NGHIEN ClitU Li LUAN UING DUNG PHiraNG PHAP Nld TOPSIS TRONG OANH GIA CHAT LI/ONG CUA GIANG VIEN NGUYEN QUYET TrUdng Cao dang T^l chlnh H^i quan TP H6 Chi Mlnli Email nguyenquyetld 6@gmall com LE HOAN[.]
Trang 1UING DUNG PHiraNG PHAP Nld TOPSIS
TRONG OANH GIA CHAT LI/ONG CUA GIANG VIEN
NGUYEN QUYET - TrUdng Cao dang T^l chlnh H^i quan TP H6 Chi Mlnli
Email: nguyenquyetld 6@gmall.com
LE HOANG V I £ T PHUONG - Trudng Oai hoc Cong nghiep TP Ho Chi Minh
Email: lehoangvielpliuong@iuh.edu.vn
Torn tdt: Bdi viit gidi thieu phuong phdp md TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)
vd tfng dung no trong viee ddnh gid hogt ddng gidng day eua gidng vien Thuat todn TOPSIS duac cdi tien vd dp dung tren dtfiieu md theo 7 bUde: Bude 1 Xep hang cdc tieu ehl, Budc 2 Tim ma trdn quyet dmh; Budc 3: Chudn hoa ma trdn quyet dmh; Bade 4: Tim trong so eua ma trdn chuan hoa; Budc 5: Tim nghiem li tudng mddUOng vd dm; Budc 6: Khodng cdch mci cua mdl lUa chon ttf nghiem II tudng md duong vd dm; Budc 7- Tim he sd khodng cdch md Cdc trudng dai hoc d Viet Nam luang ngudi hoe trong xu the hdi nhdp kmh tequoc te ngdy cdng sdu rong
Ttf khoa: Phuang phdp md TOPSIS; ddnh gid; chdt luong; gidng vien
(Nhdn bdi ngdy 10/02/2011; Nhdn kit qud phan bien vd chinh stfa ngdy 09/3/2017; Duyet ddng ngdy 25/04/2017)
1 Oat van de
Trong xu the hdi nhlp kmh te qudc te ngly cang
slu rdng, Viet Nam dang ddi dien vdi nhdng thich thde
khdng nhd, Oe hdi nhap thanh edng, nen gilo due (GD)
can ed nhdng chinh sleh thay ddi can bin nhlm nang
cao chit luong (CL) dao tao (OT), trong dd can Uu tien
dau tu nlng cao CL ngUdi hoe vdi ki vong tao ra ngudn
nhln luc CL cao dap dng nhu cau phIt tnen kinh te - xa
hdi trong thdi ki mdi Giang vien la nhln td quan trong
vdi muc dich nang cao CL OT, td nhieu nam qua, eae
(OG) hoat ddng (HO) giang day ciia giang vien Trong
dIu thuc hien HD nay, dae btet sau khi Bd GD&OT ban
hanh edng van 1276/BGDOT nam 2008 ve viec Hudng
ciia giang vien thi HO nay duac trien khai hau het tai cac
trudng cao ding va OH tren el nude
Tuy nhien, OG giang day la mdt cdng viec khi mdi
me ddi vai GD OH nudc ta ca ve li luin lan thuc tien,
Trong thUc te, viee DG HO giang day ciia giang vien hien
nay cdn mang tinh hinh thde, thieu khach quan v l ddi
khi ehua chinh xac [2] Do dd ket qui ciia HO DG gilng
day cita giang vien da khdng mang nhieu y nghia nhu
mong dai ma ddi khi cdn kim ham su phan dau vuon len
ciia ddi ngu giang vien, Susai lech trong ket qua OG HO
gilng day xuat phat td nhteu nguyen nhan khae nhau
xac la phuong phap phan tich sd lieu vi day thudng la
nhdng ket qui do lUdng cac khai mem va tieu chi dinh
tmh, mo hd trdu tuong Vi vay, can ed phuong phap thich
hop de xd li dd lieu trong qua trinh OG Trong gioi han
bai viet nay, tac gil gidi thieu phuong phap mdTOPSIS
va Ung dung no trong OG HO giang day ciia gilng vien
2 Tong quan li thuyet
2.1 Li thuyit md
Li thuyet mdduoe Zadeh gtdi thieu lan dau vao nam
1965 dung de giai quyet van de hen quan den nhdng rinh hudng sd lieu khdng chinh xac hoac khdng chic chan Oen nay, edng cu t o l n hoc nay dUOc dng dung rat dac biet II trong md hinh quyet dmh da tieu chi Sd md (khoang md) la mdt khli mem dung de dien ta mdt sd (mdt khoang) xap xt mdt sd hay mdt khoing sd thUc Goi A la mdt sd md (tip md) tren tap tdng so thuc R thi A e r\(R) va h i m thanh vien ciia A cd dang M^ : R - > ( 0 ; l j Ham thinh vien ludn cd tinh chuan, loi va thudng cd ba dang Tam giac, hinh thang v l hinh chudng Tuy nhien, trong thuc te, dang sd md tam gile thudng duoc sddung phd bien (Hinh 1)
Hinh 1-Hdm thdnh vien dang tam gidc
Ham thanh vien ).^(\) cd dang
1 b - a
\ <a
a < x < b
2 S • KHOA HOC GIAO DUG
Trang 2So md tam giac duoc xac dmh bdi ba tham so a, b,
c;ki hieu la A(a, b,c).Trong ngdcanhcu the, cac tham sd
got 11 bien ngdn ngd (Linguisrie variables) Bien ngdn
ngd rat da dang va duae xac dinh dua tren tap bien ca
sd Trong mdt bien ngdn ngd, cae tri ngdn ngd bieu dien
xap xi cua bien co sd thi cic tri ngdn ngd nay la cac sd
md Vi dy: Bien ngdn ngd trong DG CL dich vu la kem,
binh thudng va tdt hoac trong OG ket qui hoc t i p ciia
sinh vien la kem, trung binh, kha, tdt, xuat sic
2.2 Phuang phap mdTOPSIS
Phuang phap TOPSIS dUpc dng dyng kha phd
bien de ra quyet dmh trong trudng hop da tieu chi, y
tudng ciia thuat toan nay duoc xay dung tren tap gil tri
rd (crisp values set), dua vao nghiem li tudng tieh cUe
(PlS-positive ideal solution) v l nghiem litudng tieu cue
(NIS-negative ideal solution) [3], PIS la nghiem m l tai dd
llm cue dai y nghia va lam cue tieu ton that ciia tieu chi
Nguoc lai, NIS la nghiem ma tai dd llm cue dai ton that
va lam cue tieu y nghia eua tieu chi, IVldt lUa chon goi la
t^t nhat neu lua chpn dd gan nhat vdi PIS va xa nhat vdi
NIS 14]
Tuy nhien, thuc te ed nhieu rinh hudng ra quyet
dinh vdi thdng tin khdng chac chan, lam cho ngudi ra
(crisp values) cho nhdng phan quyet ciia ho [5] Khi dd,
ngUdi ra quyet dinh thudng quan tam tdi nhdng phan
quyet tren mdt khoang hon la chi ra nhdng gia tn rd
cho nhdng phan quyet dd [6], Mat khae, mdt sd tieu ehi
OG khdng phai luc nao cung duoc md ta bang gia tri rd
trong sudt qua trinh DG, Do vay, thuat toan TOPSIS duoc
xay dung tren tap gia tri rd da bdc Id mdt sd han che
TOPSIS duoc cai tien va I p dung tren dd lieu md nhu sau'
BUcrc 1 • Xep hang cac tieu cht
Hdi ddng OG gdm cdK thanh vien (D.,Dj, ,0^), cdn
tieu chf (C, Cy , CJ, hang cua tieu chi duac ki hieu II y^,
tam quan trpng ciia moi tieu chiduoc bieu dien bang sd
mdtam giac \\ ^^ (a b c ) trong dd k=1, 2, , K , j - ! , 2,
., n, mdl tham sdciiasd mdtam giac duoc xac dmh nhu
sau: a = m m ' v i b = — V \ c ^ m a x K ! (1)
^ I- I K f - ' • ^ ' • "
Sau do, chuan hoa u thu duoc w^ = (\' ||.w ,,, v j
trong dd:
Budc3 Chuan hda ma tranquyet dmh X - j x ^ J
bing each tinh cac r^
1 r,^ 1-1.2 m va j = 1.2 .n cue tieu dot tuong)
a j = 1.2 n (cue dai ddi tupng)
,1^:
Suy ra ma trln quyet dmh chuan hda:
Budc 4: Tim trong so ciia ma trln chuan hda
V = [ \ J ^ , „ 1 = 1,2 m v a j = L 2 , ,.u (5) Trong dd \ „ = r^, xw^, i = 1.2 ,.m \a j=1.2 ,n
\, : goi la sd mdtam gilcduong chuan hoa
BUdc 5 Tim nghiem li tUdng md dUong (A ) va
am [A" j
A =\\' v\ \ J , C"-(max(\, ).max(v^,,).max(v_^-); (6) A' ^{\ -\: v l v; =;miti(\,.).mm|i,.|.min|\ -li (7)
Budc 6: Khoang each md cua mdi lua chon td
nghiem If tudng md duong va am
^ M ; ^ ( i i -Budc 7-Tim he sd khoang cach md CC
Suy ra ma tran \\ =[\\ , w , \i
Budc 2 Tim ma tran quyet dinh
d +d
He so nay cho biet khoing each tU mdt lUa chon bat kl tdi nghiem li tudng md Neu mdt lUa chon cd CC cang Idn tht cang tdt
Trang 3Thanh lap hgi dong DG
Xac dirh doi tirong DG
Xac dinli neu chi DG
Xav d(nig ma tran quyei dinh ma
Gan irong so ciia ticu chi DG
: : : 1 _ -_ i -: T : : 7
Tinh diem cua moi doi numg iheo mo TOPSIS
C11 Dya v a o ket q u a OG eiia sinh vten
0.1176 0,0998 0.0909
Xac dinh hang sau ciing
_ _i _; _i _::
-BG kel qua
(Nguon Tdc gia thiet ke) Hinh 2: Quy trinh DG HD gidng day
theo phuong phap md TOPSIS
3 CTng dung phuo^ng phap md TOPSIS trong
danh gia hoat dong giang day cua gidng vien
3.1 Giai dogn 1
Oe mmh hoa cho phuong phap mdTOPSIS, nghien
cdu nly sddung sd lieu OG 20 giang vien tai TrUdng Cao
Ding Tai Chfnh Hai Quan lam vi du minh hoa, Quy trinh
OG duoc thuc hien qua 3 giai doan, Trong gian doan 1,
sau khi thanh lap hdi ddng OG cac thanh vien, hdi ddng
xay dung cac tieu chi OG (Bang 1) gdm 11 tieu ehi ki
hieu t d C,,, C va ten giang vien duoe ma hda tU A, tdi
Aj^, ddi tupng OG duoc chon nglu nhien 20 gilng vien
thudc tat c^ cac chuyen nglnh
Bdng 1- Cdc tieu chlDG
TT
C1
C2
C3
C4
C5
C6
C7
Tieu chi DG
Ndi d u n g bai giang ro rang,
mach lac v a d e hieu
Phu hop voi DCMH da duac
nha trudng t h d n g qua
Cap nhat cac kien thuc mdi
Truyen Ida c h o nguoi hoc
tham gia vao bai giang
Tao dieu kien eho nguoi
t u nghien cdu
The hien kha nang lam chii
cac HO tren Idp
Phim b d thdi gian giang
h o p li
^ g ' Dien dat rd rang, de nghe,
l d e hieu
, 1 Sd d u n g thiet bi cong cu
1 g i l n g day phu hop
CIO
Trang phuc lieh sU, Ung x u
the hien p h o n g each ciia
nha giao
So m d t a m giac j
0 0588
0 1176
0 0588
0 0588
0 0588
0,1176
0 0745
0 0975
0 0745
0 0 7 7 1 0.0732
0 0976
0 1 1 7 6 0 1 0 7 1
0 0909 0,0909 0-0909
0 0909
0 0909
1
0 09091
I
0 09091
0 0588 1 0 0784 | 0 0909
1 1
0 1176 0 1046 J 0 0909
0 1176 0 1 1 5 5 ' 0 0909
1
(Nguon Hoi ddng OG va tdc gia tfnh toan iheo
phuong trinh (Ij va Q)}
3.2 Giai dogn 2
Trong giai doan nay, cac thanh vien ciia hdi ddng thue hien OG giang vien de xae dinh ma t r l n quyet dmh
md, sau dd gan trpng sd cho tdng tieu ehiOG {Bang 2)
Bdng 2- Ma trdn ket qud DG
A l A2 A3 A4 A5 A6 A7
AS A9
A l O
A l l A12 A13 A14 A15 A15 A17 A1B
C l
20
15
10
10
15
20
17
13
15
10
20
17
21
15
12
25
13
23 A19 IS
A 2 0 1 1 2
C2
20
20
12
16
10
12
12
12
12
8
12
12
12
20
8
C3
10
15
17
31
21
10
23
12
18
31
10
23
23
18
31
20 1 10
12
12
14
28
23
23
18
31
C4
10
15
14
22
23
13
12
13
13
22
13
12
12
20
22
20
12
12
10
22
C5
20
20
16
12
12
15
14
16
16
12
15
14
14
16
12
20
14
14
10
12
C6
24
16
17
15
14
17
15
18
18
16
17
15
15
18
16
17
15
15
15
16
C7
20
16
12
17
13
18
16
20
20
17
10
15
16
20
17
19
16
15
10
17
C8
15
17
14
12
16
28
17
12
12
12
28
17
17
25
12
28
17
17
10
12
C9
10
10
15
10
15
10
13
10
10
10
10
13
13
14
10
10
13
13
14
10
CIO
5
10
20
10
25
15
5
14
14
10
11
5
5
14
10
21
5
5
14
10
cn
8
7
8
8
8
9
9
7
7
9
8
8
8
8
7
9
8
9
8
9
(Nguon Phong Nghien ciiu khoo hoc vo Hap tac quoc le Trudng Coo dang Toi chinh Ha: quan) 3.3 Giai dogn 3
Dua vao ket q u i ma t r l n OG ciia hdi ddng, sau
dd ap dung thuat toan md TOPSIS de xep hang cic ddi tuang OG {Bang 3)
Bdng 3- Khodng cach mdcua moi iUa chon ttf nghiem li tudng md dUong vd dm
A l A2 A3 A4 A5 A6 A7 A8 A9
A l O
A H A12
d '
1 1068 1,0944 1.0096
1 1489
1 0033
1 0973
1 2145
1 1503
1 1 3 1 0
1 2396
1 1943
1 2152
d;
1 1151
i\]
1 0632
1 0785 1 1 0299
0 9 9 8 1 I 1.0310
1 1238 I 1 0790
0 9496
1 0434
1 1689
1 1378
1 1053
1 1883
1 1355
1 1695
0,9679
1 0125 1.0960
1 1374 1-0902
d
0,5932
0 4849 0,5966
0 5245
0 8334
0 5750
0 3989
0 4 7 2 2
0 4838 1.1374 0 4 9 7 5 1.0761 ! 0 4 7 0 8
1 0 9 5 5 ! 0 3882
d
0 6329 0.4692
0 5769
0 5793
0 8472
0 6384
0 4 1 4 3
0 4432 0,4527 0.5628 0.5583
d
0 6283
0 4849
0 5041
0 6481
0 7546
0 6793
0 4428
0 4057
0 4370
0 6353 0,6295
0 4 0 6 9 | 0 4 3 7 1
Trang 4A13
A M
A15
A16
A17
A18
A19
A20
1 2063
0.9072
1,2356
0 8430
1 -2248
1 2031
1,1445
1-0270
1 1549
0,8872
1.1820
0.7979
1,1854
1,1495
1,1395
1 0345
1.0734
0,8550
1 1270
0,7846
1.1217
1.0551
1,1422
0,9932
0,4200 0,5746 0,4885 0,8530
0 3748 0,4423 0-3821 0,8499
0.4518 0-6818 0,5587
0 9069 0,3856 0-4834
0 3652
0 8035
0.4969
0 6945 0,6338 0-9283 0,4071
0 5387
0 3445 0,8310
(Ngudn Tdc gia tinh tUphuang tnnh (8))
Bang 4: He so khodng edeh mo
Al
A2
A3
A4
A5
A6
A7
AS
M9
AlO
All
A12
A13
A14
A15
A16
A17
A18
A19
A20
ccn
0.3851
0 3070
0,3715
0.3134
0.4537
0,3439
0.2472
0.2910
0.2996
0.2864
0.2827
0.2421
CCiZ
0 3621
0-3032
0.3663
0 3401
0-4715
0.3796
0 2617
0.2803
0,2949
0 3 2 1 4
0 3294
0.2581
0 2582! 0-281 2
0 4265
0.2832
0.5029
0.2343
0.2588
0 2503
0.4528
0,4345
0 3 2 1 0
CCi3
0 3 7 1 4
0 3201
0.3284
0 3753
0,4381
0 4015
0.2878
0 2529
CC!
0 3727
0 3100
0,3548
0 3420
0 4542
0-3742
0 2650
0 2778
0.2851 ,0,2935
0,3584'0,3207
0.3691
0,2850
0.3164
0.4482
0 3600
0 5320 j 0,5420
0 2455
0.2960
0.2427
0 4371
0.2663
0 3359
0.2317
0.4555
0,3252
0 2612
0 2843
0,4363
0,3199
0,5254
0,2483
0 2990
0 2414
0 4484
Hang theo TOPStS
6
12
7
8
2
5
17
16
14
10
9
18
15
4
11
1
19
13
20
3
(Nguon'Tdc gid tinh tu phuang trinh (9))
Ket q u a Bang 4 c h o thay, sau khi ap d u n g t h u a t
t o a n m d T O P S I S se c h o n d u a c g i a n g v i e n c d h a n g cao
nhat la A,^ vl co C C = 0 5 2 5 4 Idn nhat, ke t i e p la A^ va
n g u d i c d h a n g t h a p n h a t la A,g
4 Ket l u a n
Bai Viet nay gidi t h i e u p h u a n g p h a p m d T O P S I S va
d n g d u n g n d t r o n g O G HO g t a n g d a y ciia g i a n g v i e n
T h u l t t o l n d u a c d n g d y n g b i n g m p t v i d u cu t h e DG HO
g i a n g day cua 2 0 g i a n g vien, Bai viet g d p p h a n v a o n g u d n
t r o n g ITnh vUe k i e m d m h CL GD, q u a n t n n h a n s d n h d n g
n h l n g h i e n c d u lien q u a n d e n v a n d e ra q u y e t d i n h
T A I L I E U T H A M K H A O
[1] C h a r l o t t e D a n t e l s o n & T h o m a s L McGrea,
(2000), Teacher Evaluation, E d u c a t i o n a l Testing Service
P r i n c e t o n , USA
[2], N g u y e n O d e C h i n h - N g u y e n P h u o n g Nga,
(2006), Nghien ctfu xdy dung ede tieu ehi ddnh gid hoat
dong gidng day dai hoc vd nghien ctfu khoa hoc cua gidng vien trong Dgi hoc Quoe gia Hd Noi, B l o c a o n g h i e m t h u
D e t i l t r o n g d i e m c a p Oai hoe Q u d c gia Ha Ndi
[3], H w a n g , C, L, & Yoon, K„ (1981), Multiple attribute
decision making: Methods and applications, Berlin:
Springer
[4] W a n g , H Y., & C h e n , S IVl., (2008), Evaluating
students' answerscnpts using fuzzy numbers associated with degrees of confidence, IEEE Transactions o n Fuzzy
Systems, 16(2), 4 0 3 - 4 1 5 ,
[5] Chan, F.T S., & Kumar, N , (2007), Global supplier
development considenng risk factors using fuzzy extended AHP-based approach, OMEGA, 3 5 , 4 1 7 - 4 3 1
[6] A m i r i , M P., (2010), Project selection foroll-.eids
development by using the AHP and fuzzy TOPSIS methods
Expert Systems w i t h A p p l i c a t i o n s , 37, 6 2 1 8 - 6 2 2 4 , [7], Bd Giao d u e va O l o t a o , (2008), C d n g van sd
1276/BGDOT-NG ve viec Hudng dan to ehtfe lay y kien
phdn hdi ttf ngudi hoc ve hoat dong gidng day cua giang vien
[8], N g u y e n Quyet - N g u y e n Q u a n g T u a n , (2014),
Ijng dung phUOng phdp lien kit md TOPSIS trong tuyen dung nhdn su Tap c h i K m h te M d i t r u d n g , sd 8(12),
tr.45-4 8 [9], T r u o n g Cao d i n g Tat c h f n h Hai q u a n , (2016), Sd
lieu ddnh gid hoat ddng gidng day eua gidng vien ndm hoc
A P P L Y I N G TOPSIS F U Z Z Y M E T H O D IN ASSESSING Q U A L I T Y O F LECTURERS
N g u y e n Q u y e t - The College of Finance and Customs - Ho Chi fvlinh City
Email: nguyenquyetk16@gmail.com
Le H o a n g V i e t P h u o n g - Industrial University of Ho Chi IVlinh City
Email: lehoangvietphuong@iuh.edu.vn Abstract: The article introduces the TOPSIS fuzzy method (Technique for Order of Preference by Similarity to Ideal
Solution) and its application in evaluating lecturers' teaching activities The TOPSIS algorithm is refined and applied
on fuzzy data m seven steps- Step I Rank the criteria Step 2: Find the decisive matrix; Step 3- Standardize the decisive matnx Step 4 Find the weight of the standardized matnx Step 5 Find ideally fuzzy positive and negative roots; Step 6 The fuzzy distance of each selection from the ideally positive and negative roots Step 7-Find the fuzzy distance coefficient Universities in Vietnam have been evaluating lecturers' teaching activities in order to improve the quality of training and the quality of learners in the trend of international economic integration
Keywords: TOPSIS fuzzy method; evaluation, quality, lecturer