Tap chl KHOA HOC & CONG NGHE 152(07 I), 157 165 TH6NC W '''' r '''' ? ^''''''''^^ *^'''' ''''^'''' '''' '''' ^ '''' TOAN KIE M DINH GIA THIET 1 HONG KE CHO SINH VTEN NGANH DIEU DCOKG Lai Van Dinh" Ti umig Dai hoc Dieu Duong Vain D[.]
Trang 1TH6NC W ' r ' ? ^''^^ *^'-'^' ' ' ^ ' TOAN KIE.M DINH GIA THIET
1 HONG KE CHO SINH VTEN NGANH DIEU DCOKG
Lai Van Dinh"
Ti-umig Dai hoc Dieu Duong Vain Dmh
TOM TAT
irinh b6n bude day hoe a a b S U o ? k"? T l , ' f/ '" " " ' * ™ " '= ^"'' ""' "'" " 1"!
p^™.»o.L^rr":rv^?r::r:::s::;;s'''^-^*'"^"^ DAT VAN OE
Day hoc giai toin la mot tinh hudnit dav hoc
dien hinh giii vai trd quan trong "hang d L
irong chat luong giao due Cac tic gia
Nguyen Ba Kim ([7]) Bin Van Nghi ([16]),
Da„ Tam ([17]) , da nghien ciru rSt sau sic tir
goc do CO so ly Iuan va phuong phap day hoc,
dac biet la lam ro yeu ciu phdi trien ndng lire
mn lot la, gidt ha, loan oho ngira, hoc
Thong ke ngay nay tro nen quan Irong trong
cuoc song thuc tiln cCia xa hoi Thdng ke toin
ap dung nhieu trong cic nganh khoa hoc nhu
khoa hoc miy tinh kmh li hoc, khoa hoc ks
thuat khoa hoc xa hdi, Nginh Y ndi chung
va nganh Dieu Duong noi neng Thdng ki
toin vi nhat la thong ke y hoc khdng the thieu
Irong nghien ciru va giang day chuyen nginh
cham sde sue khoe Kiem dmh gii thiet thdng
ke giup cho cac dilu dirdng s ien sau khi cham
sdc, ghi chep theo doi linh hinh benh nhan eo
Ihe dua ra eic ket luin \-e su tiln Irien cua
benh Tir do ur s'?,n cho bic sT ihay ddi
phuong phap dieu tn cho phil hop de ning
cao hieu qua dieu tn thuc hien s lenh cua
ngirdi dieu duong Doi vcVi sinh s-ien (SVl o
bic Dai hoc nhat la cac mrong khdng chuseii
nginh Toan thdi gian danh cho \ ice hoe mdn
loan khdng nhieu Ins nhicn ngudi hoc sin
can hieu biel nhung kien Ihuc va cd ks nana
loin hoc cin lliicl du de gulp ho giai qusct eac
hil toin mglhirc ticn nghi nghiep
Ly thu>-et xic suat - thdng ke toin hoc Ii mdn hoc dtroc dua s i o giing das- hau nhir d tat ca cac trudng Dai hoc Cao dang Y tren ca nudc Tus sas viec giang day mdn xac suit - thdng
ke ttong eac trudng s chua Ihco mot phuong phap thdng nhil nao m i chu ylu iheo sd trudng c i nhin s i kmh nghiem ban thin, cic phuong phip giang day hien dai eung chua duoe i p dung rdng rai Kha ning vin dung kien thtrc thdng ke vio linh hudng nghiep vu
> te cdn han che Trong hoc phin xac suit Ihdng ke toin bil loan kicm dmh mdi gia thiel Ihdng ke dong sal Iro quan trong Nghien ctru s iec da) hoc ,\ac suit - Thdng kc
da diroc mdt sd tic gia quan lam nghien cilu lir nhirng khia canh khac nhau Trong dd chimg tdi quan tim tim hilu nhiiug vin d l cd lien quan Irong cdng Irinh sau diy Kill nghien cuu "Day hoc xac suit thing ke d irttdng Y" lac gia Dao Hdng Nam |1 I] da chl
ra mot sd sal lam khi su dung bai loin kilm dinh dua ircn i ice nghiSn cuu mdt sd tai lidu das hoc xic suil Ihdng kd o Iruong Y Ciing se das hoc mdn Xac suit Ihiing kc o hac dai hoc tac gia Trin Van Hoan [5] lap irung nghien eiru ihirc Irang lim hieu nliilng khd khan ddl SOI mdn hoc nas o IriidnE Da'i hoc Lac Hdng
Nghldn cuu ddl moi das hoc ihdm! kd cho SV cic iruong dai hoc >" - Duoc i h e j hmma gan
XC, nghe nghidp lac gia Ngusin Thanh Tuna
Trang 2va tap trung ren luven k\ nang van dung cho
S\' Y - Dugc
Dang Hiing Thang [15] ban den van de va
dua ra giai phap de nang cao chat lirong giang
dav Xac suat - Thong ke a Viet Nam
Trong [21] tac gia Hoang Nam Hai nghien
cuu phdt Irien ndng hrc cho ngirdi hoc thong
qua day hoc Xdc sudt - Thong ke
Tac gia Bin Thi Huong Thao [13] da tim hieu
van de "Tap luyen cho SV Inrang cao ddng v
te vdn dung xdc sudt - thong ke trong nghien
Clhi khoa hoc" trong do dang bai loan kiem
dinh gia thiet ihong ke chi de cap dircri dang
don gian de SV co the van dung trirc tiep
cong thirc
Dieu dang kru y la a cac cong Irinh Iren va ca
trong mot so giao trinh tai lieu ve Xac suat
-Thong ke ctia Dang Dire Hau [4] Dao Hiru
Ho [6] hau hel cac tac gia cung chi dua vao
mot phuong phap kiem dinh theo test thdng ke
t de van dung Mat khac each thirc trinh ba>
cua cac tac gia chu \ e u la dua ra khai niem va
minh hoa ma chira xa\' dung c]uy trinh giai
loai bai loan kicm dinh
Do vay nguai hoc khong hicu ro each thirc
van dung lirng phuang phap kiem dinh thdng
ke doi vai cac loai bai loan Ih6ng ke da
dang Irong thuc le nghe nghiep cua ho
Thuc lien day va hoc thong ke a Iruong Dai
hoc Dieu dirong cho thav do dac thii cua
nghe nghiep SV can biet each lua chon phoi
hop cac phuang phap kiem dinh de giai quyk
nhirng bai loan thong ke dac Ihu ciia naanh
dieu dirong
\'an de dai ra Ldm the ndo de giup cho SV
gun quyet dirac nhdng kho khdn tren khi
gun hai lodn kiem dinh trong chuyen ngdnh
dieu dirdng'
Trong hai viet nay chiing loi n i p can viec ren
luven ky nang giai bai loan kiim dinh gia
ihiel thong ke img dung trong v hoc va trong
Imh vuc dieu duong noi rieng, nh^m gnip cho
SV nam dirge dac diem va van dung hop ly
cac phuang phap kiem dinh Irong qua trinh
giai mot so loai bai toan thong ke dieu duong
Yte,
NOI DUNG
Co' SO' ly tuan va thirc tien
Si'rc khoe con nguoi ngav cang (rg nen quan trgng trong thoi dai ngay na\' Anh huong cua moi tmong song lam cho siic khoe moi nguoi giam di rat nhieu Viec chain soc sire khoe duoc giao nhiem vu chinh cho nganh Y te Irong do vai tro ciia nguai Dieu dirgng rat quan trgng
De danh gia dugc ket qua cua viec cham soc
va su anh huong ciia moi Inrong song cac nha nghien ciiu dieu duong deu de ra cac lieu chuan cu the Dira tren cac lieu chuan do bang chiing cii khoa hoe qua ghi chep cham soc ma nguoi ta co the ket luan viec cham soc
CO hieu qua hay khong Tir do dira ra cac quyel sach, chien luoc phii hgp nham nang cao hieu qua cham soc sire khoe cgng dong, Nhll cau do dan den viec kiem dmh gia thiet thong kc Iro nen can thiet doi vai can bg dieu duong Y te
Tuy nhien, mot kho khan vai SV hgc nganh dieu duang thuong gap la hing timg trong vice nhan dang va lira chon phuang phap Ihe hien bai toan kiem dmh gia thiet Ihong ke Trong day hgc Xac sual - Th6ng ke cho SV nganh diSu dirang, chimg toi tap trung vao ren
luyen cho SV ba k> nang ca ban dk giai bai
toan kicm dinh gia thic'l thdng ke nhu sau:
Ky ndng I Nhdn dang diing dang bdi loan hem dinh- SV nhan dang, xac duih bai loan
Ihuoc dang kiem djnh ty le hay s6 Irung binh kiem dmh mot phia hay kiem dinh hai phia Dong Ihoi SV xac dinh gia thidt, doi thiel luong ling trong bai toan
Ky ndng 2 • Lira chon phuang phdp ktem dinh phil hap Can cir vao dang bin toan SV lira
chon phuong phap kifim dinh phii
hop Phuong phap kiem dinh theo lesl Ihong ke 1
- Phuang phap kicm dinh iheo khoang tm cay
- Phuong phap kiem dmh theo tan so quan sat
Trang 3^ 7-2P kiem dmh
theotestthonske-/-f^y " ^ ' V • -np dun, dung ^u-^ tnnh ^:a
'-,-'oank:.n:J:,,,:^,^,^^j^^,^^,^^j^ "
Quv rrinh day hoc ^ a i bai toan kilm dinh
gia thiet thong ke
Btmc I- Trang bi sa cung c l fcien thuc Is thu-slt
lam CO so dd hinh tfianh ks nang cho S\"
Kiem dinh gii thiii ,i s6 Irang binh
Gia su mdi miu diong kd co cic aia m nr-onc
™g la X, X:: x Mdt „eu chuin dat ra /
Ta can kidm tra xem mot quin thi chua miu
thdng kd trdn cd gia m irung binh kidm dmh
phil hgp voi u
i i - Kiem dmh theo test thina ke i
I i-l Phucmg sai DX = c - d a biet
K'=m dmh gia thiet H L J - U doi ihiet
H - u ^ u (hoacH u > u h o a c H u < u ,
Dieu kien X co phan phoi chuan
Tu mau thong ke lajmh \ va gia tri lest rhont
I ia dai
k e t 1 = ^ ^ 1 ^
cr v'n a
ngau nhien man theo quv luit chuan tac
\ 61 muc V nghia a cho truoc ta tra ^la tn
l | a 2 K h o a c tictii o bang phan phoi zru^n
Kei
luan-• Neu tl < H a Z i (hoac : < t / a i t jhi chio
nhan gia thiet H- bac bo 'Ziz ;hie: H
• \'eu I > t i a Z i fhodc t > n a n thi hac
b gia ihiet H chap nhan doi ihiei H
1 ! 2 Phuong sai D \ = c" chua biet
Kiem dinh gia ihiei H Li = u do' '.T.',i-
H u = Li (hoacH u > u hoac H < „
Dieu kiin \ CO phin phoi chuan
Tu mau thons ke ta Iinh \ va sia tn te=r rh-nu
ke I t - —
ngau nhien :•
\'oi muc
I la dai ['c-rT-;
1 [heo quv luat chuin tac
\i a cho truoc ta tra gia f
iin-1 a n o bang phin
Ker j
- \ e i I < o n - : : a 2 i ihoac t < trn- a n thi
H
: I L Z ) •*-cac i > f n - ! a n thi
c b.: z- :h:e: H c^ip Ti^.iT dji tmei H
- K.:e.m jirni 'Sst: ^hcarg tin cav
Neu rhuc—s S3i DX - c* da biet Khoang
C2> s: -.'-•-_^ rinh quan Lhe iheo iieu chuan
- • f 2 i Kei 'uin
- \"e=-; \ Lhiioc "*,hcar.g fn civ chip nhan gia :r e : H b ^ c tvosi,^! :b.ie: H
nhir doi - -.e: H ?ac rc g.i :h-c: H
- I NsL p r j - g sai DX = c" chu.i b'e:
tieu c h a i r
'-r -= hoa;
- e: H tt- :- e: H
: : h j ; c -.he
Ktem dinh gia ihiei
p'-iTi TJ ' \ \ V
i'-:h J-i: A Kr d: :
Kierr d s:^ - ;
H p = p h c i c H
\e ty le
H 2 = r do, II
> p r.cic H p < r
Trang 4np, > 5 n ( l - p „ ) > 5 : m > 5 n - m > 5
Tu mau thong ke ta tinh f va gia trj test thong
ke i: I = ° — Vn I la dai lirona naau
s / p , ( l - P „ )
nhien Iuan theo quv luat chuan tac,
Vai muc y nghTa a cho truoc la tra gia In
t(ct/'2) (hoac t(a)) a bang phan phoi chuan
Ket luan
- Neu |l| < I(a/2) (hoac |t| < t(a)) thi chap nhan
gia thiet H,i bac bo doi thi^t Hj
-Neu |i| > i(a'2)(hoac llj > 1(H)) lhi bac bo gia
ihiel 11,1 chap nhan doi ihiet IT
Kicm dtnh theo tdn sd quan sdt
Kiem dinh gia ihiel n „ : p - p „ doi ihi^l
Mi p ^ p,,(hoac !l| p > P|, hoac 11, p < p,,)
Dieu kien n du Ion:
np„ > 5 n ( l - p „ ) > 5 m > 5 n - n i > 5
Vol mirc y nghia a cho iruoc ta tra gia In
Iitt.2) (hoac l(ct)) 0 bang phan phoi chuan
linh cac gia In :S|(p,) va S;(pi,) (hoac s,(p„)
hoac s, (p,,) )
v ( p , ) = n p „ - l ( a 2 ) 7 n p , ( l - p ) •
':(P ) = n p + l ( a 2 ) ^ n p , ( l - p , )
hoac s (p ) ^ np„ - i ((/} J n p (I - p„) ho.lc
\ ( p ) - n p „ ^ l ( a ) ^ n p ( 1 - p )
kcl luiin
NC-u m e [ s , ( p „ ) s ^ ( p „ ) ] (hoac
m e ( - c r s , ( p „ ) ] hoac m e [s, ( P „ ) + M ] ) thi
cluip nhan gia Ihiel Hi,, bac bo doi t h i ^ H,
linh chal A
Khong CO linh i.h5i \
Neu m s [ s | ( p , ^ ) s , ( p j ] (hoac
m e ( - c o ; s , ( p „ ) ] hoac m « [ s , (po):+co)) thi chap nhan doi thiet Hi bac bo gia thiet Hu
Kiem dinh theo khodng tm cgy
Kiem dinh gia thiet H o : p = py, doi thi^l H| • p ?i py (hoac H| : p > Pg hoac H, p < p„) Dieu kien n dii Ion
np„ > 5 ; n ( l - p , , ) > 5 m > 5 ; n - n i > 5 , Voi miic y nghTa a cho truac ta tra gia In
I(a 12) (hoac t(a)) o bang phan phoi chuan
Khoang Im cay cho ty' le tieu chuan la
p„-„u,JM:^.,.„„,,s(M^
hoac - M , p „ + t ( a ) ( P 4 ' - P O ) )
-1(a) P (l-Pi,))
Kdt I Uiin
- Neu t thuoc khoang tm cay thi chap nhan gia Ihiet Ho bac bo gia thiet H|
- Neu t khong Ihuoc khoang tin cay thi bac bo gia Ihiet Hu, chap nhan d6i thiet H,,
Kiem dinh theo test thdng ke ^
Kiem dinh gia ihiel i i „ : p ^ p , ^ d6i thi^t
H, , p ^ p ,
Dicu kien- n du ldn;
n p „ > 5 : n ( l - p j > 5 m > 5 n - m > 5 Lap bang ihong ke
Tan so quan s;it(m,| Tan so ticu chuan(Mi)
M-nil-p„)
Tinh gi,i In lesl ihong ke / ;
: _ ( ' " , - M , r
M,
^ 01 nuK V nghia \L cho iruo do lu do d = 2-1 (so
( m , - M , } '
M,
hang Irir 1) la tra gia In / " ( 1 a)
Trang 5' ^'/f{\:a) thi chap nhan gia thiit
H„ bac bo gia ihi6t H,
- Neu -/ > , : { | a ) rhi j , ^ ^ ^6 gia thiet H,-,
chap nhan d6i ihi^t H,
Btrae 2: T6 chuc SV xas duna qus- trinh aiai
bai loan kiem dmh gia thiit thdng ke
Xuit phat tu cic buoc kiim dmh aia thiit
thong ke la rut ra qus- tnnh glil bai toin
la-HD 1 Xic dmh b i , toin la kiim dmh gia tri
trung binh hay kiem dinh tx Ie, kiim dmh mot
phia hay kiem dmh hai phia {rin Inen kf
nang 1) ' •
HD 2 Dua s ao HD I d i dat gii thiit dii thiit
Iuong ung (rin luven Icy nang I)
HD 3 Chpn phuong phap d i dimg kiim dmh
sac dmh test thong ke kiim dinh sa tinh cac
gia tri tuong irng (rh, Im en In ndng 2)
HB 4 Tra cic gii tn test tuona irna tai cic
bang so (ren lm in ki nang 3)
HD 5 Ket luan bai toin theo yeu ciu d i bii
{rin luyin ki' nang I)
Birde 3: GV thi hien viec s-an dung , u s trinh
tren thong qua s'i du mmh hoa
Biro-c 4 GV 16 chiic SV lusen t i p s i n dung
qus trinh iren bang cich hudng din gii'i
nhung bii lap tuong lu
yi dti vd bdi lap minh hoa
Trong bai \ let chiing toi dua ra cic s i du ihi
hien trong qus trinh buoc das hoc giii bil
loan kiem dmh gii thiit Ihong ke ddi'siii S \ '
Trucmg Dai hoc Dieu duong
Bai toan 1 Trong nghien ctru cau true ona
sinh tmh cua benh nhin so lmh lhi smh lmh
nua chirng tren 50 benh nhan nam \ o lmh the
smh Imh mra chimg so lucmg trung bmh le
bao Sertoli Iren Ihiel dien cil naana la
x±SD,]\.s>:.^\.}4 Biet s6 l u o n g ' l i ' b i o
Senoh tren m,"il OS F cat ngang cua nguoi
li
Iruong h.-nh bmh thuong
X±SD Z"', • -i.O Tac gia kil luan s6
lutrng Ini -J '^inti Ie bao Sertoli trona nahien
cuu hi L liieu so \oi ngudi Iruong thinh
binh I- Ol dd tin cis 90% Birig kien
Ihu has kiem tra Iai kel Iuan Iren
Btro-c 1 Trang bi sa eung co kiin thtrc ly thuset ks nang c a ban cho SV
De giai bil toin n i s chung ta cin din nhung khai mem co ban s i kiim dinh cac buoc kiim dmh gia duet thong ke cic mrcmg hop vi cac phucmg phap kiem dinh gii thiit th6ng ke Biroc 2: To chiic S\" xas- dung qus trinh glil bil loan kiem dinh gii thiit thona ke
HD T Voi gii thiit bii toin cho dti de nhin diay das Ii bai loin kiim dmh gii mi mung binh
do tie aia kel Iuan bii toin li "s6 luong trung
binh te bio Senoli trong nghien ciru bl giam
nhldu so sdi ngudi mrdng thinh binh thucmg" nen dis li bai loan kiim dmh mdt phia HD2 Dat gia thlit Ho ^ = 20.9 : ddl thlit
H,-M<20.9
HD3- Bii toin nas cd hai gia tri SD nhung co mot gii in l i hing s6 nen dis- li dana loan d i blil phucmg sai Ta dimg mdt tr'ong hai phuong phap li test t h i n g ke t hoac khoang
lm cis deu duoe quan irong li thudc ha"i cong thirc ttrang irng
HD4 Vi dd tin cas li 90% ndn ' ( a i ) = / ( 0 1 ) = 1.299
HD5 Kdt luin chip nhan has bic bd gia Ihiit
HG ddl Ihiet H|
Btrde 3 GV ihd hien side s i n dung qus trinh tren thong qua s i du minh hoa
im g,a, CO lhi Dit gia Ihlil H, M = 211.9
doi thlit H, / i < 2 0 9 Dieu kien sd lucrng l i bao Sertoli trdn mdi
US r cat ngang luin Iheo luit chuin -\p dung eong Ihuc
\ Ol dd nn cis 9 0 " ta CO a = 0.1 Ira bang lest
la duac t(O.I) = 1.299
Ta ,his !t!>,(0.1 ( c h i p nhin Hi luc su khac
Sertoli tren mdt GST eit ngang cua nhdm tighten cim thip ban so Iuang li bao Sertoli tren moi OST cat ngang cua ngiroi irtiona Ihanh bmh Ihucmg soi do tin c i \ 90"
Trang 6Ghi chii: Neu diing khoang tin cay ta tinh
duoc khoang tin cay tieu chuan la
[ 2 0 9 - 1 2 9 9 4 / 7 5 0 : - H » ] - [ 2 0 1 6 5 ; + G o ]
nen x - 1 1 , 9 3 khong thupc khoang tin cay
Ta bac bo gia thiet Ho, chap nhan doi thiet H|
BiTffc 4- GV to chuc SV luyen tap van dung
quy trinh tren bang each huong dan giai
nhtrng bai tap tuang tu
Bai toan 2 Trong nghien cuu: Thay doi nhan
thirc ve dot quy ciia SV Dai hgc Di^u Duong
chinh qui sau can thiep giao due bang cau hoi
dong truoc can thiep tren 53 SV cho ket qua
sau x ± 5 D - 1 2 , l 7 ± 2 0 5 (diem) Mot nghien
ciru nam 2007 ciia Hwang tai Dai Loan cho
ket qua t - 1 4 , 8 (diem) Tae gia ket luan diem
Irung binh cua Hwang cao hon so vdi nghien
cuu ciia minh vai p ^ 0.00Ua ^0.001} Bang
kien thirc loan hoc, hay kiem tra lai k8t luan
tren Bigt /(52;0,00l) =3.261
Birdc 1 Trang bi va ciing c6 ki^n thuc ly
thuyet, ky nang co ban cho SV:
GV cung CO Iai cac buoc kiSm dinh gia thi^I
Ihong ke, cac trudng hop va cac phuang phap
kiem dinh gia ihiei thong ke Cach tra bang
phan phdi chuan va phan phoi Student
Birdc 2, To chirc SV xay dung quy irinh giai
bai loan kiem dinh gia thi^t fh6ng ke
HD 1, Vdi gia Ihiet bai toan cho thi de nhan
thay day la bai toan kiem dinh gia tri trung
binh va day la bai loan kiem dinh mdt phia
H D 2 , Dal gia thiet Ho /^ = 14.8, ddi thiit H,,
.;j<14.8
HD 3 Day la bai toan ehua bi^t phuong sai
Ta dimg mot trong hai phuang phap la tesl
Ihdng ke t hoac khoang tm cay deu dugc
HD 4- Co a - 0 , 0 0 1 nen
/(52.0,001)^3.261
HD 5 Ket luan chAp nhan hav bac bo gia thiet
Hi), doi ihiel H|,
Bmit 3- GV die hien v iec van dung quy Irinh u^n
Ldigicucuihe Dal gia thi6t H^-^ = \4,8: 66i
ihilt H^:/.i<\4.8
- 7 5 3 = - 9 , 3 4
Dieu kien: Sd diem nhan thiic ciia SV v l dot quy tuan theo luat chu4n
Ap dung cdng thuc
x - f i o r 1 2 , ! 7 - 1 4
t = -s/n —
s 2,05 Vol bac tu do rf = 52; o-= 0,001 tra bang test
t a d u o c / ( 5 2 ; 0 , 0 0 I ) = 3 , 2 6 1
Ta th^y | ; | > / { 5 2 ; 0 , 0 0 l ) chkp nhan H| tiic
sir khac biet cd y nghTa thdng ke Hay di^m
Cliu vdi muc y nghia a = 0,001 Biro'c 4' GV td chiic SV luyen tap van dung quy trinh tren
Bai toan 3, Mot nghien ciju ve danh gia kien thuc tu chain sdc ciia ngudi benh x o gan tai khoa noi tieu hoa benh vien da khoa tinh Nam Dmh tren 110 ngudi benh cho thdy co 68 ngudi benh cd kien thuc tu cham soc kem Trong khi dd tren Viet Nam co 70% ngitdi
benh mac benh xa gan cd kien thiic sai l^m ve
tu cham sdc Vdi dd tin cay 99,9% hay kiem dinh su khac nhau giiia k6t qua nghien ciiu vdi ti lc chung ciia Viet Nam
Bu'dc 1 Trang bi va ciing cd kien thuc ly thuyet, ky nang co ban cho SV' GV ciing c6 Iai cac phirong phap kiem dmh cho ty ie Bii'dc 2 Td chiic SV xay dirng quy trinh giai bai loan kiSm djnh gia thiel thdng ke
HD !• Vdi gia thi^t bai toan cho thi dl nhan thay day la bai toan kigm dinh ty le va day la bai loan kiem dinh hai phia
HD 2: Dat gia thi6t HQ: p = 0,7; doi thiit Hr
P * 0 , 7
HD 3, Cd 4 phuang phap cd thi giai duoc bai toan nay Khi dd ta tinh cac gia tri tirong ling
H D 4 Co Cl-= 0,001 nen / ( 0 , 0 0 0 5 ) - 3 , 2 9 1
HD 5, Ket iuan ch^p nhan hay bac bo gia thiet
Ho, ddl thiet H|,
Buijc i GV the hien viec van dung quy trinh tren
Cach 1, Dimg test thdng ke t Dat gia thidt Hn:p = 0 , 7 ; ddl thiil H , : p ^ 0 , 7 DiSu kien:
Trang 7Tap chl KHOA HOC Sc CONG NGHE 15210" n
m - 6 S n m 4 2 > 5 : n p , 7 7 : „ ( I p J = 3 3 > 5
cr = 0 0 0 1
tra bang test la duoc
t(0.0005) = 3 2 9 I
.\p dung cong thtrc
O.SIg^O.T —
'imr'""'-'-''
\ a y M < r ( 0 0 0 0 5 ) Chip nhin aia thiit H
-bac bo doi thiet H, Su khic biet khdn» co s
nghia thong ke Ts- le ngtroi cd kiin thue tu
Cham soc kdm cua nhdm nghien cihi ain sdi
l> le neudi 00 kiin thiic tu eham sdc kem
benh xo gan cua \'iet Nam
Cich 2 Dimg tan sd quan sit Dat aia thiet
H , : p = 0 7 ; ddl thiet H - p ^ o 7
Dieu kien
m - 6 8 : n - m = 4 2 > 5 : n p , = 7 7 : n ( l p j 3 3 > 5
Vai 2 = 0,001 tra bang tesl dugc
r(0.0005) = 3.29I
Co s ( p ) , „ p _ , ( „ 2^/np l l - p | 61.18
5:(P:) = np - t ( a 2 ) ^ p ( | - p j 9 2 8 ;
Vis 6 8 £ [ 6 I I 8 9 2 S 2 ] Chip nhin gia thiil
H: bac bo ddi thidt H; Su khic bidl khdng co
> nghia thdng kd Ts Id nguoi co kiin thii"c nr
Cham soc kem cua nhdm nghien cm ain s
IS le ngucri CO kien thuc tu chain soc kem
benh \a gan cua \ i e t Nam
Cach 3 Dung khoang tin c i s Dat aii thiit
H - : p = 0 7 : ddl thlit H.:psi0.7 Didn kidn m - 6!
n p - 7 7 : n ( l - p ) = 33 > 5
= 4 2 > 5 :
Ta f = = 0 6 1 8
no
Of = 0.001 n-a bang r(0.0005) = 3 2 9 I
Co khoang tin cay tim duoc
P - t ( a 2 | lip-(1-P I P - i | a 2 J
- i 0
Kien Ihuc cham soc kem
^lin ihifc cham soc r
56 benh nhanlm.i 6S
= [0.556:0.844]
Vav f e [ 0 5 5 6 0 8 4 4 ] Chip nhan gia ihiit H:,: bac bo d^i thilt H, Su khac biet khdna cd
V nghia thdng ke T> le nguoi cd kiin thiic tu cham soc kem ciia nhdm nghien ciiu ean vdi
benh \ o gan ciia \'iet \ a m
Cach 4 Dimg test thdng ke y; Dat gia ihiit
H p - 0 7 doi thiet H :p^ 0.7
Dieu kien m = 68 n - m = 42 > >
i ( l - p ) = 3 3 ; Lap bang thong ke
So benh nhan tieu chuini'-M.l
Ti'nh gia tn test ihdng ke
_ ( 6 8 - " 7 r (42
- 3 5 0 6
^ o , m u c s nghia « = 0 O 0 I d 6 t u d o 0 - 2 - 1 ta eo aii in ,= , h O O O I , > ^ : r i 0 tJO^-;-7 88
\ " > 2 < r ( l : 0 0 0 1 1 Chap nhan aia I h i e t H bac bo ddi I b i i t H Su khac h,d, IK
-Ihong kd I s Id nguoi CO kidn thtrc tu cham soc kem cua nhom " h ^ n u^ ' i " ' "'""
kien thuc tu cham soc kem benh \ o aan cua \ i e l Nam " ' " " = " ' = " s uu gan s oi t> le nguoi co
^ ^ n ^ " '""' '" ' " ^ ' " "' '"' ^ " " * ^"> "'"' •'^" ^ - S each hutmg din giai nhOng bai
Bai tap lir •-.: lir ( S \ ' Iy luyen tap)
Trang 8Bai toan 4 Trong nghien cuu cau tnic dng
smh tinh ciia benh nhan \ d tinh the sinh tmh
nira chimg khi do dudng kmh OST(Ong sinh
tinh) iren 50 benh nhan nam vo tinh the sinh
tinh nua chimg ket qua thu duoc la
\-±SD^]4].54±25.75^01 Biit duong kinh
OST nam binh thudng la \&Opm Ket qua
nghien ciiu ket luan dudng kinh OST ciia
nhdm nghien cuu thap hon dudng kinh OST
binh thudng vdi do tin cay 90% Bang kien
Ihuc khoa hoc hay kiem tra lai ket luan tren
Bai toan 5 Trong nghien ciju' NhUng thay
doi ve kien thirc phdng benh tay chan mieng
cua cac ba me cd con dudi 2 tuoi tai xa Tam
Thanh-Vu Ban-Nam Dinh sau can Ihiep
Iruyen thdng ve benh chan tay mieng d Ire em
ihu dugc ket qua khao sat tren 194 phu nir thi
sd diem trung blnh la 25.1+ l,8(diim) Biel
sd diem trung binh trudc can thiep la 5.4 Tac
gia ket luan tang cd y nghTa thdng ke diem
Irung binh kien thirc phdng benh tay chan
mieng ngay sau can ihiep vdi p<0.0I(a<O.OI)
Bang cach diing cdng thiic test-I kiem dinh
thdng ke ha> kiem tra lai ket qua tren
Bai toan 6 Mdt khao sal viec lam cua SV dai
hpc sau tdt nghiep trudng Dai hoc Diiu
Dudng Nam Dinh tren 3 12 SV sau tdt nghiep
ra trudng cd ket qua sd SV cd viec lam ngay
Irong I thang la 112, co viec lam sau 4 thang
la 299 Theo Bd tnrdng Bo GD-DT cho biit
da sd cac trirdng deu cd t\' le SV cd viec lam
sau 1 nam ra trirdng dat d mirc khoang 60%,
Voi dp !in cay 95%, hay kiem tra ty le viec
lam cua SV irudng Dai hoc Diiu Duong sau
4 Ihang so vdi ty le viec lam ciia SV ma bo
Giao due cdng bo
Bai toan 7 Mdt mau gdm 35 ngudi bi K liin
het luyen co di can ham luong trung binh
PSA la 16mg/'mL s = 1.4mg,'ml, Dimg PSA
lam chat chi diem co di can Irong benh K lien
lict luyen Vdi benh K tiin liet tuyin chua di
can ham luong PSA la 12mg/ml Hdi PSA cd
the lam cho chSt chi diim cd di can benh K
lien liet luyen diroc khdng Vdi a =0 05
Bai toan 8 Mdt mau 10 benh nhan s6t ret Do
dudng huvet truns binh la 0,8g/l H^ng sd
sinh hoc tren dudng huyet la
H ± o = 1 ± 0.2g/l, do tin cay 9 5 % Hdi benh sdt ret cd lam giam dudng huvet khdng Bai toan 9 Tai mdt dja phuong ty- le bi benh s6t ret la 20% Diing DDT d i diet muoi Kham IOO ngirdi thay cd 13 ngirdi bi sdt ret Hdi DDT CO lam giam tv !e benh nay khdng
U y a = 0 0 5 Bai toan 10 Cd khoang 12% ngudi bi huyet khdi khi thav' van tim trong vdng 4 nam Ngudi ta mudn xem xet su dung Aspirin co anh hudng tdi bi huyet khoi khi thay van tim hay khdng Chon ngau nhien 200 benh nhan sau khi thay van tim, cho diing lOOmg Aspirin/ngay sudt 4 nam lien, theo doi thay
cd 22 trudng hop bi huyet khdi Vdi do tin cay 9 5 % hay dira ra ket luan su anh hudng ciia Aspirin
KET LUAN Til thuc te day va hoc Xac sua! - Thdng ke 6 trudng Dai hoc Dieu dirdng chiing toi da
nghien ciiu va giai quvet van dc ren luyen ky ndng giai bdi todn kiem dinh ihdng ke cho
SV, thong qua giiii phap bao gom'
- Chil dong giang day cho SV nhieu phuung phdp ktem dinh gtd thiel ihong ke;
- Phdn lich ddc diem vd moi quan he giifa cdc kien thi'rc - ddc hiet la giii'a cdc phuang phdp kiem dinh thong ke de SV btet cdch lua chon, phoi hcrp sd dung kht gidi bdi tdp
- Xdy dirng, chon loc nhirng vi du, bdi todn kiem dinh gia duel fhong ke Irong thut le 'chuyen ngdnh dteu dirdng
- Xdy dung quy trinh ban buac day In link phirang phdp vd mtnh hoa nhimg linh hudng luyen lap ky ndng gidi bdi todn ktem djnh gid Ihiel thong ke cho SV
Nhung ket qua budc dau cho (h^y giai phap de xuat cd tinh kha thi va hieu qua kha tot, gop phan nang cao chat luong day va hgc Xac suit -Thong kc cho SV tmdng Dai hgc diiu dirong
TAI ITEU THAM KHAO
I To Van Ban (2015) Thirc irang vd giai phdp cho giang day thong ke a khu vtrc phia bdc hi?n
Trang 9152107 1)15 '|"v 01 isdo ndi dung va phirong phap gians das
Ihong ke loan hoc i- & ^
; ":=' i ' " Dmh (20151 .\dc sail thong ke
luu hanh noi boi
3 Trin_ V^an Due (2015,, \f6i sd bai todn td hap
xac suat Tap chi Toan hoc luoi tre s6 462
4 Dang Due Haụ Nguvin Mmh Hans (2008)
Xac suat thdng kẹ Nxb Giao due
5 Tran Van Hoan_(20l4) Thirc trang dav hoc
mon xac sudt - ihdng ke so ^a, chudn đu ra a
iruang dai hoc Lac Hong Tap chi khoa hoc Dai
hoc su pham TP Ho Chi Mmh s6 59
6 Dao Him Hi (2007) Xdc siidi ihdng ke Nha
xuat ban Dai hoc Quoc Ha \ 6 i
7 Nguvin Ba Kim (2015, Phuang phdp dâ hoc
mon Toan Nxb DHSP
8 Tran Van Long NgujIn Thi Quvnh Huona
tinh irang tdng huyet dp a ngudi cao tud, hiaen
Vu Ban - Vam Dmh, Noi san nghien cuu khoa hoc
Tnrcmg Dai hoc Dieu dudng Nam Dinh
y Dao H6ng Hai (2015j, Xghien cihi cdu true dng
chung Dac san nghien cmi va dao tao Diiu dumiii
Trucmg Dai hoc Dieu ducmg Nam Dmh
10 Ngo Huv Hoang (2015j, Thấ đi xi nhdn
thue đl quy cua SV Dai hoc Diiu Duang chinh
qiiy sau can ihiep gido duẹ Dac san nghien cuu va
dao lao Dieu ducmg Trirone Dai hoc Diiu dumi"
Nam Dmh
11 Dao Hong Nam (2014) Dm hoc vdc sudi ihdng
ke a mrang Dai hoc ) Luan an lien si khoa hoc aiao
due, Tnrong Dai hoc su pham TP H6 Chi Mmh
12 Quach Thi Sen 12015A Mdt sd g,ai phdp ndng
Tnrmig Dai hoc Duac Hd \6i Tap chi Khoa hoc
Giao duẹ s i 116
13, Bui Thi Huong Thao (2014) Tdp luyin cho SV tnrang cao đng y le \dn dung xdc sual - ihdng ke trong nghien cieu klioa hoc Luan van Thac si khoa
hoc giao duẹ Tniong DHSP - Dai hoc Thai Nguven
14 Dang Hung "Hiana (2008) .\dc sudt \ di ihítr^rdng chimg klioaii Tap ch) Toan hoc nJoi trẹ s6 367
15 Darig Hung Thang (2015) Thong ke voMccdm
ndng cao didt luang giang day Hoi ihao noi duna
va phucmg phap aiang dav thing ke loan hoc
i6 BUI XW Nghi (20081 Phuang phdp dâ hoc idumg mil Jung cu lhe mon Todn Nxb DHSP
1 Dao Tam Tnrong Thi Dung (2013), Tao nhu cdu hen trong i a ca hoi di hoc sinh phdt hien cdc kien ihífc mọ Tap chi khoa hoc Truons DHSP Ha
NOL \'O1 58 No 4
18 Nguven Anh Tuan, Lai \'an Dmh (2015), Day hoc g,a, ba, loan I,m khoang ịdv.h lir moi diem den mdt phdng hdng plucang phdp ihi lich cho hoc smh tnmg hoc pho ihdng" Tap chi Khoa hoc
Trucmg DHSP Ha Ngị so SA - Volume 60
19 Nguyen Thanh Tuna (2015) Day hoc xdc nidi
- Ihong ke cho SV ngdnh 1 - Dmxc theo hudng phdn hua phu hap iinig chuyen ngdnh Tap chi
Giao due so 365
20 Naaven Thanh Timg (2015) Da\ hoc Thdng
ke nhdm gnip SI ngluin cmi Yhoc đ, vd, Sl 1 -Duac Bao cao khoa hoc lai Hoi nghi loan quic
lan Ihu V-Xac sual - Thong ke nshien ciiụ una dung va giang da> " Da Nina
22 Hoang Nam Hai (2015) Day hoe ihdng ke toan Iheo dmh hudng phdi inen ndng hrc Hoi
Ihao noi dung va phuong phap giana dav ihong ke loan hoc
SUMMARY
PRACTISE SKILLS OF SOLVING THE PROBLEM OF STATISTICAL
HYPOTHESIS TESTLNG FOR STLT)E\T NXRSES "*' ^ " ^ ' " " ^ ^
In Ihis aniclẹ lhe solution of praciicina skills of solving lhe slaiisiical hvpoihesis tesiir
fornurs.ng sludenls is presenled, m uhich basic skills are clanfied for s'ludems lo iden
and shov^ properlv ihe siausiical hvpothesis testing melhods This amele also sunnhes
leachmg pmcess lo solve lhe slaiisiical hypothesis leslma problem in nursm^- profession
improve he It^inmaquahlv for medical siaff who lake care of peoplés heahh
Hay nhdnba: :-02 20l6 2<^ayphanb,en 155 2016 ^gay diaelđng 15 62016
Phan bien khoa hoc: TS Tran J let C uang - Tnr,j„g Da, hoc Supham -DHTV
1 tiJ \lirs,i,g
lg problem Iif} select
a four-step
in order lo