ĐỀ SỐ 10 0 Cho số phức thoả mãn A Tập hợp điểm biểu diễn số phức là một đường tròn có bán kính bằng 9 B Tập hợp điểm biểu diễn số phức là một đường tròn có tâm C Tập hợp điểm biểu diễn số phức là một[.]
Trang 1ĐỀ SỐ 10
Câu 1. Cho số phức zthoả mãn z 2 i 3.
A Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 9
B Tập hợp điểm biểu diễn số phức z là một đường tròn có tâm I2;1
C Tập hợp điểm biểu diễn số phức z là một đường thẳng
D Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 3
Câu 2. Gọi n là số mặt phẳng đối xứng của hình lập phương Tìm n
A n 9. B n 7. C n 8. D n 6.
Câu 3. Cho lăng trụ đứng ABCA B C có đáy ABC là tam giác đều cạnh a AA, 2 a Một khối trụ có
hai đáy là hai hình tròn lần lượt nội tiếp tam giác ABC và tam giác A B C Tính thể tích V.
của khối trụ đó
A
3
2 3
a
V
B
3
18
a
V
C
3
2 9
a
V
D
3
6
a
V
Câu 4. Tìm các số phức z thoả mãn z23 1 2 i z 4 6 i 0
A z11;z2 4 6 i B z11;z2 4 6 i
C z1 1;z2 4 6 i D z1 1;z2 4 6 i
Câu 5. Đồ thị của hàm số y x 3 8x cắt trục hoành tại bao nhiêu điểm?
A Đồ thị không cắt trục hoành B Chỉ 1 điểm
C 2 điểm phân biệt D 3 điểm phân biệt
Câu 6. Cho hình chóp S ABC có đáy ABC là tam giác vuông tại B AB a AC a, , 5, cạnh bên SA
vuông góc với đáy, đường thẳng SB tạo với đáy một góc 60 0 Tính thể tích V của khối chóp
S ABC
A
3 15 6
a
V
B
3 3 3
a
V
C
3 15 3
a
V
D V a3 3.
Câu 7. Hàm số yf x 2x33x212x 5 Khẳng định nào sau đây là sai?
A f x
đồng biến trên khoảng 1;1
B f x
đồng biến trên khoảng 0; 2
C f x
nghịch biến trên khoảng ; 3
D f x nghịch biến trên khoảng 1; .
Câu 8. Tìm nguyên hàm
x 5
A I x 5ln x C
5
Trang 2C I x 5ln x C
5
Câu 9. Tìm tất cả các giá trị thực của tham số m để hàm số ylnx2 2mx4
có tập xác định D
C 2 m 2. D 2m hoặc 2m .
Câu 10.Tọa độ giao điểm của đồ thị hàm số y3xvà đường thẳng 1
3
y
là
A
1 1;
1 1;
1 1;
1 1;
3
Câu 11.Tìm giá trị nhỏ nhất của hàm số y x 2 4 x trên đoạn 2;4
A 2;4
3 min y=
2 B 2;4
3 min y=
2. C min y=22;4
D min y= 22;4
Câu 12.Cho log 5 a2 Hãy biểu diễn log 12504 theo a
1
1
C log 1250 2 1 4a4
D log 1250 2 1 4a4
Câu 13.Cho số thực dương a , rút gọn biểu thức
1
3
P a a
A
7 5
5 7
5 6
6 5
P a
Câu 14.Tính tích phân
2
5 1
1
I x x dx
A
13 44
I
13 45
I
13 42
I
13 43
I
Câu 15.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
1 3
3 2
' ' : 1 '
3 2 '
x t
Khẳng định nào sau đây là đúng ?
A Đường thẳng d vuông góc với đường thẳng ' d
B Hai đường thẳng d và ' d cùng thuộc một mặt phẳng.
C Đường thẳng d trùng với đường thẳng ' d
D Đường thẳng d song song với đường thẳng ' d
Câu 16.Tìm nguyên hàm
2
tan
I xdx.
Trang 3A I x cotx C B I cotx x C
C I x tanx C D I tanx x C
Câu 17.Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P x y z: 7 0 và đường thẳng
:
d
Phương trình mặt phẳng Q chứa d đồng thời vuông góc với P là
A Q : 5x y 6z 7 0 B Q : 5x y 6z 7 0
C Q : 5x y 6z 7 0 D Q : 5x y 6z 7 0
Câu 18.Nghiệm của bất phương trình log 32 x 2 0
là
A log 23 x 1 B x 2 C 0 x 1 D x 1
Câu 19.Tìm điểm cực tiểu của hàm số y x 3 3x2 3
A x 3 B x 2 C x 1 D x 0
Câu 20.Cho hai số phức z1 2 5 ,i z2 3 4i Xác định phần thực, phần ảo của số phức z z 1 2
A Phần thực là 14 và phần ảo là 7 B Phần thực là 26 và phần ảo là 23.
C Phần thực là 26 và phần ảo là 7 D Phần thực là 26 và phần ảo là 7
Câu 21.Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng ( )P cách đều hai điểm
2;3;7
A
và B4;1;3
là
A x y 2z 9 0 B x y 2z 9 0
C x y 2z 9 0 D x y 2z 9 0
Câu 22.Cho đồ thị hàm số
( ) : y
x C
x
Khẳng định nào sau đây là đúng ?
A Đường thẳng y 3 là tiệm cận ngang của đồ thị ( )C
B Đường thẳng
3 2
x
là tiệm cận đứng của đồ thị ( )C
C Đường thẳng
1 2
x
là tiệm cận đứng của đồ thị ( )C
D Đường thẳng
1 2
y
là tiệm cận ngang của đồ thị ( )C
Câu 23.Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 4x y 2z Điểm 1 0 M'đối
xứng với điểm M4; 2;1
qua mặt phẳng P
có tọa độ là
A M ' 3;0; 4
B.M ' 4;0; 3
C M' 0; 4; 3
D M ' 4; 3;0
Câu 24.Cho đồ thị hàm số
3 ( ) : y
x C
x
Tiếp tuyến của đồ thị ( )C song song với đường thẳng
5x4y1 0 là đường thẳng nào trong các đường thẳng sau đây
Trang 4A 10x8y17 0 B 10x8y19 0
C 10x8y21 0 D 10x8y23 0
Câu 25.Nghiệm của bất phương trình 2
3 1
8, 4 x x 1
là
A x 4 B x 3 C x 2 D x 1
Câu 26.Biết
b
a
a b c f x dx
và
2
c
b
f x dx
Khi đó giá trị của tích phân
c
a
f x dx
là
Câu 27.Trong không gian với hệ tọa độ Oxyz, cho ba điểm A1; 2;3 , B2;0;1 , C3; 1;5
Diện tích
tam giác ABC là
A
3
7
5
9
2
Câu 28 Khẳng định nào sau đây sai ?
A Tồn tại một mặt trụ tròn xoay chứa tất cả các cạnh bên của một hình chóp.
B Tồn tại một mặt trụ tròn xoay chứa tất cả các cạnh bên của một hình lập phương.
C Tồn tại một mặt trụ tròn xoay chứa tất cả các cạnh bên của một hình chóp tứ giác đều.
D Tồn tại một mặt cầu chứa tất cả các đỉnh của một hình tứ diện đều.
Câu 29.Cho số phức z thỏa mãn z 2 Khẳng định nào sau đây là đúng?
A Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2
B Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính nhỏ hơn 2
C Tập hợp điểm biểu diễn số phức z là một hình tròn có bán kính bằng 2
D Tập hợp điểm biểu diễn số phức z là một đường tròn có tâm I2;2
Câu 30.Cho hàm số yf x liên tục trên khoảng 3; 2, có bảng biến thiên nhu hình vẽ bên
Khẳng định nào sau đây là sai ?
A Không có min y3;2
B.y CÑ 0.
C.max y =0 3;2
D y CT 2.
'
y 0 3
2
5
Câu 31.Tìm nguyên hàm cos2
x
x .
A I x tan x+ ln cosx C
Trang 5
C I x tan x-ln sinx C
Câu 32.Thể tích khối tròn xoay được tạo bởi phép quay quanh trục Ox hình phẳng giới hạn bởi các
đường y x 21,x và các tiếp tuyến với đồ thị hàm số 0 y x 2 tại điểm 1 1; 2 là
A
15
8
8
15
8
Câu 33.Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy
Biết rằng, mặt phẳng SBC
tạo với mặt phẳng đáy một góc 600 Tính thể tích V của hình
chóp S ABC
A.
3
3 4
a
V
B
3
4
a
V
C
3
3 8
a
V
D
3
3 24
a
V
Câu 34. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng , ( ) :P x2y z 5 0 và đường thẳng
Góc giữa đường thẳng ( )d và mặt phẳng ( )P là:
A 45 o B 30 o C 60 o D 120 o
Câu 35. Cho hình chóp tứ giác đều S ABCD có AB a mặt bên tạo với đáy một góc , 45 Một khốio
nón có đỉnh là ,S đáy là hình tròn ngoại tiếp hình vuông ABCD. Tính thể tích V của khối nón
đã cho
A.
3
2 12
a
V
B
3
3
a
V
C
3
2 3
a
V
D
3
12
a
V
Câu 36. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số 2 ,
1
y x
trục hoành, trục tung, đường thẳng x là:4
Câu 37. Tìm các số phức z thỏa mãn
2 2
z zz z
và z z 2
A.z1 1 ;i z2 1 i B z1 1 ;i z2 1 i
C z1 1 ;i z2 1 i D z1 1 ;i z2 1 i
Câu 38. Với điều kiện nào của tham số m cho dưới đây, đường thẳng d y: 3x m cắt đồ thị
1
x
C y
x
tại hai điểm phân biệt A và B sao cho trọng tâm của tam giác OAB thuộc đồ
thị C ,
với O0;0
là gốc tọa độ
A. 15 3 13
2
m
B 15 5 13
2
m
C 7 5 5
2
m
D.Với mọi m
Câu 39. Cho hình chóp S ABC có SA SB SC a , ASB CSB 60 ,o ASC 90 o Tính thể tích khối
chóp S ABC
Trang 63
2 12
a
V
B
3
2 4
a
V
C
3
6 3
a
V
D
3
3 12
a
V
Câu 40. Tìm các giá trị thực của tham số m để đồ thị hàm sốC m:y x 4 mx2m cắt trục hoành1
tại bốn điểm phân biệt
A
1 2
m m
Câu 41. Nếulog log log7 3 2x 0 x0
thì
1
x bằng:
1
1
2 2 D 2 2
Câu 42. Tập nghiệm của bất phương trình
1
2
16
x x
là:
A ; B 2;
C ;0
D 0;
Câu 43. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số 2
1 :
m
x
x x m
có hai đường tiệm cận đứng
A Mọi m B
1 4 2
m m
1 4 2
m m
Câu 44. Biết rằng đồ thị hàm sốy a x và đồ thị hàm sốylogb x cắt nhau tại điểm
1
; 2 2
Khi đó điều kiện nào sau đây là đúng?
A 0a và 01 b 1 B a và 1 b 1
C 0 và a 1 b 1 D a và 01 b 1
Câu 45. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P x: 2y 2z và điểm1 0
2;0; 1
Phương trình mặt cầu S
tâm A cắt mặt phẳng P
theo một đường tròn có bán kính bằng 2 là:
A 2 2 2 61
9
x y z
B 2 2 2 61
9
x y z
C.
2 2 2 61
9
x y z
D 2 2 2 61
9
x y z
Câu 46. Trong mặt phẳng với hệ trục tọa độ Oxyz, cho đường thẳng
x 1 t
d : y 2t
ì = + ïï
ïï = íï
ï =-ïïî và mặt phẳng
(P) : 2x y 2z 1 0+ - - = Phương trình đường thẳng đi qua M(1;2;1), song song với mặt phẳng
(P) và vuông góc với đường thẳng d là:
A
x 1 7t
y 2 5t
z 1 2t
ì = +
ïï
ïï =
-íï
ï = +
x 1 2t
y 2 4t
z 1 3t
ì = + ïï
ïï = -íï
ï = +
x 1 5t
y 2 7t
z 1 2t
ì = + ïï
ïï = -íï
ï = +
x 1 4t
y 2 2t
z 1 3t
ì = + ïï
ïï = -íï
ï = + ïïî
Trang 7Câu 47. Cho hàm số y mx= 3- (2m 1)x- 2+mx 7- Có bao nhiêu giá trị nguyên của tham số m để
hàm số nghịch biến trên R ?
Câu 48. Tìm môdun của số phức liên hợp của
(1 i 2 i) ( ) z
1 2i
-=
+
Câu 49. Cho khối cầu tâm I , bán kính R Gọi S là điểm cố định thõa mãn IS=2R Từ S kẻ tiếp tuyến
SM với khối cầu( Với M là tiếp điểm) Tập hợp các đoạn thẳng SM khi M thay đổi là mặt xung quanh của hình nón đỉnh S Tính diện tích xung quanh của hình nón đó, biết rằng tập hợp tất cả điểm M là đường tròn có chu vi là 2p 3
A Sxq= p6
B xq
9 S 2
p
=
C Sxq = p3
D Sxq = p12
Câu 50. Cho a và b là hai số thực đồng thời thõa mãn b a 2 0- - = và 3 2a b=3-2 Tính b 5a
ĐÁP ÁN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50