1. Trang chủ
  2. » Tất cả

Rèn luyện kỹ năng giải bài toán kiểm định giả thiết thống kê cho sinh viên ngành điều dưỡng

9 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 269,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tap chl KHOA HOC & CONG NGHE 152(07 I), 157 165 TH6NC W '''' r '''' ? ^''''''''^^ *^'''' ''''^'''' '''' '''' ^ '''' TOAN KIE M DINH GIA THIET 1 HONG KE CHO SINH VTEN NGANH DIEU DCOKG Lai Van Dinh" Ti umig Dai hoc Dieu Duong Vain D[.]

Trang 1

TH6NC W ' r ' ? ^''^^ *^'-'^' ' ' ^ ' TOAN KIE.M DINH GIA THIET

1 HONG KE CHO SINH VTEN NGANH DIEU DCOKG

Lai Van Dinh"

Ti-umig Dai hoc Dieu Duong Vain Dmh

TOM TAT

irinh b6n bude day hoe a a b S U o ? k"? T l , ' f/ '" " " ' * ™ " '= ^"'' ""' "'" " 1"!

p^™.»o.L^rr":rv^?r::r:::s::;;s'''^-^*'"^"^ DAT VAN OE

Day hoc giai toin la mot tinh hudnit dav hoc

dien hinh giii vai trd quan trong "hang d L

irong chat luong giao due Cac tic gia

Nguyen Ba Kim ([7]) Bin Van Nghi ([16]),

Da„ Tam ([17]) , da nghien ciru rSt sau sic tir

goc do CO so ly Iuan va phuong phap day hoc,

dac biet la lam ro yeu ciu phdi trien ndng lire

mn lot la, gidt ha, loan oho ngira, hoc

Thong ke ngay nay tro nen quan Irong trong

cuoc song thuc tiln cCia xa hoi Thdng ke toin

ap dung nhieu trong cic nganh khoa hoc nhu

khoa hoc miy tinh kmh li hoc, khoa hoc ks

thuat khoa hoc xa hdi, Nginh Y ndi chung

va nganh Dieu Duong noi neng Thdng ki

toin vi nhat la thong ke y hoc khdng the thieu

Irong nghien ciru va giang day chuyen nginh

cham sde sue khoe Kiem dmh gii thiet thdng

ke giup cho cac dilu dirdng s ien sau khi cham

sdc, ghi chep theo doi linh hinh benh nhan eo

Ihe dua ra eic ket luin \-e su tiln Irien cua

benh Tir do ur s'?,n cho bic sT ihay ddi

phuong phap dieu tn cho phil hop de ning

cao hieu qua dieu tn thuc hien s lenh cua

ngirdi dieu duong Doi vcVi sinh s-ien (SVl o

bic Dai hoc nhat la cac mrong khdng chuseii

nginh Toan thdi gian danh cho \ ice hoe mdn

loan khdng nhieu Ins nhicn ngudi hoc sin

can hieu biel nhung kien Ihuc va cd ks nana

loin hoc cin lliicl du de gulp ho giai qusct eac

hil toin mglhirc ticn nghi nghiep

Ly thu>-et xic suat - thdng ke toin hoc Ii mdn hoc dtroc dua s i o giing das- hau nhir d tat ca cac trudng Dai hoc Cao dang Y tren ca nudc Tus sas viec giang day mdn xac suit - thdng

ke ttong eac trudng s chua Ihco mot phuong phap thdng nhil nao m i chu ylu iheo sd trudng c i nhin s i kmh nghiem ban thin, cic phuong phip giang day hien dai eung chua duoe i p dung rdng rai Kha ning vin dung kien thtrc thdng ke vio linh hudng nghiep vu

> te cdn han che Trong hoc phin xac suit Ihdng ke toin bil loan kicm dmh mdi gia thiel Ihdng ke dong sal Iro quan trong Nghien ctru s iec da) hoc ,\ac suit - Thdng kc

da diroc mdt sd tic gia quan lam nghien cilu lir nhirng khia canh khac nhau Trong dd chimg tdi quan tim tim hilu nhiiug vin d l cd lien quan Irong cdng Irinh sau diy Kill nghien cuu "Day hoc xac suit thing ke d irttdng Y" lac gia Dao Hdng Nam |1 I] da chl

ra mot sd sal lam khi su dung bai loin kilm dinh dua ircn i ice nghiSn cuu mdt sd tai lidu das hoc xic suil Ihdng kd o Iruong Y Ciing se das hoc mdn Xac suit Ihiing kc o hac dai hoc tac gia Trin Van Hoan [5] lap irung nghien eiru ihirc Irang lim hieu nliilng khd khan ddl SOI mdn hoc nas o IriidnE Da'i hoc Lac Hdng

Nghldn cuu ddl moi das hoc ihdm! kd cho SV cic iruong dai hoc >" - Duoc i h e j hmma gan

XC, nghe nghidp lac gia Ngusin Thanh Tuna

Trang 2

va tap trung ren luven k\ nang van dung cho

S\' Y - Dugc

Dang Hiing Thang [15] ban den van de va

dua ra giai phap de nang cao chat lirong giang

dav Xac suat - Thong ke a Viet Nam

Trong [21] tac gia Hoang Nam Hai nghien

cuu phdt Irien ndng hrc cho ngirdi hoc thong

qua day hoc Xdc sudt - Thong ke

Tac gia Bin Thi Huong Thao [13] da tim hieu

van de "Tap luyen cho SV Inrang cao ddng v

te vdn dung xdc sudt - thong ke trong nghien

Clhi khoa hoc" trong do dang bai loan kiem

dinh gia thiet ihong ke chi de cap dircri dang

don gian de SV co the van dung trirc tiep

cong thirc

Dieu dang kru y la a cac cong Irinh Iren va ca

trong mot so giao trinh tai lieu ve Xac suat

-Thong ke ctia Dang Dire Hau [4] Dao Hiru

Ho [6] hau hel cac tac gia cung chi dua vao

mot phuong phap kiem dinh theo test thdng ke

t de van dung Mat khac each thirc trinh ba>

cua cac tac gia chu \ e u la dua ra khai niem va

minh hoa ma chira xa\' dung c]uy trinh giai

loai bai loan kicm dinh

Do vay nguai hoc khong hicu ro each thirc

van dung lirng phuang phap kiem dinh thdng

ke doi vai cac loai bai loan Ih6ng ke da

dang Irong thuc le nghe nghiep cua ho

Thuc lien day va hoc thong ke a Iruong Dai

hoc Dieu dirong cho thav do dac thii cua

nghe nghiep SV can biet each lua chon phoi

hop cac phuang phap kiem dinh de giai quyk

nhirng bai loan thong ke dac Ihu ciia naanh

dieu dirong

\'an de dai ra Ldm the ndo de giup cho SV

gun quyet dirac nhdng kho khdn tren khi

gun hai lodn kiem dinh trong chuyen ngdnh

dieu dirdng'

Trong hai viet nay chiing loi n i p can viec ren

luven ky nang giai bai loan kiim dinh gia

ihiel thong ke img dung trong v hoc va trong

Imh vuc dieu duong noi rieng, nh^m gnip cho

SV nam dirge dac diem va van dung hop ly

cac phuang phap kiem dinh Irong qua trinh

giai mot so loai bai toan thong ke dieu duong

Yte,

NOI DUNG

Co' SO' ly tuan va thirc tien

Si'rc khoe con nguoi ngav cang (rg nen quan trgng trong thoi dai ngay na\' Anh huong cua moi tmong song lam cho siic khoe moi nguoi giam di rat nhieu Viec chain soc sire khoe duoc giao nhiem vu chinh cho nganh Y te Irong do vai tro ciia nguai Dieu dirgng rat quan trgng

De danh gia dugc ket qua cua viec cham soc

va su anh huong ciia moi Inrong song cac nha nghien ciiu dieu duong deu de ra cac lieu chuan cu the Dira tren cac lieu chuan do bang chiing cii khoa hoe qua ghi chep cham soc ma nguoi ta co the ket luan viec cham soc

CO hieu qua hay khong Tir do dira ra cac quyel sach, chien luoc phii hgp nham nang cao hieu qua cham soc sire khoe cgng dong, Nhll cau do dan den viec kiem dmh gia thiet thong kc Iro nen can thiet doi vai can bg dieu duong Y te

Tuy nhien, mot kho khan vai SV hgc nganh dieu duang thuong gap la hing timg trong vice nhan dang va lira chon phuang phap Ihe hien bai toan kiem dmh gia thiet Ihong ke Trong day hgc Xac sual - Th6ng ke cho SV nganh diSu dirang, chimg toi tap trung vao ren

luyen cho SV ba k> nang ca ban dk giai bai

toan kicm dinh gia thic'l thdng ke nhu sau:

Ky ndng I Nhdn dang diing dang bdi loan hem dinh- SV nhan dang, xac duih bai loan

Ihuoc dang kiem djnh ty le hay s6 Irung binh kiem dmh mot phia hay kiem dinh hai phia Dong Ihoi SV xac dinh gia thidt, doi thiel luong ling trong bai toan

Ky ndng 2 • Lira chon phuang phdp ktem dinh phil hap Can cir vao dang bin toan SV lira

chon phuong phap kifim dinh phii

hop Phuong phap kiem dinh theo lesl Ihong ke 1

- Phuang phap kicm dinh iheo khoang tm cay

- Phuong phap kiem dmh theo tan so quan sat

Trang 3

^ 7-2P kiem dmh

theotestthonske-/-f^y " ^ ' V • -np dun, dung ^u-^ tnnh ^:a

'-,-'oank:.n:J:,,,:^,^,^^j^^,^^,^^j^ "

Quv rrinh day hoc ^ a i bai toan kilm dinh

gia thiet thong ke

Btmc I- Trang bi sa cung c l fcien thuc Is thu-slt

lam CO so dd hinh tfianh ks nang cho S\"

Kiem dinh gii thiii ,i s6 Irang binh

Gia su mdi miu diong kd co cic aia m nr-onc

™g la X, X:: x Mdt „eu chuin dat ra /

Ta can kidm tra xem mot quin thi chua miu

thdng kd trdn cd gia m irung binh kidm dmh

phil hgp voi u

i i - Kiem dmh theo test thina ke i

I i-l Phucmg sai DX = c - d a biet

K'=m dmh gia thiet H L J - U doi ihiet

H - u ^ u (hoacH u > u h o a c H u < u ,

Dieu kien X co phan phoi chuan

Tu mau thong ke lajmh \ va gia tri lest rhont

I ia dai

k e t 1 = ^ ^ 1 ^

cr v'n a

ngau nhien man theo quv luit chuan tac

\ 61 muc V nghia a cho truoc ta tra ^la tn

l | a 2 K h o a c tictii o bang phan phoi zru^n

Kei

luan-• Neu tl < H a Z i (hoac : < t / a i t jhi chio

nhan gia thiet H- bac bo 'Ziz ;hie: H

• \'eu I > t i a Z i fhodc t > n a n thi hac

b gia ihiet H chap nhan doi ihiei H

1 ! 2 Phuong sai D \ = c" chua biet

Kiem dinh gia ihiei H Li = u do' '.T.',i-

H u = Li (hoacH u > u hoac H < „

Dieu kiin \ CO phin phoi chuan

Tu mau thons ke ta Iinh \ va sia tn te=r rh-nu

ke I t - —

ngau nhien :•

\'oi muc

I la dai ['c-rT-;

1 [heo quv luat chuin tac

\i a cho truoc ta tra gia f

iin-1 a n o bang phin

Ker j

- \ e i I < o n - : : a 2 i ihoac t < trn- a n thi

H

: I L Z ) •*-cac i > f n - ! a n thi

c b.: z- :h:e: H c^ip Ti^.iT dji tmei H

- K.:e.m jirni 'Sst: ^hcarg tin cav

Neu rhuc—s S3i DX - c* da biet Khoang

C2> s: -.'-•-_^ rinh quan Lhe iheo iieu chuan

- • f 2 i Kei 'uin

- \"e=-; \ Lhiioc "*,hcar.g fn civ chip nhan gia :r e : H b ^ c tvosi,^! :b.ie: H

nhir doi - -.e: H ?ac rc g.i :h-c: H

- I NsL p r j - g sai DX = c" chu.i b'e:

tieu c h a i r

'-r -= hoa;

- e: H tt- :- e: H

: : h j ; c -.he

Ktem dinh gia ihiei

p'-iTi TJ ' \ \ V

i'-:h J-i: A Kr d: :

Kierr d s:^ - ;

H p = p h c i c H

\e ty le

H 2 = r do, II

> p r.cic H p < r

Trang 4

np, > 5 n ( l - p „ ) > 5 : m > 5 n - m > 5

Tu mau thong ke ta tinh f va gia trj test thong

ke i: I = ° — Vn I la dai lirona naau

s / p , ( l - P „ )

nhien Iuan theo quv luat chuan tac,

Vai muc y nghTa a cho truoc la tra gia In

t(ct/'2) (hoac t(a)) a bang phan phoi chuan

Ket luan

- Neu |l| < I(a/2) (hoac |t| < t(a)) thi chap nhan

gia thiet H,i bac bo doi thi^t Hj

-Neu |i| > i(a'2)(hoac llj > 1(H)) lhi bac bo gia

ihiel 11,1 chap nhan doi ihiet IT

Kicm dtnh theo tdn sd quan sdt

Kiem dinh gia ihiel n „ : p - p „ doi ihi^l

Mi p ^ p,,(hoac !l| p > P|, hoac 11, p < p,,)

Dieu kien n du Ion:

np„ > 5 n ( l - p „ ) > 5 m > 5 n - n i > 5

Vol mirc y nghia a cho iruoc ta tra gia In

Iitt.2) (hoac l(ct)) 0 bang phan phoi chuan

linh cac gia In :S|(p,) va S;(pi,) (hoac s,(p„)

hoac s, (p,,) )

v ( p , ) = n p „ - l ( a 2 ) 7 n p , ( l - p ) •

':(P ) = n p + l ( a 2 ) ^ n p , ( l - p , )

hoac s (p ) ^ np„ - i ((/} J n p (I - p„) ho.lc

\ ( p ) - n p „ ^ l ( a ) ^ n p ( 1 - p )

kcl luiin

NC-u m e [ s , ( p „ ) s ^ ( p „ ) ] (hoac

m e ( - c r s , ( p „ ) ] hoac m e [s, ( P „ ) + M ] ) thi

cluip nhan gia Ihiel Hi,, bac bo doi t h i ^ H,

linh chal A

Khong CO linh i.h5i \

Neu m s [ s | ( p , ^ ) s , ( p j ] (hoac

m e ( - c o ; s , ( p „ ) ] hoac m « [ s , (po):+co)) thi chap nhan doi thiet Hi bac bo gia thiet Hu

Kiem dinh theo khodng tm cgy

Kiem dinh gia thiet H o : p = py, doi thi^l H| • p ?i py (hoac H| : p > Pg hoac H, p < p„) Dieu kien n dii Ion

np„ > 5 ; n ( l - p , , ) > 5 m > 5 ; n - n i > 5 , Voi miic y nghTa a cho truac ta tra gia In

I(a 12) (hoac t(a)) o bang phan phoi chuan

Khoang Im cay cho ty' le tieu chuan la

p„-„u,JM:^.,.„„,,s(M^

hoac - M , p „ + t ( a ) ( P 4 ' - P O ) )

-1(a) P (l-Pi,))

Kdt I Uiin

- Neu t thuoc khoang tm cay thi chap nhan gia Ihiet Ho bac bo gia thiet H|

- Neu t khong Ihuoc khoang tin cay thi bac bo gia Ihiet Hu, chap nhan d6i thiet H,,

Kiem dinh theo test thdng ke ^

Kiem dinh gia ihiel i i „ : p ^ p , ^ d6i thi^t

H, , p ^ p ,

Dicu kien- n du ldn;

n p „ > 5 : n ( l - p j > 5 m > 5 n - m > 5 Lap bang ihong ke

Tan so quan s;it(m,| Tan so ticu chuan(Mi)

M-nil-p„)

Tinh gi,i In lesl ihong ke / ;

: _ ( ' " , - M , r

M,

^ 01 nuK V nghia \L cho iruo do lu do d = 2-1 (so

( m , - M , } '

M,

hang Irir 1) la tra gia In / " ( 1 a)

Trang 5

' ^'/f{\:a) thi chap nhan gia thiit

H„ bac bo gia ihi6t H,

- Neu -/ > , : { | a ) rhi j , ^ ^ ^6 gia thiet H,-,

chap nhan d6i ihi^t H,

Btrae 2: T6 chuc SV xas duna qus- trinh aiai

bai loan kiem dmh gia thiit thdng ke

Xuit phat tu cic buoc kiim dmh aia thiit

thong ke la rut ra qus- tnnh glil bai toin

la-HD 1 Xic dmh b i , toin la kiim dmh gia tri

trung binh hay kiem dinh tx Ie, kiim dmh mot

phia hay kiem dmh hai phia {rin Inen kf

nang 1) ' •

HD 2 Dua s ao HD I d i dat gii thiit dii thiit

Iuong ung (rin luven Icy nang I)

HD 3 Chpn phuong phap d i dimg kiim dmh

sac dmh test thong ke kiim dinh sa tinh cac

gia tri tuong irng (rh, Im en In ndng 2)

HB 4 Tra cic gii tn test tuona irna tai cic

bang so (ren lm in ki nang 3)

HD 5 Ket luan bai toin theo yeu ciu d i bii

{rin luyin ki' nang I)

Birde 3: GV thi hien viec s-an dung , u s trinh

tren thong qua s'i du mmh hoa

Biro-c 4 GV 16 chiic SV lusen t i p s i n dung

qus trinh iren bang cich hudng din gii'i

nhung bii lap tuong lu

yi dti vd bdi lap minh hoa

Trong bai \ let chiing toi dua ra cic s i du ihi

hien trong qus trinh buoc das hoc giii bil

loan kiem dmh gii thiit Ihong ke ddi'siii S \ '

Trucmg Dai hoc Dieu duong

Bai toan 1 Trong nghien ctru cau true ona

sinh tmh cua benh nhin so lmh lhi smh lmh

nua chirng tren 50 benh nhan nam \ o lmh the

smh Imh mra chimg so lucmg trung bmh le

bao Sertoli Iren Ihiel dien cil naana la

x±SD,]\.s>:.^\.}4 Biet s6 l u o n g ' l i ' b i o

Senoh tren m,"il OS F cat ngang cua nguoi

li

Iruong h.-nh bmh thuong

X±SD Z"', • -i.O Tac gia kil luan s6

lutrng Ini -J '^inti Ie bao Sertoli trona nahien

cuu hi L liieu so \oi ngudi Iruong thinh

binh I- Ol dd tin cis 90% Birig kien

Ihu has kiem tra Iai kel Iuan Iren

Btro-c 1 Trang bi sa eung co kiin thtrc ly thuset ks nang c a ban cho SV

De giai bil toin n i s chung ta cin din nhung khai mem co ban s i kiim dinh cac buoc kiim dmh gia duet thong ke cic mrcmg hop vi cac phucmg phap kiem dinh gii thiit th6ng ke Biroc 2: To chiic S\" xas- dung qus trinh glil bil loan kiem dinh gii thiit thona ke

HD T Voi gii thiit bii toin cho dti de nhin diay das Ii bai loin kiim dmh gii mi mung binh

do tie aia kel Iuan bii toin li "s6 luong trung

binh te bio Senoli trong nghien ciru bl giam

nhldu so sdi ngudi mrdng thinh binh thucmg" nen dis li bai loan kiim dmh mdt phia HD2 Dat gia thlit Ho ^ = 20.9 : ddl thlit

H,-M<20.9

HD3- Bii toin nas cd hai gia tri SD nhung co mot gii in l i hing s6 nen dis- li dana loan d i blil phucmg sai Ta dimg mdt tr'ong hai phuong phap li test t h i n g ke t hoac khoang

lm cis deu duoe quan irong li thudc ha"i cong thirc ttrang irng

HD4 Vi dd tin cas li 90% ndn ' ( a i ) = / ( 0 1 ) = 1.299

HD5 Kdt luin chip nhan has bic bd gia Ihiit

HG ddl Ihiet H|

Btrde 3 GV ihd hien side s i n dung qus trinh tren thong qua s i du minh hoa

im g,a, CO lhi Dit gia Ihlil H, M = 211.9

doi thlit H, / i < 2 0 9 Dieu kien sd lucrng l i bao Sertoli trdn mdi

US r cat ngang luin Iheo luit chuin -\p dung eong Ihuc

\ Ol dd nn cis 9 0 " ta CO a = 0.1 Ira bang lest

la duac t(O.I) = 1.299

Ta ,his !t!>,(0.1 ( c h i p nhin Hi luc su khac

Sertoli tren mdt GST eit ngang cua nhdm tighten cim thip ban so Iuang li bao Sertoli tren moi OST cat ngang cua ngiroi irtiona Ihanh bmh Ihucmg soi do tin c i \ 90"

Trang 6

Ghi chii: Neu diing khoang tin cay ta tinh

duoc khoang tin cay tieu chuan la

[ 2 0 9 - 1 2 9 9 4 / 7 5 0 : - H » ] - [ 2 0 1 6 5 ; + G o ]

nen x - 1 1 , 9 3 khong thupc khoang tin cay

Ta bac bo gia thiet Ho, chap nhan doi thiet H|

BiTffc 4- GV to chuc SV luyen tap van dung

quy trinh tren bang each huong dan giai

nhtrng bai tap tuang tu

Bai toan 2 Trong nghien cuu: Thay doi nhan

thirc ve dot quy ciia SV Dai hgc Di^u Duong

chinh qui sau can thiep giao due bang cau hoi

dong truoc can thiep tren 53 SV cho ket qua

sau x ± 5 D - 1 2 , l 7 ± 2 0 5 (diem) Mot nghien

ciru nam 2007 ciia Hwang tai Dai Loan cho

ket qua t - 1 4 , 8 (diem) Tae gia ket luan diem

Irung binh cua Hwang cao hon so vdi nghien

cuu ciia minh vai p ^ 0.00Ua ^0.001} Bang

kien thirc loan hoc, hay kiem tra lai k8t luan

tren Bigt /(52;0,00l) =3.261

Birdc 1 Trang bi va ciing c6 ki^n thuc ly

thuyet, ky nang co ban cho SV:

GV cung CO Iai cac buoc kiSm dinh gia thi^I

Ihong ke, cac trudng hop va cac phuang phap

kiem dinh gia ihiei thong ke Cach tra bang

phan phdi chuan va phan phoi Student

Birdc 2, To chirc SV xay dung quy irinh giai

bai loan kiem dinh gia thi^t fh6ng ke

HD 1, Vdi gia Ihiet bai toan cho thi de nhan

thay day la bai toan kiem dinh gia tri trung

binh va day la bai loan kiem dinh mdt phia

H D 2 , Dal gia thiet Ho /^ = 14.8, ddi thiit H,,

.;j<14.8

HD 3 Day la bai toan ehua bi^t phuong sai

Ta dimg mot trong hai phuang phap la tesl

Ihdng ke t hoac khoang tm cay deu dugc

HD 4- Co a - 0 , 0 0 1 nen

/(52.0,001)^3.261

HD 5 Ket luan chAp nhan hav bac bo gia thiet

Hi), doi ihiel H|,

Bmit 3- GV die hien v iec van dung quy Irinh u^n

Ldigicucuihe Dal gia thi6t H^-^ = \4,8: 66i

ihilt H^:/.i<\4.8

- 7 5 3 = - 9 , 3 4

Dieu kien: Sd diem nhan thiic ciia SV v l dot quy tuan theo luat chu4n

Ap dung cdng thuc

x - f i o r 1 2 , ! 7 - 1 4

t = -s/n —

s 2,05 Vol bac tu do rf = 52; o-= 0,001 tra bang test

t a d u o c / ( 5 2 ; 0 , 0 0 I ) = 3 , 2 6 1

Ta th^y | ; | > / { 5 2 ; 0 , 0 0 l ) chkp nhan H| tiic

sir khac biet cd y nghTa thdng ke Hay di^m

Cliu vdi muc y nghia a = 0,001 Biro'c 4' GV td chiic SV luyen tap van dung quy trinh tren

Bai toan 3, Mot nghien ciju ve danh gia kien thuc tu chain sdc ciia ngudi benh x o gan tai khoa noi tieu hoa benh vien da khoa tinh Nam Dmh tren 110 ngudi benh cho thdy co 68 ngudi benh cd kien thuc tu cham soc kem Trong khi dd tren Viet Nam co 70% ngitdi

benh mac benh xa gan cd kien thiic sai l^m ve

tu cham sdc Vdi dd tin cay 99,9% hay kiem dinh su khac nhau giiia k6t qua nghien ciiu vdi ti lc chung ciia Viet Nam

Bu'dc 1 Trang bi va ciing cd kien thuc ly thuyet, ky nang co ban cho SV' GV ciing c6 Iai cac phirong phap kiem dmh cho ty ie Bii'dc 2 Td chiic SV xay dirng quy trinh giai bai loan kiSm djnh gia thiel thdng ke

HD !• Vdi gia thi^t bai toan cho thi dl nhan thay day la bai toan kigm dinh ty le va day la bai loan kiem dinh hai phia

HD 2: Dat gia thi6t HQ: p = 0,7; doi thiit Hr

P * 0 , 7

HD 3, Cd 4 phuang phap cd thi giai duoc bai toan nay Khi dd ta tinh cac gia tri tirong ling

H D 4 Co Cl-= 0,001 nen / ( 0 , 0 0 0 5 ) - 3 , 2 9 1

HD 5, Ket iuan ch^p nhan hay bac bo gia thiet

Ho, ddl thiet H|,

Buijc i GV the hien viec van dung quy trinh tren

Cach 1, Dimg test thdng ke t Dat gia thidt Hn:p = 0 , 7 ; ddl thiil H , : p ^ 0 , 7 DiSu kien:

Trang 7

Tap chl KHOA HOC Sc CONG NGHE 15210" n

m - 6 S n m 4 2 > 5 : n p , 7 7 : „ ( I p J = 3 3 > 5

cr = 0 0 0 1

tra bang test la duoc

t(0.0005) = 3 2 9 I

.\p dung cong thtrc

O.SIg^O.T —

'imr'""'-'-''

\ a y M < r ( 0 0 0 0 5 ) Chip nhin aia thiit H

-bac bo doi thiet H, Su khic biet khdn» co s

nghia thong ke Ts- le ngtroi cd kiin thue tu

Cham soc kdm cua nhdm nghien cihi ain sdi

l> le neudi 00 kiin thiic tu eham sdc kem

benh xo gan cua \'iet Nam

Cich 2 Dimg tan sd quan sit Dat aia thiet

H , : p = 0 7 ; ddl thiet H - p ^ o 7

Dieu kien

m - 6 8 : n - m = 4 2 > 5 : n p , = 7 7 : n ( l p j 3 3 > 5

Vai 2 = 0,001 tra bang tesl dugc

r(0.0005) = 3.29I

Co s ( p ) , „ p _ , ( „ 2^/np l l - p | 61.18

5:(P:) = np - t ( a 2 ) ^ p ( | - p j 9 2 8 ;

Vis 6 8 £ [ 6 I I 8 9 2 S 2 ] Chip nhin gia thiil

H: bac bo ddi thidt H; Su khic bidl khdng co

> nghia thdng kd Ts Id nguoi co kiin thii"c nr

Cham soc kem cua nhdm nghien cm ain s

IS le ngucri CO kien thuc tu chain soc kem

benh \a gan cua \ i e t Nam

Cach 3 Dung khoang tin c i s Dat aii thiit

H - : p = 0 7 : ddl thlit H.:psi0.7 Didn kidn m - 6!

n p - 7 7 : n ( l - p ) = 33 > 5

= 4 2 > 5 :

Ta f = = 0 6 1 8

no

Of = 0.001 n-a bang r(0.0005) = 3 2 9 I

Co khoang tin cay tim duoc

P - t ( a 2 | lip-(1-P I P - i | a 2 J

- i 0

Kien Ihuc cham soc kem

^lin ihifc cham soc r

56 benh nhanlm.i 6S

= [0.556:0.844]

Vav f e [ 0 5 5 6 0 8 4 4 ] Chip nhan gia ihiit H:,: bac bo d^i thilt H, Su khac biet khdna cd

V nghia thdng ke T> le nguoi cd kiin thiic tu cham soc kem ciia nhdm nghien ciiu ean vdi

benh \ o gan ciia \'iet \ a m

Cach 4 Dimg test thdng ke y; Dat gia ihiit

H p - 0 7 doi thiet H :p^ 0.7

Dieu kien m = 68 n - m = 42 > >

i ( l - p ) = 3 3 ; Lap bang thong ke

So benh nhan tieu chuini'-M.l

Ti'nh gia tn test ihdng ke

_ ( 6 8 - " 7 r (42

- 3 5 0 6

^ o , m u c s nghia « = 0 O 0 I d 6 t u d o 0 - 2 - 1 ta eo aii in ,= , h O O O I , > ^ : r i 0 tJO^-;-7 88

\ " > 2 < r ( l : 0 0 0 1 1 Chap nhan aia I h i e t H bac bo ddi I b i i t H Su khac h,d, IK

-Ihong kd I s Id nguoi CO kidn thtrc tu cham soc kem cua nhom " h ^ n u^ ' i " ' "'""

kien thuc tu cham soc kem benh \ o aan cua \ i e l Nam " ' " " = " ' = " s uu gan s oi t> le nguoi co

^ ^ n ^ " '""' '" ' " ^ ' " "' '"' ^ " " * ^"> "'"' •'^" ^ - S each hutmg din giai nhOng bai

Bai tap lir •-.: lir ( S \ ' Iy luyen tap)

Trang 8

Bai toan 4 Trong nghien cuu cau tnic dng

smh tinh ciia benh nhan \ d tinh the sinh tmh

nira chimg khi do dudng kmh OST(Ong sinh

tinh) iren 50 benh nhan nam vo tinh the sinh

tinh nua chimg ket qua thu duoc la

\-±SD^]4].54±25.75^01 Biit duong kinh

OST nam binh thudng la \&Opm Ket qua

nghien ciiu ket luan dudng kinh OST ciia

nhdm nghien cuu thap hon dudng kinh OST

binh thudng vdi do tin cay 90% Bang kien

Ihuc khoa hoc hay kiem tra lai ket luan tren

Bai toan 5 Trong nghien ciju' NhUng thay

doi ve kien thirc phdng benh tay chan mieng

cua cac ba me cd con dudi 2 tuoi tai xa Tam

Thanh-Vu Ban-Nam Dinh sau can Ihiep

Iruyen thdng ve benh chan tay mieng d Ire em

ihu dugc ket qua khao sat tren 194 phu nir thi

sd diem trung blnh la 25.1+ l,8(diim) Biel

sd diem trung binh trudc can thiep la 5.4 Tac

gia ket luan tang cd y nghTa thdng ke diem

Irung binh kien thirc phdng benh tay chan

mieng ngay sau can ihiep vdi p<0.0I(a<O.OI)

Bang cach diing cdng thiic test-I kiem dinh

thdng ke ha> kiem tra lai ket qua tren

Bai toan 6 Mdt khao sal viec lam cua SV dai

hpc sau tdt nghiep trudng Dai hoc Diiu

Dudng Nam Dinh tren 3 12 SV sau tdt nghiep

ra trudng cd ket qua sd SV cd viec lam ngay

Irong I thang la 112, co viec lam sau 4 thang

la 299 Theo Bd tnrdng Bo GD-DT cho biit

da sd cac trirdng deu cd t\' le SV cd viec lam

sau 1 nam ra trirdng dat d mirc khoang 60%,

Voi dp !in cay 95%, hay kiem tra ty le viec

lam cua SV irudng Dai hoc Diiu Duong sau

4 Ihang so vdi ty le viec lam ciia SV ma bo

Giao due cdng bo

Bai toan 7 Mdt mau gdm 35 ngudi bi K liin

het luyen co di can ham luong trung binh

PSA la 16mg/'mL s = 1.4mg,'ml, Dimg PSA

lam chat chi diem co di can Irong benh K lien

lict luyen Vdi benh K tiin liet tuyin chua di

can ham luong PSA la 12mg/ml Hdi PSA cd

the lam cho chSt chi diim cd di can benh K

lien liet luyen diroc khdng Vdi a =0 05

Bai toan 8 Mdt mau 10 benh nhan s6t ret Do

dudng huvet truns binh la 0,8g/l H^ng sd

sinh hoc tren dudng huyet la

H ± o = 1 ± 0.2g/l, do tin cay 9 5 % Hdi benh sdt ret cd lam giam dudng huvet khdng Bai toan 9 Tai mdt dja phuong ty- le bi benh s6t ret la 20% Diing DDT d i diet muoi Kham IOO ngirdi thay cd 13 ngirdi bi sdt ret Hdi DDT CO lam giam tv !e benh nay khdng

U y a = 0 0 5 Bai toan 10 Cd khoang 12% ngudi bi huyet khdi khi thav' van tim trong vdng 4 nam Ngudi ta mudn xem xet su dung Aspirin co anh hudng tdi bi huyet khoi khi thay van tim hay khdng Chon ngau nhien 200 benh nhan sau khi thay van tim, cho diing lOOmg Aspirin/ngay sudt 4 nam lien, theo doi thay

cd 22 trudng hop bi huyet khdi Vdi do tin cay 9 5 % hay dira ra ket luan su anh hudng ciia Aspirin

KET LUAN Til thuc te day va hoc Xac sua! - Thdng ke 6 trudng Dai hoc Dieu dirdng chiing toi da

nghien ciiu va giai quvet van dc ren luyen ky ndng giai bdi todn kiem dinh ihdng ke cho

SV, thong qua giiii phap bao gom'

- Chil dong giang day cho SV nhieu phuung phdp ktem dinh gtd thiel ihong ke;

- Phdn lich ddc diem vd moi quan he giifa cdc kien thi'rc - ddc hiet la giii'a cdc phuang phdp kiem dinh thong ke de SV btet cdch lua chon, phoi hcrp sd dung kht gidi bdi tdp

- Xdy dirng, chon loc nhirng vi du, bdi todn kiem dinh gia duel fhong ke Irong thut le 'chuyen ngdnh dteu dirdng

- Xdy dung quy trinh ban buac day In link phirang phdp vd mtnh hoa nhimg linh hudng luyen lap ky ndng gidi bdi todn ktem djnh gid Ihiel thong ke cho SV

Nhung ket qua budc dau cho (h^y giai phap de xuat cd tinh kha thi va hieu qua kha tot, gop phan nang cao chat luong day va hgc Xac suit -Thong kc cho SV tmdng Dai hgc diiu dirong

TAI ITEU THAM KHAO

I To Van Ban (2015) Thirc irang vd giai phdp cho giang day thong ke a khu vtrc phia bdc hi?n

Trang 9

152107 1)15 '|"v 01 isdo ndi dung va phirong phap gians das

Ihong ke loan hoc i- & ^

; ":=' i ' " Dmh (20151 .\dc sail thong ke

luu hanh noi boi

3 Trin_ V^an Due (2015,, \f6i sd bai todn td hap

xac suat Tap chi Toan hoc luoi tre s6 462

4 Dang Due Haụ Nguvin Mmh Hans (2008)

Xac suat thdng kẹ Nxb Giao due

5 Tran Van Hoan_(20l4) Thirc trang dav hoc

mon xac sudt - ihdng ke so ^a, chudn đu ra a

iruang dai hoc Lac Hong Tap chi khoa hoc Dai

hoc su pham TP Ho Chi Mmh s6 59

6 Dao Him Hi (2007) Xdc siidi ihdng ke Nha

xuat ban Dai hoc Quoc Ha \ 6 i

7 Nguvin Ba Kim (2015, Phuang phdp dâ hoc

mon Toan Nxb DHSP

8 Tran Van Long NgujIn Thi Quvnh Huona

tinh irang tdng huyet dp a ngudi cao tud, hiaen

Vu Ban - Vam Dmh, Noi san nghien cuu khoa hoc

Tnrcmg Dai hoc Dieu dudng Nam Dinh

y Dao H6ng Hai (2015j, Xghien cihi cdu true dng

chung Dac san nghien cmi va dao tao Diiu dumiii

Trucmg Dai hoc Dieu ducmg Nam Dmh

10 Ngo Huv Hoang (2015j, Thấ đi xi nhdn

thue đl quy cua SV Dai hoc Diiu Duang chinh

qiiy sau can ihiep gido duẹ Dac san nghien cuu va

dao lao Dieu ducmg Trirone Dai hoc Diiu dumi"

Nam Dmh

11 Dao Hong Nam (2014) Dm hoc vdc sudi ihdng

ke a mrang Dai hoc ) Luan an lien si khoa hoc aiao

due, Tnrong Dai hoc su pham TP H6 Chi Mmh

12 Quach Thi Sen 12015A Mdt sd g,ai phdp ndng

Tnrmig Dai hoc Duac Hd \6i Tap chi Khoa hoc

Giao duẹ s i 116

13, Bui Thi Huong Thao (2014) Tdp luyin cho SV tnrang cao đng y le \dn dung xdc sual - ihdng ke trong nghien cieu klioa hoc Luan van Thac si khoa

hoc giao duẹ Tniong DHSP - Dai hoc Thai Nguven

14 Dang Hung "Hiana (2008) .\dc sudt \ di ihítr^rdng chimg klioaii Tap ch) Toan hoc nJoi trẹ s6 367

15 Darig Hung Thang (2015) Thong ke voMccdm

ndng cao didt luang giang day Hoi ihao noi duna

va phucmg phap aiang dav thing ke loan hoc

i6 BUI XW Nghi (20081 Phuang phdp dâ hoc idumg mil Jung cu lhe mon Todn Nxb DHSP

1 Dao Tam Tnrong Thi Dung (2013), Tao nhu cdu hen trong i a ca hoi di hoc sinh phdt hien cdc kien ihífc mọ Tap chi khoa hoc Truons DHSP Ha

NOL \'O1 58 No 4

18 Nguven Anh Tuan, Lai \'an Dmh (2015), Day hoc g,a, ba, loan I,m khoang ịdv.h lir moi diem den mdt phdng hdng plucang phdp ihi lich cho hoc smh tnmg hoc pho ihdng" Tap chi Khoa hoc

Trucmg DHSP Ha Ngị so SA - Volume 60

19 Nguyen Thanh Tuna (2015) Day hoc xdc nidi

- Ihong ke cho SV ngdnh 1 - Dmxc theo hudng phdn hua phu hap iinig chuyen ngdnh Tap chi

Giao due so 365

20 Naaven Thanh Timg (2015) Da\ hoc Thdng

ke nhdm gnip SI ngluin cmi Yhoc đ, vd, Sl 1 -Duac Bao cao khoa hoc lai Hoi nghi loan quic

lan Ihu V-Xac sual - Thong ke nshien ciiụ una dung va giang da> " Da Nina

22 Hoang Nam Hai (2015) Day hoe ihdng ke toan Iheo dmh hudng phdi inen ndng hrc Hoi

Ihao noi dung va phuong phap giana dav ihong ke loan hoc

SUMMARY

PRACTISE SKILLS OF SOLVING THE PROBLEM OF STATISTICAL

HYPOTHESIS TESTLNG FOR STLT)E\T NXRSES "*' ^ " ^ ' " " ^ ^

In Ihis aniclẹ lhe solution of praciicina skills of solving lhe slaiisiical hvpoihesis tesiir

fornurs.ng sludenls is presenled, m uhich basic skills are clanfied for s'ludems lo iden

and shov^ properlv ihe siausiical hvpothesis testing melhods This amele also sunnhes

leachmg pmcess lo solve lhe slaiisiical hypothesis leslma problem in nursm^- profession

improve he It^inmaquahlv for medical siaff who lake care of peoplés heahh

Hay nhdnba: :-02 20l6 2<^ayphanb,en 155 2016 ^gay diaelđng 15 62016

Phan bien khoa hoc: TS Tran J let C uang - Tnr,j„g Da, hoc Supham -DHTV

1 tiJ \lirs,i,g

lg problem Iif} select

a four-step

in order lo

Ngày đăng: 12/11/2022, 15:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm