1. Trang chủ
  2. » Tất cả

Một số biện pháp góp phần nâng cao chất lượng dạy học môn xác suất thống kê qua việc kiểm tra đánh giá kết quả học tập của sinh viên trường cao đẳng kinh tế kỹ thuật

7 8 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 189,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

NATIONAL ACADEMY OF mJUCATION MANAGEMENT Journal of Education Management, 2017, Vol 9, No II, pp 1I2 118 This paper is available online at http //jem naem edu vn MOT SO BIEN PHAP GOP PHAN NANG CAO CHA[.]

Trang 1

Journal of Education Management, 2017, Vol 9, No II, pp 1I2-118

This paper is available online at http://jem.naem.edu.vn

MOT SO BIEN PHAP GOP PHAN NANG CAO CHAT LUONG DAY HOC MON XAC SUAT T H 6 N G KE QUA VlfeC KIEM TRA DANH GIA KET QUA HOC T A P CUA SINH VIEN TRUING CAO DANG KINH T ^ - KY T H U A T

Nguyen Thi L o a n \ Tran Th; Hue^*, Phiing Thi Hai Yln^ Tom tat Bai bao dua ra mdt s6 cd sd ly ludn vl day hoc nham phat huy ti'nh tfch eye hpc t$p ciia sinh vien, lam cd sd dl xudt lua chon nhflng bidn phap gdp phdn nang cao chat lUpng day hoc mon Xac sudt Thong kd cho sinh vidn Tmdng Cao dang Kinh tl - Ky thu|t Ddng thdi dUa ra m§t s6 gdi y ve phiTdng phdp danh gia kit qua hoc t^p cua sinh vien, dl lya chon phu hdp vide ddnh gid ttong qud trinh dgy hpc Qua do, tiln hanh kilm tra danh gia kit qua hpc t^p mon Xdc suat Thdng

kd cua sinh vidn Trudng Cao dang Kinh tl - Ky thu$t Kit qud thi hifn sy cdn thilt, tinh hidu qud

va thiet thyc ctia viec lya chon cdc bien phdp da dl xuat

I& khda: Kiim tra, ddnh gid, ddnh gid kit qud hpc tdp, ddnh gid ndng luc tif hgc

1 Dat van de

Tfch cUc boa nhan tbflc cua ngfldi hpc dfldc thUc hidn bang nhilu eon dUdng, ttong dd day hpc gidi quylt vdn dl Id mpt giai phdp rat ti'ch eye Day cho ngUdi hpc phat hidn van dl, sau dd ttinh bay va giai quylt vdn dl se cho phep phat buy cao dd tfnh tfch cue va tU duy sdng tgo Vdi dgy hoc khdm pha, ngudi hpc se ty kham phd ra cau ttd Idi ciia van dl qua quan sat, lam th/ nghidm, qua

dd nhdn thflc van ^ mdt each ddc lap Day cung la mdt pbUdng phap hpc t|ip mang Igi tmh tich

eye cua ngudi hpc Cdn nhilu phUdng phdp day hpc khdc nfla phdt huy dupc tinh tfch cUc ttong dgy hpc Dilm chung ciia cac phUdng phap dgy bpc la ngfldi hpc tu tim tdi kham pha theo sy djnh hydng cua ngUdi dgy dl tu chilm ITnh kiln thflc mdi Thay vi ttuyin dat cho ngUdi hpc cac y tUdng, cac hpc thuylt, cac sfl viec, cac sy kien cua thi gidi Ngudi day, chinh la giao vidn trfl thdnh ngudi dan dat cdc em di tim cac y tuflng, cac hpc thuylt de khi giao vidn sfl dyng phUdng phdp day hoc hudng ddn, Vl giao vidn sfl dung he thdng cdc cdu hdi, cac llnh hudng cd vdn dl dl djnh hfldng

nghien cflu Qua ttd ldi tittig cdu hdi ngfldi hpc se tilp e ^ ddn ddn vdi vdn (^, cflng vdi sfl ttao

ddi, ttanh ludn hoan thanh hd thdng cau hdi giao vidn dUa ra [3]

Dl ngudi hpc tfch eye hpc tdp, tilp nhan, ITnh hdi kiln ttiflc mdt each tfl nhidn, thodi mdi, phdn khfli vd hao hflng ttong mdt mdi trfldng cdi md, chflng tdi cd mdt sd djnh hudng, sau dd tiln hdnh kilm tta danh gia cua vide vdn dyng do

Ngay nhan bSi: 07/09/2017 Ng^y nh^n dSng: 05/11/2017

^Khoa Khoa hoc Co bdn, Truflng Cao dng Kinh t^ - Ky thuat, D?i hpc Thdi NguySn;

'e-mail: huecdktkt.tn@gniail.com

Trang 2

2 Thue trang cdng tac kiem tra danh gia kit qua hoc tap hoe ph^n Xac suat Thdng ke Hoc phdn Xac sudt Thdng kd la hpc phan bat budc trong chfldng ttinh dao tao ddi vdi tdt ca cac hd cao dang chinh qui cua IVUdng Cao dang Kinh tl - Ky thuat ChUdng ttinh dUdc thilt kl vdi thdi lUdng 03 tin chi, hoc d ky thfl hai vdi dilu kidn tidn quylt Id sau khi hpc xong hpc phdn Toan cao cap, bao gdm hai ndi dung cd ban la Xac sudt vd Thdng kd Muc tidu cu the cua hpc phdn la:

* Trang bf cho sinh vien cdc kiin thdc ca bdn

- Xac sudt, cac cdng tiiflc ti'nh xac sudt, Cac logi biln ngdu nhidn, Ham mat dp, ham phan phdi,

mdt sd dac tiirng bang sd cua dai tupng ngau nhidn, mdt sd phdn phdi xdc sudt fliUdng gap

- Mdu, cdc dac tiling mau, Udc lupng tham sd cua dgi lupng ngdu nhidn, kilm djnh gia tiiuylt thong kd

* Ren luyin cho sinh viin cdc ky ndng

- Van dung cac cdng tiiflc vdo cac bai toan tfnh xac sudt, ti'nh dflpc ham mat dd, hdm phdn phdi,

ky vpng vd phUdng sai cua dgi lupng ngdu nhidn

- Tinh ttung binh mdu, phUdng sai mau, Udc lupng dupc tiiam sd cua dgi lUdng nglu nhidn, kilm dinh gia thuylt thdng kd,

Trong ttidi gian qua, viec kilm tta, danh gia chu ylu dUpc thyc hien tiieo djnh hudng danh gia mflc dp hilu vl khai nidm, ky nang giai bai tap va bao gdm dilm kilm tta gifla hpc phdn (tj ttpng 0,4) vd dilm tiii kit thflc hpc phdn (ty tixmg 0,6)

Hinh thiic kiim tra chu yiu theo hinh thdc viit vdi cdc yiu cdu cu thi: Ly thuylt: Nhac lai cac

khdi nidm, cac djnh ly, cac cdng tiiflc, cac phfldng phap tfnh todn ma khdng cdn chdng minh; Bai

tdp: Giai mdt sii dang bai tap cd ban, ddn gidn

Vf du ve cac bai tdp cy till ttong cac dl kilm tta da dflpc sfl dung troag thdi gian qua:

Trong ddt bpc tdp mdn Giao dye Qudc phdng tgi Trung tam Giao due Qudc phdng cd 4 Idp

khda 10 tiiam gia Ldp KIO Ke toan (KT) cd 51 sinh vidn, ldp KIO Quan if ddt (QLD) cd 66 sinh

vien, ldp KIO Thu y (TY) cd 69 sinh vien va ldp KIO Dja chfnh Mdi tiTldng (DCMT) cd 35 sinh vien So sinh vien ban ttung dich cua tflng ldp tfldng flng theo tiifl ty trdn la: 36; 45; 48 vd 28 Chpn ngau nhien mdt sinh vidn vd sinh vidn nay ban ! vidn dan thdy trung Hay xac djnh xem sinh vien nay ed khd nang ttong ldp nao nhdt

Ctlu hdi 1: Gieo mdt eon xuc xac cdn ddi vd ddng chdt, gpi At la biln cd xuat hi^n mat cd sd cham la i, (i = 1,2,3,4,5) Thi A cd I|p thdnh mdt he ddy du cac biln cd khdng, tai sao? Cdu hdi 2: Giai bai toan ttdn

+ Khdng tta Idi dfldc cau hoi 1 hoge tii Idi sai: Dilm F

+ Trd ldi dflng cdu hoi 1: Dilm D

4- Ap dyng cdng tiiflc Xac sudt todn phdn va tfnh dung kit qua (cdu hdi 2): Dilm C + Ap dung cdng ttiflc Bayes va tinh dung kit qua (cdu hdi 2): Dilm B

+ Trd ldi dflng sinh vien cd kha nang fl ldp nhdt (cau hdi 2): Dilm A

Qua kit qua cua Bdng 1, ta ttiay sd lUdng sinh vidn chUa dgt cdn chilm ti Id kha nhieu, sd sinh

vidn dgt dilm kha gidi cdn chua cao Tfl dd chung tdi mgnh dan dl xudt mdt sd bidn phdp di gop

phdn nang cao chat Iflpng day hpc mdn xac sudt tiidng kd

Trang 3

Bdng 1 Kit qud trd ldi cdc cdu hdi cda ede ldp

Ldp Diem A DiImB DilmC DilmD DilmF (%) (%) (%) (%) (%)

KIOKT

KIO QLD

KIOTY

KIO

DCMT

3.92

6.06

2.89

5,71

11,57 23.33 18.99 18,57

25,29 32,43 29.13 32,86

39,41 25,15 31,74 24,29

19,81 13,03 17,25 18,57

3 Mdt so bi€n phap gdp phan nang cao cli4t Itfdng day hoc mon Xac su^t Thdng ke

3.1 Gido van khdng chi ndi lai nhiing diiu dd trinh bay trong gido trinh, khdng ldm thay sinh viin

NgUdi gidng vidn, vdi vai trd cua ngUdi tiiilt ke, td chfle cdc hogt ddng nbdn tbflc cho sinh vidn, cdn xac dinb: khdng Idm thay cho sinh vidn phai tao dilu kidn d l sinh vidn dupc bpc va phdi hpc mdt each tich eye

Neu ngudi giang vien lam cho vide hpc ttd ndn dl dang thi sinh vidn se mat di sy cd gang, ti'ch eye Nhung nlu tiidy cfl d l cbo ttd tu xoay sd, ydu cdu qud cao, du sinh vidn ed thflc sU tfch eye suy ngbl, lam vide cung khdng dat dupe ydu cdu tiii se cung chan nan V$y cdn phai tao ra finh hudng hpc tap sao cho hdp din, vfla sflc de sinh vien thdy rd nhiem vu nhdn thflc ciia hp chi cdn hp ti'ch eye hpc tap la dat dupc kit qua [4]

3.2 Tdng cudng hudng dan cho sinh viin tU hgc

Trong nhflng bai day ly thuylt ma nhflng kiln thflc vd phfldng phdp giai quylt vdn dl khd cd thi lam kbac giao ttinh, nlu ngudi giang vidn chi dgy nhfl dd ttinh bdy ttong giao ttinh thi se bj nhdn xet la "dgy nhu ttong sach" Thay vao dd, hUdng ddn cho sinh vidn dpc giao ttinh ddng thdi dgt ra ydu cdu: Dpc dl tta ldi dUpc cdc cdu hdi do ngUdi giang vidn dat ra nham kilm tta danh gid kit qud dpc hilu ciia sinh vidn Cac em ed thi ttao ddi, tbao luan vdi cdc ban xung quanh trong qua ttinh dpc Lam nhu tbi sinh vidn se tich cue, chu ddng hdn ttong gid hpc [5]

3.3 Tgo ra mdi trudng cdi md

Dl sinh vidn tfch cue, tu gidc, chfl ddng, tiitdc bet ngUdi gidng vidn phdi tao ra mdt mdi trfldng vui ve, thoai mai, phai lam cho sinh vidn cd hflng thu, phdn khfli tirong hpc tdp Nhflng each thflc

dl cd dupc dilu dd, cd thi la: Gdi dpng cd, ndu myc dfch, ndu tdm quan ttpng cua vdn di

NgUdi giang vidn cd thi tao ra khdng khf giao tilp thudn ldi gifla thay vd tt-d bang each td chflc va dilu khiln hpp ly cac hoat ddng cua tflng sinh vi€n va ca ldp Cd till td chflc nhflng tinh hudng cd van dl, ddi hdi du doan, ndu gia thuylt, ttanh luan gifla nhflng y kiln khdc nhau Nhflng tinh hudng dd can phai phu hpp vdi ttinh dp cfla sinh vidn Mdt ndi dung qua dl hoac qua khd diu khdng gay dfldc hflng thu hpc t$p cho cac em Can tgo cd hdi va dan dat cho sinh vidn fim tdi, phat hidn ra nhflng tti thflc mdi, tao ra nilm vui cua sfl kham pha [4]

Trang 4

3.4 Giup sinh viin thdy dugc cdi hay, cdi dep cda Todn hgc

Nhflng ket qud, nhflng each suy nghi, giai quylt vdn dl ttiDug cdc mdn hpc ndi chung, trong cac mdn Xac sudt Thdng I^ ndi ridng diu ed sflc hdp din nhdt djnh, diu kfch thfch dflpc sy ham

mudn hilu biet fl sinh vidn Nd cdn cd sU hdp din ridng vi sU tiidng tiiai an chfla trong mdn hpc nay NgUdi giang vidn cdn Idm cho sinh vidn tiidy dupe cai hay, cai dep, cai f nghia cfla mdi ndi

dung ma cac em dUdc hpc Nlu khdng lam cho sinh vidn cdm tiiu dupc nhflng dilu dd, thi cac em

se tiidy rat khd vd khd khan, mdt hit cai y nghia cfla vide hpc toan [4]

3.5 Thudng xuyin khuyin khich, ddng viin ngUdi hgc

Thudng xuydn kilm ti-a, danh gia kit qud hpc tdp cfla hoc sinh, qua dd ddng vien, kben ngdi,

hay phe binh, nhac nhd cac em cung la mpt bien phap di hpc sinh tich eye, tu giac, chfl ddng tiding

hpc tap Ngudi giang vidn khdng phai ehi hd hao, nhac nhfl sinh vidn: Hay tich eye, ty giac, hay chii ddng, sang tao, ma phai tgo ra cac tinh hudng hpc t|p dl qua do sinh vidn y thflc dupc nhflng dilu do [4]

3.6 Kiim tia ddnh gid kit qud hgc ^p mdn Xdc sudt Thdng ki cda sinh viin Thidng Cao ddng Kinh ti -1^ thudt

Sau khi tiln hanh tiiUc hidn mdt sd bidn phap nham ndng cao chdt Ifldng dgy hpc mdn Xac sudt Thong kd, chung tdi tiln hanh vide kilm tra danh gia ti-dn mdt sd ndi dung nhfl sau:

3.6.1 Ddnh gid chan dodn

Dupc tiln hdnh trfldc khi day mdt chfldng ttinb hay mdt vdn dl quan ttpng ndo dd nham giup cho ngfldi gidng vien nam dupc tinh binh nhflng kiln tiiflc lidn quan da cd trong sinh vidn, nhflng

dilm da nam vflng, nhflng Id hdng can bd khuylt di quylt dinh each day thich hpp [2] Vidu 1: Tf Ii ngudi ddn nghien thuSc Id Id 30%, biit rdng tf Ii ngudi bi viim hgng trong s6 ngudi nghiin thudc Id Id 60%, cdn ty le ngudi bi viim hgng trong sd ngUdi khdng nghien thudc Id

Id 40%

a Chgn ngdu nhiin mot ngudi biit rdng ngudi do viim hgng Tim xdc sudt di ngudi do nghiin thudc Id

b Niu ngudi dd khdng viim hgng, tim xdc sudt di ngudi dd nghiin thudc Id

+ Trfldc khi gidi bdi toan, giang vidn tiln hartti Idem tra kiln thflc lidn quan tdi bai toan:

- Cdu bdi 1: Dfla vao bai toan ttdn hay xay dyng mdt hd ddy du cac biln ed

- Cau hdi 2: Bai toan trdn v§,n dung cac cdng thflc ndo dl gidi, ndu cdc cdng thflc do? + Danh gia:

- Khdng ti^ ldi dupc cau nao: Khdng dgt

- Tra ldi dupc cdu 1: Dat

- Trd ldi dupc cdu 2: Tdt

3.6.2 Ddnh gid tUng phdn

DUdc tiln hanh nhilu idn ttong gidng dgy nham cung cdp nhflng thdng tin ngUdc, dl ngUdi giang viln va sinh vidn kjp ttidi dilu chinh each dgy va each hpc, ghi nhdn kit qua tflng phdn dl

Trang 5

tilp tyc thyc hidn chUdng trinh mdt each vflng chac [2]

Vidu 2: Dgi lugng ngdu nhiin lien tuc x cd hdm mdt dd xdc sudt nhu sau [2]:

{ acosx vdi X £ [—|; | ]

O v ^ i x ^ [ - f ; f ]

a, Tim hi sd a

b, Tim hdm phdn phdi xdc sudt F{x)

Chflng ta se tiln hanh danh gid sau khi sinh vien gidi xong y a)

- Khdng giai dUdc: Khdng dgt

- Tfnh dupe a, ddng ttidi dp dyng Itnh chat: f(x) > 0, Va;: Dgt

+ V d i x ^ [ - | ; | ] t h i / ( x ) = 0

+ Vdix e [ - ^ ; ^ ! thi f{x) = acosx.vkcosx > 0

-• Giai dupc din dp dyng tfnh chdt cua ham mzlt dd:

/ f{x)df = I acosxdx = 1 hay o =

-Tfl dd a > 0 So sdnh vdi a tim dupc va kit ludn a = - , thda man: idt

3.6.3 Ddnh gid tong kit

Tiln hanh khi l^t thuc mdt bdi hpc, mdn hpc, nam hpc, khda hpc bang nhihig ky thi nhdm ddnh gid tdng qudt kit qud hpc tdp, ddi chilu vdi nhflng muc tilu da dl ra [2]

Vi du 3: Cd hai hop sdn phim hdp 1 dung 10 sdn phSn tdt vd5sdn phSn xdu hdp 2 difng 8 sdn phim tdt vai sdn phim xdu Lay ngdu nhiin mdt sdn pham 6 hgp 1 bd sang hdp 2, sau dd ldy ngdu nhiin ra 1 sdn phSn d hop 2

a) Tim xdc sudt disdn phSn ldy ra sau ciing Id sdn phSn tdt

b) Biit sdn phSn ldy ra sau cung Id tdt tim xdc sudt disdn phim Idyraddld cda h^p 1 chuyin sang

Dapd„:a,P(^) = | A + l,i = H

b) Cach 1:

Trang 6

9_ 8 P{B2) = ^ ; P(A/B2) = I nen P{B,/A) = ^ P = ^

15

P ( B l M ) = l - P ( B 2 / A ) = ±

P(ftM).m^Qp),

P(Bi) = i ; F W B i ) = Z P(A,).P(A/A.Bi) = H.l + 1.0 = ?

•••^J i=i 3 3 3 n4nP(BiM) = i

+ Danh gia:

- Khdng gidi dupc: Dilm F

- Dgt dflng biln cd, bilt each giai nhung kit qud sai: Dilm D

- Gidi dupc y a: Dilm C

- Giai dupc y b; Dilm B

- Dua ra dUdc each khac: Dilm A

3.6.4 Ra quyit dinh

Ddy la khau cudi cung cua qua ttinh danh gia Dya vao nhflng dinb hudng da neu trong kbSu danh gia, ngfldi gidng vidn quylt djnh nhflng bidn phap cy tbi d l giflp dfl sinh vidn, bode giup dd chimg cho ca ldp vl nhflng thieu sdt phd biln hoge cd nhiing sai sdt ddc bidt

Danh gia sinh vidn la m(>t qua ttinb phflc tap va cdng phu Myc tilu ttUc tilp cfla vide danh gia kit qua hpc tap Id kiln thflc, kT nang, thai dp cua sinh vidn, tfnh ddy dfl, tinh dung dan, tinh chfnh xac, tfnh vflng chac cua chung, mdi lien he cua chung vdi ddi sdng, kha nang vdn dung chung vao thuc tien, mflc dp thdng hilu, kha nang diln dgt chung bang ldi ndi, bang van vilt, cac hinh minh hpa, bai thflc hdnh Dilu quan ttpng ttong danh gia cac mat dd la quan ttidt nguydn tac vfla sflc, bam sat ydu cdu cua chfldng ttinh

Thanh tfch cfla mdi sinh vidn phai dupc danh gid diing, cdng bang Viec ddnh gia dflng logi

trit dflpc vidctuy tidn hg thdp hoac nang cao ydu cdu Vide danh gia sai se khdng ddng vidn dflpc

sinh vidn NgUdi giang vidn phai to thai dp thidn chf va tl nhj, ddng vidn tflng bfldc tiln bp nhd, tin tfldng fl nhflng thanh tich sdp tfli cua mdi sinh vidn [2]

Trd lai vf du 3, Sau khi cd kit qud danh gid ciia bai kilm tta, giang vidn dfla ra nhgn xet: + Ddi tupng 1 (sinh vidn cd dilm F): ChUa nam dUpc kiln thflc cd ban nhdt cfla cdng tiiflc Xdc sudt toan phdn

- Bidn phap: Vdi kiln thflc ddn gian va dl tilp thu nhU vdy, giao cho nhdm sinh vidn cd hpc lyc ttung binh kha ttong ldp kem vd sau dd kilm tta danh gia Igi,

f Doi tupng 2 (sinh vidn cd dilm D): Kiln thflc cd ban vl ham mdt dp cdn chUa chac chan

Trang 7

- Bien phap: Kiln tbflc vdn nhfl fl ddi tupng I, va do nam cbUa chac nen vln giao cbo nhdm sinh vien cd bpc luc kha trong ldp giang lai va sau dd kilm tra danh gia

+ Doi tupng 3 (sinh vien cd diem C): Nam dupc cdng thflc cd ban vl cong thflc Xac sudt toan phdn, xong chua nam chac cdng thflc

- Bidn pbdp: Giao cho sinh vidn cd tipc lye kha giang lai phdn cac tinb chdt cua ham mat dp va lam bai kilm tra, danh gia lai

+ Ddi tfldng 4 (sinh vidn cd dilm B): Nam dfldc cong thflc cd bdn Xong chua ed sfl linh boat, sang tao

- Bidn phap: Giao cho sinh vien cd hpc luc tdt giup dfl bgn, nham phat huy va sang tao Lam bai kilm tta, danh gia lai

+ Doi tupng 5 (sinh vi€n cd diem A): Nam kiln thflc mot each chac chin va vdn dyng linh

hoat, cd sang tao

- Bidn phap: Giao thdm mdt sd bai tap nang cao

4 Ket luan

Bdi bao da dua ra dfldc mdt sd cd sd ly ludn vl day hpc ti'ch eye, tfl dd djnh hfldng mdt sd phUdng phap ndng cao chat Ifldng hpc t^p mdn Xdc suat Thong kl ddi vdi sinh vidn tnfdng Cao dang Kinh tl - Ky tiiuat Tiln hdnh kilm tra ddnh gia kit qua thdng qua cdc bai tap dUpc giao,

ddng thdi dfla ra cac bidn phdp hpc tap cy thi Dilu dd thdy dUdc tfnh hidu qua cua vide di xudt

cac bidn phdp thdng qua vide kilm tta danh gia

TAI LIEU THAM K H A O

[1] Nguyen \ ^ Hd (2006), Xdc sudt - Thdng ki Nxb Giao due

[2] Trdn Bd Hoanh (1997), Ddnh gid trong gido due NXB Giao due Ha Ndi

[3] Trdn Ba Hoanh (2002), Nhiing dgc trung ciia phuang phdp dgy hgc tich cue Tap ehi Giao

dye, sd 6

[4] Biii Van Nghi (2008), Gido trinh phuang phdp day hgc nhiing ndi dung cif dii mdn todn,

Nxb Dgi hpc Sy pham

ABSTRACT Some measures contributing to improve the teaching quali^ of Probability and Statistics Subject by cheeking and assessing students' results at College of Economics and Technique This article provides some tiieoretical foundations as a basis for the selection of measures that contribute to improving the teaching quality of Probability and Statistics for students of College

of Economies and Techniques At the same time, Uie article also provides some suggestions about the evaluation methods of students' results, relevant to the evaluation work during the teaching and learning process Thereby conducting the check and the assessment about students' results of Probability and Statistics at College of Economies and Techniques The restdts show the necessity, feasibili^ and practicality of selecting the proposed measures

Keywords: Check, Assessment, teaching and learning assessment; assessing self-study capability

Ngày đăng: 12/11/2022, 14:02

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w