ly sin dd gidi hay khdng? Va thyc td

vide sft dyng djnh ly sin ttong ttinh bdy ldi gidi

todn cua cdc em hpc smh ra sao?

3 PHU'CfNG PHAP NGHIEN CUtJ VA

D 6 I TU*ONG KHAO SAT

- Phan tich npi dung (Nguydn Phu LOc,

2014); Phan ti'ch nOi dung todn hgc lidn quan

ddn dinh IJ sin ttong Chung tdi phdn tieh cdc sdch

sau ddy:

Mi; Ei; Gi ldn lugt la Hinh hoc 10 - ndng

cao (Vdn Nhu Cuong va ctv., 2006a), Bai tap Hinh

hpc 10 - nang cao (Vdn Nhu Cuang vd ctv.,

2006b), Hinh hpc 10 nang cao -Sach giao vidn

(Vdn Nhu Cuong va ctv., 2006c)

Mi; E2; G2 ldn lugt la Hinb hpc 10 (Trdn Van

Hao vd ctv., 2006a), Bdi tdp Hinh hpc 10 (Trdn

Vdn Hao vd ctv., 2006b), Hinh hgc 10 - Sdch giao

vidn (Trdn Vdn Hgo vd ctv., 2006c)

~ Thd nghi$m su ph^m: Xay dyng mdt tmh

hudng thft nghidm Id mpt bai todn gidi tam gidc vdi

nhidu dft kidn cho phdp gidi bdng mdt sd cdch khdc

nliau, ttong dd cd cdch dp dyng dinli IJ sin nhdm

kidm nghipm xem hgc sinh uu tidn ehpn each van

dyng dinh IJ sin vdo gidi todn, hay khdng vd tiiuc

tidn ap dung dinh IJ sin trong Idi gidi ra sao Vdi

myc dich kidm nghidm ndu trdn, bdi todn dugc dua

ra thft nghiem se cd cdc bidn tinh hudng sau day:

VI: Cho cdc ydu td xdc djnli mOt tam gidc Tinh

cdc ydu td cdn lai

VI nhgn ba gid tri:

VI.1: Bidt hai canh vd-mpt-gdcikep-gijia.—

Tinh canh thft ba

VI.2: Bidt hai gdc, mOt cgnh kep gifta

ho|c bdn kinh vdng trdn ngogi tidp Tinh hai

canh cdn lai

V1.3: Bidt ba canh Tinh cac gdc

V2: Cho bidt didn tich eua tam gidc Tinh mdt

canh hoac mOt gdc eua tam gidc

V2 nhdn ba gid tri:

V2.1 Bidt dipn tich, mpt gdc va mOt cgnh

kd Tinh cgnh kd cdn lai

V2.2 Bidt di?n tich, hai cgnh Tinh gdc kep

gifta

V2.3 Bidt dien tfch, hai canh vd bdn kinh

Tu phdn tich ndu tten ve VI, V2 vd V3, ttong tinh hudng thu nghidm ma chung tdi dua ra se cd hai bidn VI, V2 , vd cdc gia tti dugc chgn Id: VI.1

vd V1.2 va V2.1 V2.3 Cu tiid nhu sau:

"Cho tam gidc ABC, bidt AB= c=3, AC=b=2,

- ^/^

^ = 60 , smB = , ban kinh dudng ttdn ngoai

7

^121 Syji

tiep R va dien ti'ch S

3 • 2 Tinh dO dai canh BC (= a)?"

(Thdi gian ldm bai 10 phut) Can cu vao the chd vd cdc td chftc toan hpc ddi vdi dinh ly sin, chiing tdi tidn dodn bdi toan ttdn cd the dugc hgc sinh giai bang eac chidn luge sau day:

Chiin luac SI (VI, V1.2): Sft dyng dinh IJ sin:

- ^ = 2R

sin^

Theo dinh li sin ta cd:

, , V2T,

= 2R.sin A = 2.^^^^.sin 60" = -Jl

sin A 3

CUen luge S2 (VI, VI.2)- S i dyng dinli ly sin;

a b

sin A sin 5

a b S.sinA 2.sin60°

- = x/7

— — ' W ^ =

-smA s i n 5 s i n 5 v 2 I Chidn luge S3 (VI, Vl.l): Sft dyng djnh li cosin

Theo dinh li cosin ta cd:

a^ =b^ -\-c^ - 2bc cos A

= 2 ^ + 3 ^ - 2 2 3 0 0 8 60" = 7

^a = ^

Chiin lugrc S4 (V2, V2.1, V2.3): Sft dyng cdng

thftc didn tich tam giac

Theo cdng thuc tinh didn tich tam gidc, ta cd:

1

S -—6csmA

2

Trang 4

Hoac

^/21 3^/3

=> a =

4R be

Nhan dinh ban dau:

4.-= v/7

Chidn luge SI, S2 vd S3 cd tiie dugc nhidu

hpc sinh ehpn lya vi dp dung UTTC tidp dinh IJ sin

va cosin

Chidn luge S4 sd ed it hpc sinh lua ehpn vi

phdi su dyng cdng thftc tinh didn tich tam giac

1 abc

S=—be sm A (3) hoac S = (4) Hai cdng

2 4i?

thftc (3) vd (4) khdng tidn dyng cho bdi toan

ndu ttdn

- Phdng van gido viin (hinh thdc ddm dqo):

Phdng vdn ndm gido vidn cua trudng THPT Phan

Ngpc Hidn vd tiiyc td gidng day dinh IJ sin

- Boi tuang hgc sink dugtc khao sat: Hpc

sinli hai ldp flCI (N=38) vd 12Ci (N=36) thuOc

Trudng trung hpc phd thdng Phan Ngpc Hidn, tinh

Bgc Lieu Chiing tdi ehpn hpc sinh ldp 11 vd 12 vi

cdc em ndy da hpc xong dinh IJ sin trudc dd it nhdt

mOt nam Khao sat xem sau khi hpc dinh Iy mdt

thdi gian ddi, ttong gidi tam gidc cdc em thudng

ehpn lya cdng thftc ndo, cd van dung dinh IJ sin dt

gidi hay khdng?

4 KET QUA VA BAN LU^N

4.1 Td chftc todn hpc doi vdi dinh IJ sin

4.1.1 Kit qud

Qua phdn tich cac sach Mi; Ei; M2; E2, chung

tdi thu dugc kdt qud Id ed sau kidu nhidm vu xoay

quanh dinh IJ sin, cy the Id:

Tl: Tim dO dai canh efta tam gidc

T2: Tim sd do gdc cua tam giac

T3: Tim bdn kinh dudng ttdn ngogi tidp cua

tam gidc

T4: Gidi tam gidc

T5: Chiing minh ddng thftc

Te: LTng dyng tiiyc td

Kiiu nhidm vy Ti: Tim dO ddi canh khi bidt

trudc mdt cgnh vd hai gdc

Ky thugt T^: Ky thugt gidi quydt kidu nhi$m vu

gdm cdc budc sau:

Budc I: Tinh gdc cdn lai (ndu cgnh cdn tinh va cgnh dd bidt ldn lugt Id canh ddi eiia hai gdc thi bo qua budc 1)

a b 6.sinA

Budc 2: = ^ a = (gia sir

sin A sin S sin B

cdn tim cgnh a)

Cong nghe Or Sft dung dinh IJ sin

Ly thiQ>it &}• He thftc lugng ttong tam gidc

Vidu (7];r|):Xemvidu5,M2,ttang61 Kidu nhidm vu Ti: Tim sd do gdc cua tam gidc khi bidt hai canh vd mOt gdc

KJ thudt giai quydt Tj : Budc 1: Tim cgnh cdn lgi ddi didn vdi gdc dd eho (ndu tdn tfu mOt cap cgnh - gdc ddi didn till

bd qua budc 1)

Budc 2: a _ b _ > sin 5 = 6 sin A sin A sinB

(gid sft cdn tun gdc B)

Budc 3: Suy ra gid tti gdc B

Cong nghe Qf Sft dyng dinh ly sin

Ly thuyit &r He tiiuc lugi^ ttong tam gidc

Vi du vd (r2;r2) '• Xem bdi t§p 3, M| ttang 59

Kilu nhidm T3: Tim ban kinh dudng tton ngoai tidp cua tam giac

K? tiiudt 73:

Budc 1: Fim mgt cap gdc vd canh ddi dipn v<S nhau (ndu tdn tai mpt cap cgnh - gdc doi didn till bd qua budc I)

Budc 2:

2R-sin A 2 2R-sin A

Cdng nghi O3: Su dung dinh IJ sin

Ly thuyit Q3: He thftc lugng ttoi^ tam gidc

Vidu (r3;i-3):Xemhoatddng6,Mi, ti^g52 Kidu nhidm vy T4: Gidi tam gidc

- Kidu nhiem vy Tt^ Gidi tam giac khi biet

gdc A vd B va canh e

Trang 5

Biroc 1: Tfnh goe C= 180°-(A+B)

Bttoc2:Tinhcanha:

a c

sin A sin C

Budc 3: Tinh cgnh b:

b c

sin B sin C

=>a =

=>b =

csinA sinC

csinS sinC

Budc3: TinhA=I80"-(B+C):

Cdng nghi O^c: Sft dung dinh IJ sin va tdng ba

gdc ttong efta mdt tam giac bdng 180°

Ly thuyet ©4c: He thuc lupng ttong tam giac

Vi du ( 2 ^ ; r ^ ) : Xem bai tap 34c, M2, ttang 66 Kidu nhi^m vu T5: Chung minh ddng tiiftc ttong tam gidc

Cdng nghi 04a: Sft dung dinh Iy sin vd tdng ba

gdc ttong cua mdt tam giac bdng 180"

Ly thuyit 04a: He thftc lugng ttong tam gidc

Vi du(2^;r4^): Xem bai tdp 33a, M2, ttang 66

Kidu nhiem vy T4b: Gidi tam gidc khi bidt gdc

A, gdc C vd cgnh c

Ky thugt T^l^:

Budc 1: Tinh gdc B= 180" - (A+C)

Budc 2: Tinh canh a:

a _ c _ csinA

sin A sin C sin C

Budc 3: TInli canh b:

b e

sin B sin C

cs'mB

sinC

Cdng nghi 04b: Sft dung dinh IJ sin vd tdng ba

gdc trong cua mdt tam gidc bdng 180"

Ly thuyit 04i,: He thuc lugng ttong tam gidc

Vl dy (^;r^j): Xem bdi tap 33c, M2, trang 66

Kidu nhiem vu Tjc: Giai tam giac khi bidt gdc

C, cgnh a vd b

Ky thugt T, : Theo thft ty cdc budc sau:

Budc 1: Tinh cgnh theo djnh li cosin:

r^ =a^+b^-2ab.cosC

Budc 2: Tinh gdc B:

b c „ 6sinC

sin 5 sinC c

Ky tiiudt giai T^ : Theo tiiu ty cdc budc sau:

Budc 1: Xac dinh hudng (chidn luge) chiing minh:

- Bidn ddi vd trdi thdnh ve phdi (hodc nguac

¥)

Chftng minh "Vd trai - Vd phai = 0" _ _ Chiing minh vd phdi vd ve trdi ciing bdng C Budc 2: LTi^ dung dinh li sin vd kidn thftc lidn quan dd bidn ddi suy ra dieu phdi chftng minh

Cdng nghi O5: Sft dyng dinh IJ sin vd cdc cdch

gidi mdt ddng thftc

Ly thuyet 0^: Hd thftc lugng trong tam gidc,

cdc tinh chat dang thuc vd quy tdc dien djch

Vi dy (T^;TA '• Xem vi du 4, M2, trang 5

Kidu nhidm vu Te: Gidi bdi toan thyc td

Ky tiiugt giai T^ : Theo thft ty cdc budc sau:

Budc 1: Chuydn bdi todn thyc td vd bai todn gidi tam gidc

Budc 2:Tun each gidi bai toanxtam^giac- phdt_ bidu ttong Budc I -,-v—w- ™r,,

Cdng nghe 06: Dinh li sin vd cdc ky thugt

ndu tten

Ly thuyit 0c: He thuc lugng ttong tam gidc

Vi du (r^; r^): Vi du 3, M2, trang 56:

Tit vi tri AvdB cua mdt tda nhd, ngudi ta quan sdt dinh C cua mdt nggn niii Biit rdng dg cao AB

Id 70 m, phuong nhin AC tgo vdi phuang ndm ngang gdc 30", phucmg nhin BC tgo vdi phuang nam ngang goe 15°30' Hoi nggn nui do cao bao nhiiu met so vai mat ddt?

Trang 6

c

Thong ki kiiu nhiim vu

Trong Bdng 1 dudi day, chung tdi thdng kd sd

bai tgp thupc mdi td chftc todn hpc dd dugc chi rd d

ttdn Bang tiidng kd ndy bao gdm 136 bdi toan dugc

phan thanh 06 kieu nhidm vy cau hdi, trong do:

B a n g 1: T h d u g kd theo bai t d p theo kidu nhidm vu

Cd 2 0 cdu Id nhiing vi dy vd boat dOog co mat ttong phdn IJ thuydt efta M j , M2

Cd 116 cdu d u g c d e nghj ttong phdn bai iSp

ciia M l , M2 vd El,

£2-K i l u nhi£m vu

T,

Tim do dai canh cua

tam gidc

• ' • 2

Tim so do goe ciia

tam gidc

Ts

Tim ban kinh duong

tron ngoai tiep tam

fiiac

T

Giai tam gidc

Tj

Chijmg minh ddng

thijc trong tam gidc

T6

LTng dung th\TC te

TSne cans

Ky

thuat

n

2"2

T

h

^5

^6

6

Vidu

- Hoat dong

3

2

4

5

2

4

20

Bai Trong tap

Ml

4

2

5

3

2

16

Bai trong tap

!Vl!

7

4

4

8

3

3

29

Bai t a p troDg E l

9

7

7

7

3

33

Bai t a p Tong so

t r o n g E l bai tSp

4

5

8

10

6

5

38

24

18

24

28

9

13 13<

4.1.2 Bdn lugn

Td chftc todn hpc ddi vdi djnh IJ sin ttong hai

sach dugc khdo sdt nhin chung Id t u a n g ddng nhau

Hai sdch deu d u a ra 6 kidu nhidm vu (dang todn)

eho dinh ly sin Cd hai sdch ddu cd quan tdm d u a ra

ftng dung efta dinh ly sin Nhin chung, cac tdc gid

sach gido khoa qudn ttidt tinh thdn ddi mdi giao

dye Cdc kieu nhidm vu d m u c dO van dung cdp

tiiap, khdng "sa ldy" vdo cdc dgng bai t§p phuc tap

vd qud khd

4.2 K d t q u a k h a o sdt viec v a n d u n g d i n h li sin ciia hpc sinh

4.2.1 Kit qud khdo sdt

Kdt qud lam bai eua h p c sinh ddi vdi bdi todn

md chung tdi d u a ra t h u nghiem hpc sinh (dk bai d

m u c 3) d u g c tdng kdt n h u sau (xem Bang 2):

Trang 7

^^Pg 2: Bang thdng ke ve chien luge giai

Ldp SI sd Dinh Ii sin

sin A sin B

y5m.A )

Dinh li cosin Cdng thirc didn tich tam giac

(0,0%)

(0,0%)

4.2.2 Bdn ludn

Dya vao kdt qua thu dugc (Bang 2) vd vide xem

xet bdi ldm efta bpc sinh, chftng tdi cd mOt sd y

kien ban ludn sau ddy

- Tdt cd hoc sinh (74 em) ddu lam bdi: 58 hpc

sinh ehpn chidn luge dinh Ii cosin nhimg ttong tinh

Trong khi dd, chl cd 16 hpc sinh ehpn chidn luge

dinh li sin: 11 em sft dyng ddng thftc:

= 2R trong djnh Ii sin dd gidi bdi toan vd 05

sin A

hpc sinh cdn lai thi chgn ddng thftc:

a b

= ; cd 16 Idi gidi dung vd cho kdt qua

sin A sin B

chinh xde

- Hpc sinh cd Idiuynh hudng su dung dinh ly

cosin de gidi tam gidc han Id dp dyng dinh IJ sin:

73% d Idp 1 ICi vd 83% d Idp 12C,

De IJ gidi thyc tidn neu tren, chiing tdi da ttao

doi vdi mdt so giao vien eua trudng ndy dd timg

dgy ldp 10, vd J kidn eua cac tiidy vd cd nhu sau:

- Khi ldn ldp, chl ddnh khoang 15 phut eho

gidng gidi nOi dung djnh Ii sin (theo J kidn cda thdy

L.T.LvdcdV.T.X.M)

- Dinh li sin ngdn gpn; ndn vide tiep can

hai klid, trim tugng (theo J kien cua thdy N.N.P),

vi vdy chi ydu cdu hpc sinh thira nhdn dinh Ii vd

bidt cdch dp dung, khdng cdn chiing minh (vi nd

rudm ra)

Dinh Ii sin khdng duge su dyng rtiiidu ttong

chuang ttinh Todn 10 va cdc ldp kd tidp (theo J

kidn cua ed P.A.T.H) Vi the khi gidng dgy, nd it

dugc quan tdm, mang tinh ddi phd eho du chuang

trinh

- Nhittig djnh Ii mang ti'nh chdt "da ddng

thftc" nhu djnh li sin thi HS thudng gap khd khdn

ttong van dyng gidi bdi tgp, vi thd ttong kidm tra 1

tiet hay thi hpc Id thudng bgn che cho bdi tap ed lidn quan ddn dinh li sin (theo J kidn cua thdy T.T.H), do vay dinh li sin dang bi xem nhe vd ting dung ciia nd dang bi "thu hep" ddn

Ket qud khdo sat va vdi cac J kien efta gido vidn, dinh IJ sin khdng phdi la nOi dung ttpng tdm cua chuang ttinh toan hpc phd thdng Gido vien khdng danh nhidu thdi gian luydn tap cho hpc sinh Tuy vay, ttong thyc td khao sdt vdn cd 16/74 (21, 62%) em sft dung dinh IJ sin vao gidi todn va tdt cd deu ttinh bdy Idi giai chinh xdc Didu ndy ndi ldn rang dinh ly sin khdng phdi la ndi dung khd nhd vd kho van dung so vdi dinh Iy cosin

5 KET LUAN Qua ket qua nghien cftu thu dugc ddi vdi dinh

IJ sin - mdt ddi tugng toan hpc- nhu da tudng thudt sat cac td chuc toan hoc doi vdi mdt ddi tugng todn hpc ttong mOt thd chd xdc djnh theo hudng tiep cdn nhan chiing hpc ttong Didactic todn sd cho giao vidn toan thay mgt cdch toan didn cae kieu nhidm

vy tuong ling vdi ddi tugng todn hpc dd Vd sy van dung dinh Iy sin, dft cd it hpc sinh uu tien vdn dyng dinh ly sin ttong gidi todn nhung nhiing em vdn dyng dinh IJ sin vdo gidi todn ddu cho ldi gidi dftng Do vdy, gido vidn cdn cd cdc chien luge day hpc sao cho hgc sinh quan tam hon vide van dyng cao chdt lugng vide day hgc todn efta minh

TAI LIEU THAM KHAO

I Bessot, A., Comiti, C , Le Thi Hoai Chdu,

Ld Van Tien, 2010 Nhftng ydu td ca ban ciia Didactic toan NXB Dai hpc qudc gia

TP Hd Chi Minh

^ Van Nhu Cuong & cfv, 2006a Hinh hpc

10 ndng cao NXB Gido due Ha NOi

3 VanNhuCuang&cft', 2006b Bdi tdp hinh hpc 10 nang eao NXB Gido due Hd Npi

Trang 8

4 Van Nhu Cuong & c/v, 2006c Hinh hpc

10 ndng cao - Sach gido vidn NXB Giao

due Ha NOi

5 Trdn Anh Dung, 2013 Day hpc khai nidm

ham sd Udn tuc d trudng trung hpc phd

thdng Ludn dn tidn sT, Tnrdng Dai hpc su

phgm TP Hd Chi Minh

6 Trdn van Hao &C/V, 2006a-Hinh hpc 10

NXB Gido due HaNoi

7 Trdn VdnHao&c/v, 2006b Bdi tap Hinh hgc 10 NXB Giao dye Hd Ndi

8 Trdn Vdn Hao &C/V, 2006c Hmh hpc 10-Sdch gido vien NXB Gido dye Ha

NOi-9 Nguydn Phu Lpc, 2008 Gido trinh joi hudng dsQ' hoc khdng truydn tiidng.Trudng Dai hpc can Tha

10 Nguydn Phft Lpc, 2014 Phuong phap nghien cftu ttong Giao due NXB Dai hpc can Tha

Ngày đăng: 14/11/2022, 17:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w