TAP CHi KHOA HQC, TRI/aNG BAI HQC H 6 N G BtTC SO PAC BIET (5, 2017) BIEN PHAP NANG CAO MlTC DO THICH tTNG V 6 l HOAT DONG HOC TAP CUA SINH VIEN DAN TQC THIEU SO T R i r d N G Bl^l HOC HONG DlTC Truon[.]
Trang 1BIEN PHAP NANG C A O MlTC D O T H I C H tTNG V 6 l HOAT DONG H O C TAP CUA SINH VIEN D A N T Q C THIEU SO
T R i r d N G Bl^l H O C HONG DlTC
Truong Thi Thfio' TOM TAT
Sy ihich Ong v&l hoat dpng hoc Idp & dgi hgc cd vai Ird rdt quan trgng ddi vai sinh viin ddn tdc thiiu sd Viec nghien ciiu muc dp ihich img vd de xudt cdc bien phdp nhdm ndng cao mue dd thick ung v&i hogt ddng kge tap cua sink vien ddn tpc thieu so
CO y nghia quan trong cd ve ly ludn vd thuc tiin, giup hp thick img nhank han vd ndng cao hieu qua hpc lap & truang dgi hgc
Td khda: Biin phdp mirc dp thich irng hoat dgng hpc tdp, smh vien ddn ldc ihieu sd
1 DATVANDE
Thich img vdi hoat dpng hoc ldp (HDHT) co vai ttd rat quan ttgng ddi vdi sinh vien ddn tdc thigu sd (DTTS), giiip cic em dmh hudng, dieu khign, digu chinh mdl each tu giac, tich eye nhgn thdc, thii dg va hdnh vi cda bin than de dip ilng cac yeu cau cua viec hgc tgp, Trong mdi Irudng dai hoc, sinh vien DTTS lien hanh HDHT vdi cac phuang phip ty hge la chii yeu, digu dd ddi hdi edc em cd sy thay ddi tuong ddi Idn ttong phuang phdp ciing nhu thdi dg hoc lap Vice ehi ra bien phip ndng cao muc
dd tiiich dng vdi HDHT giup sinh vien DTTS ttudng Dai hgc H6ng Due thich dng nhanh han vdi HDHT d tradng dgi hgc vi dgt ket qua hoc top cao han
2, N O I D U N G NGHIEN CUU
2.1 Mgt so khii niem co ban
Hoal dong hgc lap cda sinh viin DTTS Id mgt hoal ddng nhan ihuc ca bdn dugc
Ihyc hien dudi su hudng dan cua cdn bd gidng dgy, nham ITnh hgi, nim vdng he ihdng kiln thdc, kT ndng ve mdt logi nghi nio dd, Idm co sd cho boat dgng nghi nghiep trong tuong lai [3] Hoal ddng hpc tap cua sinh vien DTTS gdm cac hogl ddng Linh hdi thdng lin bdi giing; Su dung giao trinh, Iai lieu tham khdo, Chudn bi vd iiln hdnh semina, On tgp
' Going vien khoa Tdm ly - Gido dife Tnr&ng Dai hpc Hdng Due
Trang 2Muc dd thick ung v&i HDHT cua smh viin DTTS: Thich ung vdi HDHT la qui
tiinh sinh vien tao nen nhihig bign ddi ttong ddi sdng tom ly eua minh trudc dilu kien hoc top mdl, Su bign ddi nay nham ddp img yeu cau ciia HDHT va hinh thdnh nen nhflng cdu too tdm ly mdi dam bdo cho sinh vien lign hinh HDHT cd kit qui [1], Su
thich dng vdi HDHT cua sinh vien the hien su thay doi d ba mdt; nhdn ihirc, thdi do va
ki ndng ttong HDHT Su Ihay ddi nay giup sinh vign hinh thdnh nen nhflng ciu tnic tam ly mdi ttong HDHT, dap dng yeu cau ciia phuong thdc hgc tap d dgi hgc Muc dg thick irng v&i HDHT cua sinh viin DTTS la phgm vi biln ddi vl mdt nhdn tiiuc, thii do
vd kT ndng cua sinh vien ddp dng yeu cau ciia HDHT dam bao cho ho tiln hdnh HDHT
cd hieu qud [I]
Biin phdp ndng cao mice do ihich ung v&i HDHT cua sinh vien DTTS: Bien phap
la each lim, each gidi quyel mdl vdn de cy the [5] Bien phap ndng cao muc dg thich ling vdi HDHT cua sinh vien DTTS la qui trinh Ihigt kg, sdp xep, Id chdc thue hien cac thao tac trong cac hinh dpng hgc tgp de thyc hien mgt cich cd hieu qua muc dich, nhiem vy hgc top d dai hgc
2.2 Thyc trang mdc dg thich dng vdi hoat dgng hgc tap cua sinh vien dan tgc thilu so Trirdng Dai hgc Hong Dire
Trudng Dai hgc Hdng Ddc cd quy mo dao tgo Id 12032 hpc sinh sinh vien Trong
dd cd 8266 sinh vien chinh quy, 1478 sinli vign la con em DTTS vdi 437 sinh vien ndm thd nhit vd 361 sinh vien ndm tiid hai, Chung tdi tiln hanh dieu tra ttgn 270 sinh vien DTTS Trudng Dgi hgc Hdng Due ndm thd nhit va nam thd hai, nam hgc 2015 - 2016, Qua nghien cdu cho ihiy, muc dg thfch dng vdi HDHT cua sinh vign DTTS Trudng Dai hgc Hdng Ddc d muc tmng binh [4],
Ve nhdn thirc: Dilm trang binh (TB) mdc dg thich iing vdi HDHT ve mat nhan
thuc la 2 27 dilm, Trong cic hdnh dgng hgc top, nhdn thdc cua smh vign DTTS d muc
dg thip nhit la Chudn bi vd tiin kdnh semina (2 03 dilm), sau dd Id Sic dyng gido Irinh
vd tdi lieu Iham khdo (2.17 dilm), Phdn phdi vd sdp xip th&i gian kpc Idp (2.19 diem)
vi thai dd Dilm TB mdc dd thich ung vdi HDHT vl mgi thai dd Id 2.25 diem Trong do, Chudn bi vd tiin hdnh semina li hdnh ddng hgc lap md sinh vign DTTS cd mdc dp thich dng ttiip nhit (2.01 dilm), tilp theo la Su dyng gido Irinh vd tdi hiu Iham khdo (2.15 dilm), Phdn phdi vd sdp xip Ih&i gian hoe tgp (2.16 diem)
vi ky ndng- Dilm TB muc dd thich ung vdi HDHT vl mat ky ndng Id 2.20 digm Vdi dilm TB nay cho thiy, ky ndng hgc top cda sinh vien d mdc chua thdnh thgo Trong cic hogl dgng hgc lap, sinh vign DTTS cd mdc dd thich dng thip nhal Id Chudn
bi vd tiin hdnh semina (2 03 dilm),
Nhu viy, sinh vien DTTS Tradng Dgi hgc Hdng Ddc cd mirc do thich dng d
muc trung binh vdi hogt ddng hpc tap Nhilu sinh vien chua bilt each hogc chua
Trang 3thinh thgo khi thyc hien cac hoat dpng hgc tgp d dgi hgc Day Id ca sd de tic gia de xuit mpl sl bien phap giiip smh vien DTTS cai Ihign mdc dd thich dng nham ndng cao ket qua ligc lap,
2.3 Bien phap nang cao mdc dg thich dng vdi hoat d§ng hoc tip cua sinh vien dan tgc thieu so Trudng Dai hgc Hdng Ddc
2.3.} Cdc bien phdp ndng cao miic dp thich iing vai hogt dgng hoc tap ciia smh vien ddn tgc thieu sd Tnr&ng Dgi hpc Hdng Due
Thii nhat Tao moi tru&ng hoc tap cho smh viin
Trong qua trinh giang dgy, giang vidn cd the lien hanh cic ky thual de tao moi ttuong linh thin hgc tap cho sinh vien DTTS: Thdng bao cho sinh vien kl hoach ctia bai hgc chuang hgc, tiel hgc; Thigl lap cac dinh hudng bai hgc, chuong hgc, tiel hgc; Thong bio de cuang bdi hpc mdt each rd rang vd cdch thdc tiSn hanh bdi hgc, chuang hgc, lilt hgc; nhung ndi dung se dugc de cap, nhdng bien phdp can Hen hdnh, cdc quy tac
ca bin can phai man theo; Su dung phuang phdp "Phd v& tdng bdng" hodc "Ldm ndng"
bdng cich cung cap nhflng thong tin ve smh vien, nhdng ihdng lm mdi nhat ve giio due, nhdm too ra sy gin gfli gifla sinh vien vdi sinh vien, gida sinh vien vdi giang vien
Thii hai Hu&ng ddn smh viin lap ke hoach ly hoc
Ci Iradng dgi hpc, boat ddng hpc tdp ciia smh vien chu yeu la ty hpc dudi sy hudng dan eua giing vien, Vigc xay dyng duac ke hoach ty hge cd nhdn vd thyc hien mpt each nghiem luc giup sinh vien hoan thdnh tdt cdc nhiem vu hgc tap va thich ilng nhanh hon vdi HDHT d tradng dgi hgc,
De thuc hign dugc bien phip nay giang vien can giup sinh vien thuc hien cic cdng viae cy the sau: Xac dinh muc lieu tu hgc; Xdc dinh ndi dung tu hgc; Xac dinh thu ty cic cdng viec cin lam; Phan phdi sap xep thai gian cho timg cdng vigc mdt cdch hop ly phil hgp vdi digu kign phuang lien vat chat hien cd cua nha trudng, Tu dieu chinh ke hoach khi cd nhiing nhiem vy hgc mdi, Kiem tta ddnh gii ciia gidng vien bg mdn cdc ke hogch dd xay dyng
Thu ba, Bdi du&ng ky ndng doc sdch cho smh vien
Dgc sdch cd mdt vai tro rat quan trgng ttong vigc nang cao hieu qua hoat ddng tti hoc cua sinh vign Dgc sach dugc coi nhu li mpt bd phgn cda qui trinh hge tap, nd ludn gan lien vdi hogt ddng dgy hoc cua giang vien Kharlamov dd chi ra vai ttd cua sdch giao khoa va tai ligu tham khio Sdch giio khoa va tii Iigu hoc tap phdi ttd thdnh mdt ttong nhflng ngudn chu yeu cung cip kien Ihdc va phuang Hen quan trong cda viee
id chuc cong tie ty Igp cua sinh vign ttong gid hpc [7]
Cdc thao tic doe sach gdm- Thao lie lim tai hgu; Thao tac tra cdu thu myc (trong thu vien), tra cim phin phu iyc, Thao tic chon tii hgu de dgc
Trang 4Td chirc qud trinh dgc sack gdm cdc ikao tdc nku sau
Chuan bi: Chd ngdi vdi diy dii cdc phuang lien nhu bin, ghi, anh sang, giiy but, biet chon thdi gian dgc phii hgp
Tign trinh dgc gdm cac budc sau:
Budc I - Dpc nhanh muc luc dl tim npi dung cin doe,
Budc 2; Dgc frgn ven mgi vdn dl can Ihilt
Budc 3- Vda dgc vda ddnh dau, ghi chep nhung vin dl cin thill Nhflng viec can lam khi dgc gido trinh gdm: Phii hilu y nghTa cdc hi vill ttong giio trinh; Phai nhd nhiing y vd xem cd phu hgp hay khdng; Phai ddnh gia nhdn xel nhtmg gi dd dgc dugc
Thao toe ghi chep de luu gifl thdng tin gdm Ghi ten tai lieu, ten toe gia, nhd xuit ban, nam xuit bin Lap dan y, de cuang Iheo logic cua van dl, sinh vien cd ihl vill ttang, doan, ddng, Ghi ldm tot ndi dung: ghi theo y hilu ciia minh vd diln dat bdng ldi vdn cua minh hoac cd the tdm tdt dudi dang so dd
Thir tu, Td chirc cho sink vien chudn bi vd tiin hdnh semina
Td chdc cho sinh vign chuin bj va tign hdnh semina dugc ldc gid phan tich cy Ihl ttong phin thyc nghiem lie dgng su phgm,
2.3.2 Thuc nghiim tdc dpng suphgm
2.3.2.1 To ch&c Ihuc nghiem tac dpng sir phgm
Mue dich tkuc nghiem
Ket qua nghien cim ly luan va thuc tien mitc do thich ilng vdi HDHT cua sinh vign DTTS Trudng Dai hgc Hong Ddc [4] giiip chiing Idi cd ca sd dg tign hanh thuc nghiem (TN) tdc ddng su pham Muc dich TN Id dinh gid higu qud ciia bien phap tac ddng su pham ttong viec cii thicn mdc dd Ihich iing vdi HDHT ciia sinh vign DTTS Tradng Dgi hgc Hdng Ddc bdng viec so sdnh su khdc biel muc do thich dng vdi HDHT gida sinh vien DTTS nhdm TN va nhdm doi clidng (DC), trade va sau TN Thuc nghiem tic ddng su pham dugc chung Idi liln hanh d vigc day va hgc mdn Tdm viec hgc tap cd mdc do thich ung thap nhil Id chuan bi vd tign hanh semina, gop phan ndng cao mdc dd thich dng vdi HDHT cua mon hpc dd
Cdch Ihuc hien thyc
Trong qua ttinh t l chuc TN tac ddng su pham, chiing ldi chuan hi cho smh vien DTTS nim viing nhirng kiln thdc ca bin vd ky ndng thyc hign viec chuin bi va lien hanh semina, chuin bi day dii co sd vdt chit bao dam tten hdnh chat che cic budc cua qui trinh TN
Trang 5Chung tdi lien hinh TN tten nhdm khach thi Id 21 smh vign DTTS (ldp K18A, KI8B - Gido due Tilu hgc), Nhdm DC to 22 sinh vien DTTS (ldp K18 - Su pham Ngu Vdn - Dja ly) Chit lugng ciia sinh vien DTTS nhdm TN va nhdm DC tuang dong nhau vg tuoi ddi, hgc lye, mdi tradng dio too Ddy la so lugng sinh vien DTTS cd mdc dd ihich ilng thap nhdt ttong tdng sd sinh vien DTTS dugc nghign cdu
Td chuc TN Idc dgng supham dtrgc lien hdnh iheo ba bu&c:
Bu&c 1 - Chudn bl thyc nghiem
Chung tdi lien hg xin y kien Phdng Ddo tgo, Ban chu nhiem khoa Gido dye Tigu hgc, khoa Khoa hoc Xa hpi va Nhan vdn, Trudng Bd mdn Tam ly hgc dg tiln hanh nghien cihi TN, ddng thdi chudn bi ndi dung TN vd phuong phap TN
Bir&c 2: Tien hdnk thyc nghiem
Khdo sdt trade TN d cd nhdm TN vd niidm DC Ket qua khio sat Id ea sd de so sdnh vdi kgt qud sau TN tdc ddng su phgm
Tiln hanh TN tac ddng su phgm bang cdch: hudng din va td chdc cho smh vien DTTS thyc hanh chuan bi va Hgn hdnh semina dg tdc dgng vao nhan ihdc, Ihdi dd va
ky ndng hgc lap cua nhom TN nham thu thdp thdng tin lim cdn cu danh gid sy thay dli
vl muc do thich dng vdi HDHT cua nhdm TN
To chdc hudng din sinh vien DTTS each chuan bi vi tien hanh semina de ho cd till: Biel cich nghign cdu cic toi lieu co lien quan den chu de semina,
Bigl cdch xie dinh cau tnic dg cuang bai semma,
Biet cdch trinh biy cac thdng tin ciia bai semina tiieo cdu tnic da xac djnh Biet chuin bi cdc y kien dl ttao ddi vi tranh luan trudc lap thi
Bigl phat hien nhiing mdu thuan mdi phdt smh va dg xuil cdch giii quylt rieng ttong qua ttinh semina
Ngi dung semina
QUYLUATCUA CAM GIAC VA TRI GIAC
1 Cdc qui ludt cua cdm gide
Quy ludt ngu&ng cdm gidc
Qui ludt thick img ciia cdm gidc
Qui ludt tdc dgng qua lgi ldn nhau cua cdc cam gidc
2 Cdc qui ludt cua tri gidc (thuoc tinh ca bdn)
Tinh doi tuang cua tri gidc
Tinh lua chgn cda tn gidc
Tinh y nghia cua In gide
Tinh dn dinh eiia tri gidc
Tdng gide
Ao gidc
Trang 6Khdo sat san TN toe dgng su pham d ca nhdm TN va nhdm DC Kit qua khao sdt
Id CO sd de so sdnh sy thay ddi mdc dg thich dng vdi HDHT cua sinh vign DTTS sau
vd trudc TN,
Theo doi qui ttinh hgc lap cua sinh vign DTTS ttong gid Ign ldp vi ngodi gid Ign ldp nhim thu thdp them thdng tin de bd sung cho kit qui TN
Bu&c 3: Xir ly vd ddnh gid kit qud thue nghiem
Tien hdnh phdn tich ket qud TN, chung tdi dua vao phuong phdp thing ke todn hgc vi phdn lich, ldng hgp, khdi qudt ket qui ihu duge de nil ra nhflng nhgn xet vl thyc Irang mdc dp thich img vdi HDHT cua sutii vien DTTS, danh gid linh khieh quan, khoa hgc, chinh xac cua bien phap lac ddng su phgm, Chung ldi su dyng kilm dinh T -Test de danh gid ket qud thyc nghiem
2.3.2.2 Kit qud thuc nghiim tdc dpng su phgm
Kil qud bdng I cho thdy
Ct lan do thd nhdt, trudc khi tign hdnh bien phdp tdc ddng su pham, mdc dd tiiich irng vdi chiton bi vd tign hanh semina cua sinh vien DTTS giua nhom TN vd nhdm DC
la tuang duang nhau, Xet cac mat: nhin thdc, thdi dd va ky ndng tiii sy khic nhau vg muc dg thich dng vdi chudn bi va tign hdnh semina giua nhdm TN va nhdm DC la sy khac nhau khdng cd y nghTa,
Bdng 1 Mdc d$ thich dng vdi chuan bi va tien hanh semina cua sinh vien ddn toe thieu so Trudng Dai hgc Hong Due (1<X<3)
TT
1
2
3
Chuan bi
vi lien hanh
xemina
Nhin thuc
Thai do
Ky ning
X ,hung
Nhdm thyc nghigm
X
Do lin 1
(Xi)
1.93
1 88
1,86
1,89
Do lin 2 (X2) 2.26 2,21
2 33 2,27
\i-Xi 0.33 0.33
0 47
0 38
Nhdm doi chdng
X
Do Ian 1 (X'l) 1.93
1 91 1,84 1,89
Do ldn 2 (X'2) 2.00 1.98 1,90 1.96
X'2-X'l 0.07
0 07 0.06 0,07
6 lin do thd hai, sau khi dd tiln hdnh bien phap tdc dpng su pham, mdc dp thich
dng vdi chuin bi va tiln hanh semina cua sinh vign DTTS o cd hai nhdm TN va DC cd
sy biln ddi theo chilu hudng tlch eye, nhung sy biln ddi d nhdm TN cao han nhigu so vdi nhdm DC
Trang 7Muc dd thich ung vdi chuan bi va ttgn hdnh semina cua sinh vien DTTS ttudc va
u TN d nhdm TN va nhdm DC Ihl hien d bilu do sau:
2 5
« i s
~ 05
0
i y 3
-2 -26
2 21
I t W ^ B
• TnicrcTN
_ 2,33
1 8 6 ^ H
1 Ky n i n g
• Sau TN
2,27
A^^B
1 Cac mM bidu hien
Bieu do 1 Mdc a6 thich ung vdi chuin hi va tien hanh semina cua nh6m TN
trudc va sau Ihiic nghiem
Thai do Kynang Chung
Cac mat bi^u hien
• TnrocTN BSauTN
Bieu do 2 Mdc do thich dng vdi chuin hi va tien hanh semina eiia nhom DC
trudc vd sau thyc nghifm
Dg so sdnh kit qui trade vd sau thyc nghiem d ca hai nhdm thuc nghiem vd ddi chdng, chdng ldi sd dung kigm dmh T - test,
Cl nhom thyc nghiem: Muc do Ihich dng vdi chuan bi vi tiln hanh scmma sau
TN tong cao hon so vdi trade TN,
Trang 8B a n g 2 KiSm dinh T - lest n h 6 m t h y c ngh gra
Paired Samples Test
Pair
1
Pair
2
Pair
3
Nhan thuc ve ehuan bi va
nghiem ( n h d m T N ) - Nhan
Ihde ve chuan b i va tiln
hdnh semina trade tiiuc
nghiem ( n h d m T N )
Thai dd ddi vdi chudn bi va
lign hdnh semina s a u thuc
nghiem ( n h d m T N ) - Thdi
do ddi vol chuan bi vd tien
idnh semina t r a d e thuc
nghiem ( n h d m TN)
Ky ndng chuan bi vd tten
idnh semina sau thuc
nghigm ( n h d m T N ) - K y
nang chuan bi va lien hanh
semina t r a d e thyc nghigm
n h d m T N )
Paired Differences
M e a n
.33333
33333
47619
Deviattoi
24152
36515
40237
Std
Mean
05270
07968
08781
9 9 % Confidence Interval of the Difference Lower
18337
10661
22635
Upper
,48330
56006
72603
t
6-325
4 183
5.423
df
20
20
20
Sig (2-toiled)
000
.000
.000
Ve mdt nkdn tkirc- Gia Iri I = 6.325 vdi mdc y nghTa P [sig (2-iailed)] = 0 000
(muc sai sd nhd han 1%), Vi mdt thai do gid tri t = 4 183 vdi mdc y nghTa P [sig.(2-toiled)] = 0.000 (muc sai sd nhd hon 1%), Vi mat ky ndng Gia tri t = 5.423 vdi muc y
nghTa P [sig,(2-tailed)] = 0.000 (muc sai sd nhd han 1%) Kgt qua ndy cho phep khdng dinh* Muc do thich dng vdi chuan bi va tien hanh semma eua nhdm TN sau khi tien hdnh bien phdp toe dgng su pham da khdc mgi each cd y nghla so vdi tiiidc TN, Dieu niy khdng dmh rang- Bien phap lie ddng su phgm nhim nang cao mdc do thich dng vdi HDHT dugc tiiyc nghidm dd mang lgi hieu qua
0 nhdm ddi chdng: Mdc dd thich ilng vdi HDHT chuin bi vd lien hdnh xemina sau TN ldng han so vdi trade TN, nhung su thay ddi nay khdng ding ke
Trang 9Bing 3 Kilm dinh T - test nh6m doi chdng
Paded Samples Test
Pair
1
Pair
2
Pair
3
Nhdn thdc ve chuan bj
vi tiln hanh xemina
trade thyc nghigm
(nhdm DC) - Nhdn thurc
vl chuin bl vd tiln hdnh
xemina trade thyc
nghiem (nhdm DC)
Thai do ddi vdi chuin
bj vd tien hinh semina
sau thyc nghigm (nhdm
DC) - Thii dg doi vdi
chuin bl vi uln hdnh
xemma ttudc thyc
nghigm (nhdm DC)
K5' nang chuan bi vd
tien hdnh semina sau
thyc n ^ e m (nhdm
DC) - Ky ndng chuin b)
vd tiln hdnh semma
tiiidc thyc nghidm
(nhdm DC)
Paired Differences Mean
,06818
,06818
.06818
Stti
Deviation
.17563
.17563
.17563
Std
Error Mean
.03744
03744
.03744
99%
Confidence Interval of the Difference Lower
- 03783
-.03783
-,03783
Upper
.17420
17420
.17420
t
1.821
1821
1.821
Df
21
21
21
Sig (2-tailed)
,083
.083
.083
Vi mgt nhdn thuc: Gia tii t = 1.821 vdi mdc y nghla P [sig.(2-toiled)] = 0.083 (mdc sai sd ldn han 1%) Vi mat thdi do: gii trj t = 1.821 vdi mdc y nghta P [sig.(2-toiled)] = 0.083 (mdc sai sd idn hon 1%) vi mgi kynang Gid tti t = 1.821 vdi mdc y
nghTa P [sig.(2-tailed)] = 0,083 (mdc sai sd ldn han 1%) Kgt qud ndy cho phgp khing dinh: Mdc dg thich dng vdi chuin bj vi tiln hinh semina cda nhdm DC sau thyc nghigm cd sy khic bigt khong cd ^ nghTa so vdi trade thyc nghi|m Cd thi
Trang 10khdng dinh- Neu khdng tien hdnh bien phdp lie ddng su pham dung din, kip ihdi vd
cd hieu qud thi mdc dg thich ung vdi HDHT cda sinh vign DTTS Tradng Dgi hoc Hong Due diln ra rit chgm
Phan lich ket qud thuc nghiem tie dgng su pham eho Ihay; Mdc do thich ung vdi cdng vigc chuan bj va lien hdnh semina d nhdm TN sau khi thuc nghiem cao hon so vdi trade thyc nghigm va sy thay ddi nay cao han sy thay doi d nhdm DC Nhu vay,
TN da dgt ket qua tdt, bien phip toe dgng su pham da thuc hien Id phu hop, diing din
vd cd higu qud, De gidp sinh vign DTTS ning cao muc dg thich ilng vdi HDHT ein ll chdc tdt hogl ddng su pham cho cac em tham gia
3 K£TLUAN
Cdc bien phap ndng cao mdc dd thich dng vdi HDHT ciia sinh vien DTTS Iradng Dgi hgc Hdng Ddc gdm; Tao mdi irudng hgc tap clio sinh vien; Hudng dan sinh vien lap kl hoach ty hgc, Bdi dudng ky ndng doc sach cho sinh vicn va Td chuc cho sinh vien chuan bi vd lien hdnh xemina Qua ket qui thyc nghiem cho thdy, mdc dg thich img vdi HDHT cua sinh vign DTTS Tnidng Dgi hgc Hdng Ddc duac nang cao nhd bien phdp Idc dgng sy pham Viec hudng dan vi td chdc cho sinh vien thyc hifn cac hinh ddng hgc tgp theo mgt quy trinh khoa hoc sS giup smh vign DTTS thich img nhanh han vdi HDHT d Iradng dai hpc vd dat kit qua hpc tap d muc cao hon,
TAI LIEU THAM KHAO
[1] Dang Th! Lan (2009), Mire dg Ihich img v&i hogl dong hgc mot sd mon hge chung vd mdn dgc kieu tiing nuac ngodi cua sinh vien Inrang Dgi hgc Ngoai Ngir - Dgi hpc Qude gia Hd Ndi, Lugn dn Tiln si Tim ly hgc, Dai hgc Su phgm
Hd Ngi, Hi Ngi
[2] Nguyin Thi Ul Sau (2013), Thich ung v&i hogl dpng hpc tap Iheo tin chi cda sinh vien Bgi kpc Thai Nguyen Ludn an Tiln sT Tdm ly hpc, Hgc vien Khoa hgc Xa
hdi Ha Ndi
[3] Nguyin Thac, Phgm Thdnh Nghi (1995), Tdm ly kpc supham dgi hgc, Nxb Giao
due Ha Ndi,
[4] Traong Thi Thio (2016), Thyc trang mirc do thich img vai hogl ddng hgc lap cua sink viin ddn toe ihiiu sd Iru&ng Dai hoc Hong Due, Tap chi Gido due So
Die biel, thdng 5
[5] Vien Ngdn ngii (2007), Tir diin Tieng Viel Nxb Tu diln Bach khoa, Hi Noi [6] Herbert Spencer (1998), The Principles of Psychology, Vol 1, New York [7] B F Kharlamov (1978), Phdt huy ti'nh lich cue hpc tdp ciia sinh vien nhu the nao
(tap I, il) Nxb, Giao dye Hi Ngi