VAN DUNG PHlTdNG PHAP DAY HOC PHAN HOA VAO DAY HOC TOAN 6 TRUNG HOC PHO THONG VU THI THANH HUYEN" Abstract Teaching divergence comes h om requirements to ensure successful impiementatlon of learning g[.]
Trang 1VAN DUNG PHlTdNG PHAP DAY HOC PHAN HOA VAO DAY HOC TOAN 6 TRUNG HOC PHO THONG
V U THI T H A N H HUYEN"
Abstract: Teaching divergence comes h-om requirements to ensure successful impiementatlon of learning goals for all students, and encourage maximum growth and optimize the capability of the math in high school
Keywords: differentiated teaching, questions and exercises differentiation
Trong day hpc phan hoa (DHPH), ngoai viec
cung cap nhOng kien thiie co ban, phat trien
cac kTnang can tiiet cho hpc sinh (HS), giao
vien (GV) can lua chon ve noi dung, phuong phap
day hpc phu hop v6i trinh dp, nang lue nhan thiic va
n^guyen vpng eua HS Khi tiiiet l<e bai hpc eung nhu
tien hanh to chiic cac hoatdpng day hpe, GV can ho
trc?HSc6thephattrienduoetoida khanang cua ban
than Bai viet de cap viec xay dung, su dung cac cau
hoi va bai tap phan hoa (CH&BTPH) trong day hpc
Toan dtoing hoc pho thong (TH PT) nham phat huy
nang luc, phat liuy tinh tich cue, ehu dpng, sang tao
cua HS
1 Quan niem v e D H P H
Theo N g u y i n Ba Kim: DHPH xuat phit ti) yeu
ciu dam bao iiuc hiin ^t cic muc tieu day hgc doi vdi
mgiHS, d&ig ^dikhuyen khich phit trien totda vi toi
mi nhdng kha nang cua tdng ca nhin
Trong DHPH, G V cothe "chia" Icip hoe thanh nhieu
"bpphan" khac nhau decophuong phap day hpe phu
hpp vd^ tOmg "bpphan" Co nhieu tieu ehi dectiia Icrp
hpe, chang han nhu chia theo liia tuoi, theo gicrf tinli,
theo dan tpc hoac theo dia ban eu tm, Cf day, ehiing
toi chi gidi han trong viec chia theo nang luc va nhu
caucuanguốhpc
Nhu vay, DHPH li cich iftifc day hgc doi hoi phai
tochtk, tien hanh cac hoat dgng day hgc dtia tren
nhUngkhicbietcua ngudihgc veninglt/c, nhucau,
nhan thtk, cic dieu kien hgc tip n h i m phat trien tot
nhat cho tiing ngudi hpc, dam bao cong bang trong
giao due, nghia la dam bao quyen binh dang veeohpi
hpctapchongi/ôhpẹ
2 CH&BTPH trong day hoc l o a n
2.1 Vaitrd cua CH&BTPH trong day hgc Toan
M6I cau hoi va bai tap (CH&BT) cy the dupe dat ra
deu chiia dung mpt each tudng minh hay tiem an cae
chiie nang khac nhaụ Nhirng chiic nang nay deu huong den viecthuc hien cae muctieu day hpc Trong
day hpc mon Toin, CH&BT cocac chiic nang nhu:
- Day/?pc CH&BT nh5m hinh thanh, cung cokien thiic, kTnang, kTxao cho HS deae giai doan hpe tap;
- Giio rff;c; CH&BT co the giiip HS hinh thanh the
gidi quan duy vat bien chiing, tao hung thu hpc tap, ren luyenpham chat dao diic cua ngudi lao dpng mdi; -Pftaftoen/ianp/OK Quatrinh tra Idi cac cau hoi (CH) vagiai bai tap (BT) eothegiup HS phattrien nang lue
tu duy va hinh thanh nhimg pham chat cua tu duy
khoa hpe; - Kiem frạ-QH&BT giiip G V kiem tra trinh
dp, nang luc cua HS; HS tu kiem tra, danh gia nang luc cua minh Khi su dyng CH&BT, ndi chung can khai thae chiic nang day hpc va ehiic nang kiem tra, nhungvdidcitupngHS kha, gioi, can khai thae CH&BT denhan manhchdenangphattrien
2.2 Nguyen tac xay dt/ng CH&BTPH Qua
trinh xay dung CH&BTPH can tuan thu frieo cae
nguyen t§e chung sau: - Xac dinh rdmuc ^eu bii hgc:
khithietkeeachoatdpnghpetkpchoHS,GVeaney the hoa b i n g eac CH&BT hudng vao muc tieu bai
hoc; - Dam bao tinh khoa hgc, chinhxaccua noidung;
- Phit huy tinh tich ctJC, chu dgng, sang tao cua HS:
CH&BT phai viia siic, tao ra dpng luc cho HS tim toi,
kham pha cai mdi; - Dam bao tinh he thong:r\g\ dung
kien thii^c trong tiing phan, tiing chuong, tung bai deu dupc s5p xep theo mpt logic ehat chẹ CH&BT dua
ra tn/dc thudng cd tac dung lam tien de de xay dung
CH&BT tiep theo; - Dam bao tinh thtJCtiSn:CH&BT
can g&n lien vdi thue tiin eupe song
2.3 Quy trinh xay dt/ng CH&BTPH:
- Butk 1: Phin tich ngidung day hgc Npi dung
day hoe phai dua tren npi dung chuong trinh sach
*Cao hoc K16 • TnfOng D^i tipc Sir pham Ha Noi
Tap chi Gido due so 379 4i
Trang 2chuong trinh, GV can luu y den trinh do va miJc do
nhan thiic ciJa HS nhjm giam bdt cac ngidung t<hdng
can thiet; nghien ciru nhiJng not dung co ban, trpng
tam ichixaydungCH&BTgiiipHS tinh hdidupc kien
thiic daydu
- Budc 2: Xac dinh muc tieu day hqc JO viec
phan tich ndi dung, chuong trinh SGK cua mdn
hpc, GV xac dinh muc tieu bai hpc ve kien thiic, kl
nang va thai dp
- Si/cfc 3: Xac dinh ngidung Iden fitkco the "ma
/icB'ftan/iCHiSr.GVcdthephan ratimg phan kien
thuc, chia nhd cac npi dung, sau dd tim ndi dung cdthe
datCH hoacxaydungthanh BT
- Bi/dc 4: DiSn dat cac ngidung kleh thik: thanh
CHSBT Day ta mdt budc quan trpng trong DHPH,
dam bao cho viec ihiet ke CH&BT dupc tdt lirig vdi
cac khau cOa (quatrinh day hpc CH&BT nen dien dat
sao chp cdthe kiem tra vacdng edkien thirc cho HS,
phij hpp vcri cac muc ddnhan thuc khac nhau cua HS
nhu: nhd, hieu, van dung,
3 Xay dung CH&BTPH trong DHPH m d n
Toan oTHPT
Trong day hpc Toan, neu GV xay dung va su
dung dugc mpt lie thd'ng CH&BJPH tdt se dem lai
hieu qua cao cho mdi gid hpc Dexay dung CH&BT
phu hop vdi kha nang cua timg ddi tucmg HS, GV
can chuy mdt sddac diem sau:
3.1 Xay dung mgt he thong CHiBT co the
phan hoa thanh nhieu mtie do khaenhau GV
can tang sd Iupng CH&BT yeu cau sund tuc cua tu
duy, giam CH&BT chi yeu cau tai hien thuan tuy
Wdy.'De kiem tra kha nang tiep thu tri thirc cua
H S sau khi hpc bai: Ton^ va hieu cua hat vectcfi^mh
hpclOitr 8), GVed the dua racac CH&BT sau:
CH /.Neu diiih nghTa tdng cua hai vecto, quy tac
ba diem va quy tac hinh binh hanh?
BT /.Cho tam giac ABC Goi M, N, P tan tuptia
trungdiemcaccanhBC,CA,AB.Tinh:a)Si + Vc;
b) 7Pi-'BC-tMp;o) 'PA+'PN + m
v a CH 1, HS chi can ttiupc djnh nghTa tdng cua
hai vecto,nhdquy tic ba diem,quytSchinhbinh hanh
lacd thetra ldi dugc De giai dupc BT 1, HS can nkn
dugc dinh nghTa tdng cua hai vecto, cac quy tjcva biet
van dung linin hoat khitinh tdng cac vecto.GV nen dat
BT 1 (khuyen khich HS suy nghTva ap dung nhting
kiaithucdahpcjthayvidatCH 1 (tai hien thuan tuy)
3.2 Sap xep CH&BT thanh hethd'ng theo muc
(/euda/Aoc.GVdandaHSsuynghT,ditutdteuda
421 Tap chi Giao due so 379
thdc mdi Hethdng CH&BT can giup HSsuyngliiji
cd the tra Idi dugc theo miic dp phattrien cualuto qua dd, ren luyen y chi, tinh kien tri, vuptkhodlctiiiii ITnh trithiic
Wdu.Khl day hpc phan Tong ctja haivect/ki^
baiTdnpi/a/j/euci/a/ra/rec/o'(Hinhhpc10),GV cdthexay dung cac BT sau:
1} Cho doan thang A B c d M la trung dilm.Ola
mdt(Jiembatki.Chungminhr^g:a) MA + m=i:
b) oS + OS = 2 0 M 2) Cho tam giac ABC cd G la trpng tam bn giac, ^ t a j n p t diem bat ki Chiing minh (^ng:a]
aA + GB + GC = 0; b) a4 + OB + oc = 3dc ^
3) Chptiiigiac ABCD cd M, N, P, Q lan krpfpiii) diem cua cac canh AB,BC, CD, DA,OlamptiI^nib|
ki Gpi tjagiao^dian ciia MP vaNQ.Chiing minh r ^
a) IA + IB+ IC +ID = 0;b) OA + OB + OC+OD=U
3.3.Cac CH&BT du(X neu dual nhmglMi thtfc Ichac nhau, tranh lap dilap laltheticim
/n of da/rg GVcan tranh nhirng CH&BT du^ntiac tainhieu lan vise gay suriham Chan cho HS.GVnen dua ra CH&BT dudi ntiieu hinh thuc khac nhau cho cung mdt ndi dung kien thiic de HScd t h i vita n^m dupc ban chat cua van de, vua biet van dung t i * hoat kien thirc vao cac tinh hud'ng khac nhau, dong ttiSoao emhirngthuhpctap
Wdu.'Giai bat phuong trinh: 3x' -4x + 4 >0,
GV cd the' chuye'n BT nay sang hinh Ihiit khac nhu: 1) Tim tap xac dinh cua ham so:
y = V3x^ - 4X-I-4 ;2)VdinhLinggiatrinaocijaxt)ii
dd thj ham sd sau khdng n§m dudi true hoanh
y = Vsx- - 4x-f 4
3.4 Cac CHiBT can co tac dung che nliii
do'i tirong HS sao cho vdi cac CH&BT danh cho
HS ye'u,kem vathingbinhthiHS gidi cung luon hiilll thu theo ddi; CH&BT danh cho HS kha, gioi thiHS tamg binh, ye'u kem ciing cd t h i h i l u dugc sauktii
GV da cd mdt qua trinh dan dStvan d l Wdu.Cho hinh chdp S A B C cd SA lmp|ABC|
va tam giac ABC khdng vudng Gpi H va K lan Injlli tnic tam cac tam giac ABC va SBC Chiing mi* rSng: a) AH, SK, BC ddng quy; b) HK lmp(SBCJ Trpng vidutren, vdi cau a, HS ye'u, kem vai™^ binh deu cdthe'lam duoc, HS kha, gioi cung khi% the' bd qua bdi nd cd tac dung de giai cau b Caji danh cho HS kha, gidi Tuy nhien HS trung binli Cling cd the giai ducrc ne'u GV cd su gcri y hii*ll chiing minh SC Xmp(BHK)
Trang 3loai theo miic to tu duy, miic do nhan thiic cua
HS Cd the chia thanh cac loai CH&BT:
_ - Loai CH&BT yeu cau /Mp.-chi ddi hdi tai hien
kie'n thdc, nhd tai vatrinh bay, ap dung mdt each thic
tie'p kJS'n thirc
Vidut^) Cho doan t h i n g AB Hay dung die'm I
sao cho IA = 1IB;2) Hinh chdp dugc gpi la hinh chdp
deukhinao?
- LoaiCH&BTyeu cau cao.'ddi hdi HS phai biet
phan tich, tdng hop, so sanh, khai quathda, van dyng
kien thiic mdtcacti sang tao
Vidu2r\) Cho tam giac^ABC^ Hay dung die'm J
saocho 2J.4-js-i-3JC =/(S-i-,4C;2)Mpthinhchdp
cd day la da giac deu vacac canh ben tao vcrimat day
cac gdc b j n g nhau cd la hinh chdp deu khdng?
Detang hieu quaday hpc, GV can d u kie'n sua
chiia nhiing sai lam de mac phai ciia HS khitra tdi cac
CH,gjai cac BT Khigap nhung cau tra tdi saiciJaHS,
GV can dua ra nhung phan vi du nham khfcsau kie'n
thiic cho cac em
_ Vidu 3: Menh de sau dung hay sai: "Hai dudng
thdng phan bietciing vudng gdc vdi mdt dudng thing
thi) balhisong song vdinhau"?
Cd nhiing HS tra Idi ta menh de dung, sai tam
cua cacem nay la ohixet oac moiquan he trong mat
phang ma khdng xet trong khdng gian.GV su'dung
sai lam nay de k h i c sau^kie'n thuc cho HS: trong
khong gian, hai dudng thing phan biet cung vuong
goc vdi mgt dudng thing thiiba thico the khong
song song vdi nhau
Vidu4:Cho a, b, c duong Chung minh:
(a + b - c)(b + c - a)(c + a - b) sabc ^
Nhieu HSda giai nhu sau:Ap dung bat d i n g t h lie,
-5-Jt
(o + A-c)(A + c - o ) S
(b + c-aXc + i
-bX"
^ ) ^ ( ^ ^
Nhan cac vS' tuong iing ta cd dieu phai ehiing
minh.Lcrtgiaifrenlasai,sailarTiHSmicphaiddayla
(j'U^nd^i/frenkhinhancacbatdingthiic cung chieu,
bi4i thucdeacvephai khong Sm Voi BT nay, HS edthe
xet hai tn/ong hgp: - Neu a + b - e, b + c - a, c + a - b
deu khong am, ta si) dyng ket qua tren; - Neu mot
mpt dai Iupng am Khi do, chi eodung mpt dai luong
am vi tong hai dai lucfng bat ki luon dUPng Vi vay, (a + b - c}{b + c - a){c + a - b) < 0 < abc
Trong day hpe toan d pho thong ndi chung va d THPT ndi rieng, CH&BTPH da trdthanh mot edng
cy huu ieh eho G V nh^m nang cao hieu quaday hpe Volnhting bai giang dupe thiet ke tren COsdsudyng CH&BTPH khong chi cung cs^ tri thiie cho HS ma edn ren luyen cho eae em each tu hpc va phat trien nang lue tuduy, kha nang van dung kien thuc vao giai quyet eae van de khoa hpcva ddi song Nhuvay, viec xay dung va sudung hethong CH&BTPH trong day hpc la hoan toan kha thi dua tren c d sd li luan ve DHPH va doi mdi phuPng pliap day hpc theo hudng tich cue hda hoatdpng ngudi hpc, cau tnic cua chuong trinh mon 7oan cap THPT •
Tai liSu tham khao
1 TiiMn Tieng Vifit NXB Vdn hoa - Thdng tin, H 2001
2 Nguyen Ba Kim Phinmg p h a p day hpc mon Toan
NXB Dai hgc Supham, H 2006
3 Nguyen Diic D6ng Tuy^n t a p 500 bai toan hinh hpc khdng gian NXB Thanh Hoa, 2001
4 Ptian Due Ctiinh - YD Duong Thuy - Dao Tam - Le
Thd'ng Nh^t C^c bai giang Iuyen thi mdn ToAn (t^p
l,2).NXBG/dot;(Mc,H 1998
5 TMn v a n Hao (tdng chu bifin) Hinh hpc 10 NXB
Gido ditc Vi^i Nam, H 2011
6 Do^n Quynh (t6ng chu bifin) Hinh hpc 11 (nang
cao) NXB Gido due Vi$t Nam, H 2010
Hinh thanli khai niem Sinh hoc
(Tiep theo trang 59)
phan tich, tong hpp, kl nang thu thap va xu li thong tin, dae biet la kTnang khai quat hda •
Tai lieu tham khdo
1 Dinh Quang Bao - NguySn Due Th&nh Li'lu^n d^y hQC sinh hoc, p h a n d a i cuong (tai ban Idn thu tu) NXB G i d o i u c H 2003
2 NguySn Th^nh Dat (t6ng chii bien) Sinh hoc 11 NXB CMo (iuc, H 2008
3 NguySn Quang Vinh (t6ng chQ biftn) Sinh hpc 6
NXB Cldo due H 2008
4 W.D.Phillips & T.J.Chillon Sinh hgc NXB Gido
due H 2000
Tap chi Giao due so 379 43