1. Trang chủ
  2. » Tất cả

Một số biện pháp bồi dưỡng năng lực phân tích tìm lời giải bài toán cho học sinh phổ thông qua dạy học giải bài tập chủ đề phương pháp tọa độ trong mặt phẳng hình học 10

7 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 238,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TRUQNG DAI H O C DONG THAP Tap Chi Khoa hoc so 27 (08 2017) MOT SO BIEN PHAP B 6 I D U ^ O N G NANG LlTC PHAN TICH TIM LC« GIAI " BAI TOAN CHO HOC SINH THONG QUA 0 A Y HQC GIAI BAI T A P CHU DE PHirON[.]

Trang 1

M O T SO BIEN PHAP B 6 I D U ^ O N G N A N G LlTC P H A N TICH TIM LC« GIAI

" BAI T O A N C H O H O C SINH T H O N G QUA 0 A Y H Q C GIAI BAI T A P CHU DE PHirONG PHAP TOA DO T R O N G M A T P H A N G - H I N H HOC 10

• Nguyen Thj Xuan Mai'*', Nguyen Diidng Hoang^'J

Tdm tat

Bdi bdo trinh bdy tdng quan ve nang luc todn hgc, ndng luc gidi todn, ndng luc phdn tich tim lai giai bdi todn, tit dd di xudt mot sd bien phdp nham bdi duang ndng luc phdn tich tim ldi gidi bai todn cho hoc sinh thdng qua dgy hgc chu de "Phuang phdp tog do trong mat phang-Hinh hgc 10 " Tit khoa: Ndng luc phdn tich, bien phdp, hgc sinh, bdi tap, tga do trong mat phang

1 Dat van de

0 trudng phd thong, day toan la dgy hogt

ddng toan hpe cho hpe sinh (HS) [5, tt 206],

ttong dd gidi toan la hinh thiic chu yeu Do vay,

dgy hpe giai bai t ^ toan cd tam quan ttpng dac

biet va tir lau da la mpt van de ttpng tam cua

phuong phdp day hpc todn d trudng pho thdng

Theo Polia [2], ed 4 budc de di den Idi giai

bdi toan:

1) Tim hieu ndi dung bdi toan; 2) X ^ dpng

chuong trinh gidi; 3) Thue hien chuong trinh

giai; 4) Kiem tia nghien eiiu ldi gjai Nhu vay

ttong giai bdi toan, edng viec tim tdi ldi gidi bdi

toan la khau quyet dinh Dii cd ky thudt eao, cd

thdnh thao ttong vipc thyc hien cac thao tae va

eac phep tinh nhung khi chua ed phuang hudng

hogc phuong hudng chua tot thi chua the cd ldi

giai hope ldi giai ehua tot Tim tdi ldi gidi bdi

todn ciing chinh la co sd quan trong ttong vipc

ren li^en khd ndng lam viee ddc lap, sang tgo

cua HS Van de dat ra Id bdi dudng nhu the ndo

cd hieu qua de cho cac em cd nang lpc khi dimg

trudc mdt bdi todn cd tiie tp giai duoc mpt each

hop li Bai viet nay de xuat mdt so bipn phap de

boi duong nang lpe phan tich tim dudng loi giai

bai todn cho HS thdng qua dgy hpe gidi bai tgp

chii de "Phuang phdp tga do trong mdt

phang-Hinh koc 10"

2 Nang Inc phan tich tim Icri giai bai toan

2.L Nang Iprc toan hoc

Theo V A Krutecxki [6, tt 13], nang lpe

toan hpc dupe hieu theo 2 y nghia, 2 miic dp

Mdt la, theo y nghia nang lpe hpe t?^ (tai

tgo) tiic la nang lue doi vdi viec hpe Toan, doi

Hgc vien cao hpc, Tnrdiig Dai hgc D6i^ Thap

Tru6ng Dai hoc D6iig Thap

vdi viee ndm sach giao khoa mdn toan d tmdng pho thdng, nam mdt each nhanh va tdt cac kien

thiic, ky nang, ky xao tuong iing

Hai Id, theo y nghTa ndng luc sang tao (khoa

hoc), tuc la nang luc hopt dpng sang tgo Toan hpe, tao ra nhimg ket qua mdi, khach quan co gia tri doi vdi xa hpi loai ngudi

Ong dua ra dinh nghia "Ndng luc hpc t ^ toan hoc la ede dae diem tam ly ea nhdn (trudc het ia cae dgc diem boat ddng tri tue) dap ung yeu eau hoat ddng toan hoc va giiip cho viec nam giao trinh Toan mdt each sdng tao, giiip cho viec ndm mdt each tuong doi nhanh, de dang vd sau sdc kien thirc, ky nang vd ky xao toan hpc" [7, tt 14]

Theo Le Ngpc San [9, tt 21], neu coi qua trinh hpc t ^ Id qua trinh thu nhan va xii li thong tin thi ndng luc toan hpc ciia HS bao gom:

- Ndng lpe thu nhan thdng tin toan hoc: nang lpe tri giac hinh thiie hda tai lieu toan hoc, ndm eau tnie hinh thiie cua bai toan

- Nang lpc ehe bien thdng tin toan hpe: nang Ipc tu dio' logic ve quan he so luong va hinh dgng khdng gian bang ki hieu toan hoc; nang iuc khai quat hda eae doi tupng toan hpc, quan h^ toan hpe va eae phep toan; nang lyc tu di^ linh hogt bdng riit gpn qua tiinh suy luan va cau true toan hpc nit gpn; nang lpe chuyen hudng qua hinh tu duy

- Nang lue luu trii thdng tin todn hpc: nang luc ghi nhd (tri nhd khai quat, dac diem ve loai,

so do suy lugn va chimg minh, phuong phdp giai bai toan),

Ndi den HS cd ndng luc toan hpc Id ndi den

HS cd tri thdng minh tiong vipc hpe Toim, Tat ca moi HS deu ed kha nang vd phai ndm duoc

chuong trinh tnmg hpc, nhung cac khd ndng do

Trang 2

khac nhau tii HS nay qua HS khdc Cac khd nang

ndy khdng phai co dinh, khdng thay doi Cdc

nang luc nay khdng phdi khdng the thay doi md

hinh thdnh vdjyhdt trien trong qud trinh hoc tap,

luyin tgp de nam dupe boat dpng tuong iing, vi

vay, can nghien cim de nam dupe ban ehat cua

ndng luc va cac con dudng hinh thanh, phat trien,

hoan thi^n nang lue

2.2 Nang luc giai toan

Ndng luc giai toan Id gi? Chung tdi quan

niem nhu sau: Nang lue gidi toan la mdt phan

cua nang lpc toan hpc, la to hop cac ky nang ddm

bao thuc hien cac hogt ddng giai toan mpt each

cd hieu qua cao sau mot so budc thuc hien

Mpt ngudi ed nang lpe gidi todn neu ngudi

do ndm vung tri thiic, ki nang, ki xdo cua hogt

dpng gidi toan vd dat duoc ket qua cao so vdi

trinh dd trung binh cua nhimg ngudi khdc cimg

tien hanh hogt ddng gidi toan do ttong eae dieu

kien tuong duong

Tir dgc diem boat dpng tri tue cua nhiing HS

cd nang lpe toan hpe vd khdi nipm ve nang lyc

giai toan, ed the rut ra mdt so dgc diem va cau

true cua nang lue giai toan nhu sau:

- Khd nang liiih hpi nhanh chdng qiQ' trinh

giai mpt bai toan va cac yeu cau ciia mdt ldi giai

dep va rd rdng

- Sp phat trien manh eua tu day logic, tu

duy sang tao the hien d khd ndng \^ lugn ehinh

xac, v4 quan he giiia cae du kipn eua bai toan,

- Cd nang Iuc phdn tich, tong hop ttong linh

vuc thao tdc vdi edc ki hipu, ngdn ngir toan hpe

Khd nang chuyen doi tir i^eu kien cua bai toan

sang ngdn ngu: ki hieu, quan h§, phep toan giua

cdc dai lupng da biet, ehua biet vd nguoc lai

- Cd tinh dpc lap va dpc ddo eao ttong khi

gidi toan va su phdt trien eua nang luc gidi quyet

van de

- Cd tinh tich cue, kien tri ve mat y ehi vd

khd ndng huy ddng tri dc cao ttong gjai toan

- Khd nang tim tdi nhieu ldi giai, huy ddng

nhieu kiln thue mot luc vao vipc giai bai tap, tir

do lua ehpn ldi gidi toi uu,

- Cd khd nang kiem tia eac ket qua da dgt

dupe va hinh thanh mdt so kien thiic mdi thdng

qua hoat dpng gidi todn, ttanh dupe nhung nham

lan ttong qua trinh giai toan

- Cd khd nang neu ra dupe mdt so bai tgp

tuong tp cimg vdi each gidi (cd the la ^ n h hudng

gidi, hodc quy trinh ed tinh tiiudt toan, hogc thuat toan de giai bai toan do)

- Cd kha nang khai quat hda tir bdi toan eu the den bai todn tong quat, tir bdi toan ed mdt so yeu to tong qudt den bai toan ed nhieu yeu to tong quat, nhd edc thao tac tri tup: phan tich, so sanh, tcing hpp, tuong tu, trim tupng, he thong hda, dac biet hda,

2.3 Nang lure phan tich tim Idi giai bai toan

Xet ve binh dien triet hpc thi "Phdn tich Id phuang phdp phdn chia cdi todn thi ra thdnh timg bg phdn, timg mat, timg yeu td de nghien citu vd hiiu duac edc bd phgn, mdt, yiu to dd"

[8, tt 86] Ngodi ra cdn ed nhieu dinh nghia khdc nhau ve phan tich Theo Nguyen Ba Kim [5]

"phdn tick id tdch (trong tu tudng) mdt he thdng thdnh nhihig vdt tdch mdt vdt thdnh nhirng bd phdn rieng le"; Theo Hodng Chung [1], "Phdn tich Id diing tri 6c chia cdi todn the thdnh edc thdnh phdn, hogc tdch ra timg thudc link hay khia cgnh riing biit nam trong edi todn thi do"

Tren co sd phan tich edc dinh nghia tien, ed

the quan mem ve phan tich nhu sau: "Phdn tich

Id dimg tri dc tdch doi tugng tu duy thdnh nhimg thugc tinh, nhimg bd phdn, cdc mdi lien he quan

he de nhdn thirc ddi tugng duge sdu sac han"

Cd hai hinh thiic phan tich' Thii nhat, do Id tach van de thanh eac bp phgn theo tieu chi, Chang han phan tich khai

niem so thdnh hai bp phgn: so chan vd so \i Viec

tdch nhu the nao tuy thudc tung dae diem, yeu cau, mue £eh bai toan

Thu hai, dd Id tach ra mot phan, tdp tnmg chii y vao thanh phan dd, thu thap cae thdng tin tir viec nghien cim thanh phan vira tach ra Chang han, ttong mpt phuang tiinh, tdch ve phai cua phucmg trinh, quan sat, xem xet cae phep todn, edc con so ttong bieu thirc ve phdi, tir do dua ra cdc thdng tin ve bieu thirc ndy Theo chung tdi quan ruem: Ndng luc phan tich tim ldi gidi bai toan la khau dau tien ttong qua tiinh gidi toan, ddi hdi ngudi gidi toan phai

ed kha ndng nhu dy doan, md mam, dac biet hda, khdi qudt hda, tuong tp hda, xdc dinh dupe the loai bai todn, vach phuong hudng gidi bai toan, tim duoc cac phuang phap va cdng cp thich hop

de giai bai toan

3 Mpt so bi^n phap boi du-ong nang lu-c phan tich tim ldi giai bai toan cho HS thong

Trang 3

qua d^y hoc giai bai t^p chu de "Phuwng p h i p

toa dp trong m | t p h ^ g - H i n h h^c 10"

3.1 Thanh to nang lire giai toan cua chu

de "Phmmg phap tpa dp trong m^t

phang-Hinh hpc 10"

Ndi dung chii yeu cua ehu de "Phuang p h ^

tpa dp trong mgt phdng-Hnh hpe 10" bao gom:

Tpa dp diem, veeta; Phuang trinh dudng tiiang;

Vi tri tuong doi giua hai dudng thang; Gde;

Khoang each tir mdt dilm den dudng thdng;

phuong trinh dudng ttdn, vi tri tuong d6i giua

dudng ttdn va dudng thdng

Can eu vao dac diem ciia nang Ipc gidi toan,

can cii vdo ndi dung hp tiiong bai t ^ eua chu de,

chiing tdi xde $nh eae thanh to cua nang lpc giai

bai toan chu de "Phuong phap tpa dp ttong mat

phang-Hinh hoc 10":

1 Ndng luc huy ddng, van dyng edc tinh

chdt, cdng thuc, dinh ly vdo viec gidi nhanh vd

chinh xdc cdc bdi tgp

2 Ndng luc phdn tich, tdng hgp du kien vd

yeu cdu bdi todn de dinh hudng cdch gidi

3 Ndng luc tim ldi gidi bdi todn tga do

trong mat phdng bdng nhiiu cdch khdc nhau

4 Ndng luc trinh bdy ldi gidi mot cdch chdt

che vd cd ca sd

3.2 M$t so bi|n phap boi dirong

3.2.1 Bien phdp 1: Tap luyen cho HS biit

sir dung cdc thao tdc tu duy nhu dit dodn, md

mdm, phdn tich, tdng hap da Men vd yiu cdu bdi

todn de dinh hudng cdch gidi

Khi diing trudc mdt bdi toan HS can tp dgt

cho minh cdu hdi: De gidi bdi toan nay ta can

nhiing kien thiic nao? Tir do giiip hp lien tudng

den cac kien thiic hen quan de gidi bdi toan, Mgt

khac, gido vien (GV) can dua ra bai toan ngau

nhien, khong xep theo mpt trinh tp nao dgt trude

dl ren luypn eho HS nang luc huy dpng va vgn

dung kien thue vao gidi bdi todn

Vi dii 1: Trong mgt phang tpa dp Oxy, cho

hinh chu nhgt ABCD cd tam /

&•)

thiie da hpc (tinh ch4t cda hmh chii nhgt) lln kien thiie dang hpc (1§P phuang tiinh duong thdng), Nhimg neu ttong qua trinh gidng dgy (bai phuang trinh dudng tiidng), GV hp tiiong dupe kiln thiic (cac yeu to can thilt de 1 ^ phuong trinh dudng tiiang) va HS nam vung dupe cac kiln tiiuc ^ thi vipc gjai bai toan sS khdng ed gi khd khan

- Gia thilt: Biet hmh chii nhgt ABCD, suy raAB//CD, AB ±AD;AB LBC

Biet AB:x-2y + 2 = 0, suy ra vl ph^i

phuang trinh la w = ( l ; - 2 ) ; / —;0 Id tam ciia

cgnh AB

ed phuong trinh la x - 2 y + 2 = 0 va AB = 2CD

L ^ phuang trinh cae canh edn lai eiia hinh

chii nhat

Phan tich bai toan:

Bai todn ed gia tiuet kha phiic tap, ddi hdi

HS phdi huy dpng tat cd cdc Itien thiie: tir kien

hinh chu nhgt nen

d(I,AD) = 2d(I,AB)

d(J,AB) = d{I,CD),

Hinhl

- Ket l u ^ : l,ap phirong tiinh cac cgnh

cua hinh chii nhgt (cae dudng tiling

AD; BC; DC)

Tom tat each giai bai toan:

Tir kiln tiiiic da biet: Biet AB//CD, ma phuang trinh AB:x~2y + 2 = 0 sity ra phuong trinh CD cd dgng x-2y + c = 0(ci^2) Tuong tix, do AB±AD;AB1BC; suy ra phuong trinh AD va BC cddgng 2x+y+c'=0

- De tim dupe c, chung ta can lien he cong

thiie khoang each tir mpt cKem den mpt dudng thang Do biet tam 7 —;0 ciia hinh ehu nh§t

I ll 5 [c=2(i) nen d{I,AB) = d{I,CD) '^\c-\-\=-^ _'• Vgy phuang trinh canh CD •.x-2y-'i = ^

- Tuong ti; tim c: Do AB = 2AD suy ra d{I,AD) = 2d(I,AB) o | c ' + l | = 5 O _ • Vgy phuong ttinh AD vd BC lan lupt la

2:t + _V + 4 = 0 v d 2 j : + ; ' - 6 = 0

Trang 4

3.2.2 Bien phdp 2: Tap luyin cho HS

biit nhin nhgn tinh hudng dgt ra dudi nhieu

gdc do khdc nhau va biet gidi quyet van di

bang nhiiu phuang phdp khdc nhau, lua chgn

cdch gidi toi iru

Bien p h ^ nay giiip HS nhin nhgn bai toan

duoi nhieu hinh thiie, nhieu gde dp khac nhau,

Tir dd, HS se tim tdi ra dupe nhieu each gidi

khdc nhau cho mpt bdi toan va tim dupe phuang

phap giai dpe dao Dieu nay ren luyen tu diQ'

sang tao, dpc Igp giai quyet van de eho HS

Vi dy 2: Viet phuang trinh dudng ttdn npi

tiep tam giae ABC biet phuang trinh cac canh

AB:lx+Ay-6=(y, AC:Ax+3y-\=(i, BC:y=Q

Phan tich bai toan

- Hudng dan HS ve hinh

3x+4y-6=0 4x+3y-l==0

Htnb2

- Ddt eau hdi goi y cho HS tim phuang an

ttd ldi:

GV: Cd till tim dupe ylu to ndo khi biet

phuong trinh ba canh ciia tam giac?

HS: Cae dinh A, B, C lan lupt la giao diem

cua cae cgp canh AB va AC, AB va BC, AC vd

BC Ta tim dupe tpa dp ba dinh A, B, C

GV: Tam dudng ttdn npi tiep tam giac ABC

duoc xac dinh bang each ndo?

HS: Cdba hudng:

+ Tdm I la giao cua ba dudng phan gidc

ttong cua tam giae

+ Ap dung tinh chat khoang each tir tam I

den ba cgnh bang nhau

+ Gpi l(a;h) la tam dudng ttdn npi tiep

tam giac ABC Vi B, C nam tten trpc Ox spy ra

l{a,b),b>ii^l{a;r); S = p.r=> r = - Ap

dung cdng thiic khodng each dyI,ABj = r ta

tim duoc tpa dp tam /

GV: Hudng thit ba gpi l{a;b) thi xet xem

a, b phdi thda dilu kipn gi (dua vao tpa do ciia

A, B, cy

HS Do dudng ttdn ndi tiep tam giac ABC

nen t a m / ( a ; 6 ) phdi thda—<a < 2 ; 0 < 6 < 3

4

- Tir nhiing gpi y nay, HS ed the dl dang dinh hudng tim ra nhilu each giai cho bdi toan Tdm tat each giai bai toan:

Cach 1:

Tpa dp cua ^ la nghiem cua hp phuang ttinh

3x + 4 y - 6 = 0 [x = -2 ^

<=>J = > ^ ( - 2 ; 3 )

4x + 3 : v - l - 0 [>' = 3 ^ '

Tuong tp,tatim s ( 2 ; 0 ) , C - , 0 Phuong trinh cac dudng phdn giae ttong va

ngodi cua gdc A la 3x+Ay-6 _^Ax^3y-\ \x-y + 5^0 0) V3^+4' " U^+Z" [x + ; ^ - l - 0 (2)' Thay lan lupt toa dd ciia B, C vao v l tiai cua

(1), ta ehpn duoc (2) la phuong trinh dudng phan

giac ttong cua gde A

Phuong trinh cac dudng phan giae ttong va

ngoai ciia gdc B la 3JC + 4 ; ' - 6 \Zx-y-e = Q (3)

— ±—_ ^ + V o

^3^+4^ \x+3y-2 = Q (4) Thay lan lupt tpa dp ciia A, C vdo ve ttdi eua

(4), ta chpn duoc (4) la phuong ttinh dudng phan

giac ttong eiia gdc B

Gpi l{x;yj vd r Id tam va ban kinh dudng trdn npi tiep tam giae ABC

Khi dd tpa dp / la nghiem eua he phuang

'x + y-\ = Q

trinh J " ' -^ * " Cndi he ta tim dupe [x + 3^- - 2 = 0

= i h a y / [ - , - ] , S u y r a r = ^ ( / , S C ) = - ,

Trang 5

Vgy phuong trinh duong tron ngi tiep tam

g i a c ^ C l a ( ^ x - i j +[y-^j = i

Cach 2:

Tim tga dp cua ^ ( - 2 ; 3 ) , B ( 2 ; 0 ) , d-.O

Ggi 7(a;6) la tam duong trgn ngi tiep tam

giac ABC voi -2<a<2;0<b<3 Khi do

ii{I;AB) = d{I,AC) = d(r,BC)

l3a + 4 4 - 6 | l4a + 3 i - l | lil

o ' =^ = ^-j= - n "

V 3 ' + 4 ' V4'+3^ VO' + l^

n3a + 4 6 - 6 | = |4a + 3 6 - l |

Vay phuang trinh duong tion n^i tiep tam

3a+ 4 6 - 6 = 5 *

1

Giai he ta dugc a=b = —, suy ra ban kinh

2

duong tron ngi tiep r = d\I;BCj = —

Vay phuong tiinh duong tron noi tiep tam

giac ABC :

Cach 3:

T i m t g a d 6 c u a 4 - 2 ; 3 ) , B(2A

"(-ij<'-0=i

2;0), c(i;o)

Ggi 7(a;6) voi - < a < 2 ; 0 < 6 <3 la tam

' 4

duong tron ngi tiep tam giac ABC Vi S va C

nam tren trye Ox suy ra l{a;r), AB = 5,

= - , A = 3 T a c o S = -BC.h = —

4 2 8

tia S = p.r ^ r =

P 2

Mat khac d(l,AB) = r^

3a + 4 i - 6

2 1

1 13

Suy ra a = — hoac a = — (loai)

2 " 6

giac ABC

»(-3<'-i]=J

3.2.3 Bien phdp 3: Khac phuc sai ldm cua

HS khi gidi todn qua cdc giai dogn

- Giai do^n 1: Sai lam chua xuat hien

Giai dogn nay nhdm phdng ttanh sai lam ciia HS, GV cd the dp dodn trude de "phdng ttanh" bdng each ttang bi cho HS nam vung cac kien thirc todn, kien thiic ve phuong p h ^ gi^i toan, nhan manh edc ehu y can thiet doi vdi HS

- Giai do^n 2: Sai lam xuat hien ttong

Idi giai Quy ttinh d giai doan nay Id GV theo doi thay sai lam -> GV gpi y de HS tp tim ra sai lam—>HS tp tim ra sai lam->GV goi y dieu chinh ldi gidi ->HS the hipn ldi giai diing->GV tong ket vd nhan manh sai lam HS dabi mdc phai

Tiiy theo mite do sai lam md GV chpn cac bien phap su phgm thieh hpp:

+ Dua ra ldi gidi dimg dl HS doi chilu + Chii dpng dua ra ldi gidi sai dl HS nhgn dang cdc dau hieu tim ra sai lam

+ Dua ra nhieu ldi gidi khac nhau (co tiie dung phuong ph^q) ttae nghiem) de HS phdn bi$t dung sai cua cac ldi gidi

- Giai do^n 3: Sai lam da duoc phdn tich va

sua ehua Mpt sai lam cua HS mac dii da dupe phan tich va sura chiia nhung vdn ed the tai dien De khdc phpc tinh tigng nay, GV can thir thach thudng xuyen HS qua edc bdi toan de din den cdc sai lam ma HS thudng mdc phdi Viee chia ba giai doan sai lam chi mang y nghTa nhan manh tiidi diem ciia sai lam, Trong dpy hpe gidi bai tgp toan, GV ed khi dong tiioi tae dpng den ea ba giai doan, bdi vi vira phong ttanh edc sai lam ehua xuat hipn, vira phan tich

va sira chiia cac sai lam dang xuat hi^n dong thoi xda nhimg sai lam da sira ehua

Vi dy 3: Trong mgt phang vdi he tpa do

Oxy, cho 4em ^ ( 2 ; 2) va cac dudng th§ng d^:x + y-2 = 0,d^:x + y-^ = 0 Tim tpa do edc diem 5 va C lan luot thupc d^ vd d^ sao cho tam giae ABC vudng can tai A

Trang 6

Du- doan sai lam: HS se khdng nhgn ra vi

tri tuong doi cua rf, va d^ [d^ lld^)\ quen tinh

ehat eiia tam gidc vudng can dan tdi gidi bdi toan

sai hodc khdng tim dupe each giai Chinh vi vay,

trudc khi HS gidi bdi toan GV cho HS dn nhac

Igi cae kiln thiie ndy de ttanh sai lam

- Hudng dan HS ve binh:

(6-l)(c-4) = 2

V ^\ ' vadat x=h-\, y = c-4, [(b-lf-ic-4f=3'

ta cd hp •i Tir he nay ta tim duac x, y

- Khi HS giai xong, GV cho nhan xet vd nhan mgnh lai nhung chd HS sai lam GV cd thi eho bai t ^ tuong tp eho HS giai de khac sdu kiln thirc

Tom tat each giai:

Vi B€d^,CGd^ nen B(b;2-b\ C ( c ; 8 - c )

Tir gid thiet ta ed he:

[M^=0 f6c-46-c+2=0 f(6-])(c-4)-2

\AB = AC V - 2 6 = C ^ - 8 C + 1 8 \(p-V)^ -{c-Af =^

HinhS

Sai lam suat hien trong qua trinh giai toan:

GV: Do B^{d^),Ce{d^) tin S, C ta

chpn tpa dp nhu thi nao?

HS Chon B{x„y,)^(d,),C(x„y,)^(d,)

- Neu HS ehpn toa dp hai 4 e m B, C nhu

the se dan tdi sai lam la tim tdi bon an

Xg, yg, x^, y^ Khi dd GV gpi y dieu chinh

each chon hai dilm 5 (ft; 2 - ft), C{c; 8 - c)

GV: Hai diem S va C phai thda man dieu

kipn gi dl tam giae ABC vuong can tai Al

HS: ABLAC vaAB = AC

Sau dd lap he phuang ttinh:

\ABAC = 0 \bc-4b-c + 2^0

[AB =AC [ft^ - 2ft - C^ - 8C + 18

- Doi vdi he nay HS giai bdng phuang phdp

the se rat phiic tgp, cd the khdng tim dupe d ^ so

hope tim sai GV cd the gpi y biln doi he thdnh

Ddt x=ft-l, ;^'^c-4 tacdhe xy = 2

•y = 3

y = ~l hogc Gai hp ta duoc x

x = 2, y^l

Suy ra 5(-l,3), C(3;5) hogc 5(3;-l), C(5;3)

4 Ket l u ^ Nhiing van de dua ra ttong bai vilt nay da phan nao ldm ro tinh chat quylt dinh cua khau phan tich tim dutmg loi gjai bai toan ttong gidi toan Dong thdi bdi viet da dua ra dupe mpt so thdnh to ndng luc giai toan vd tii do dl xuat dupe

ba bien p h ^ boi dudng nang lue phan tich tim dudng loi gidi toan eho HS thdng qua day hpc gidi bdi t ^ chii de Phuang phdp tpa dp ttong mat phang De ren luyen ndng luc giai toan ndi rieng

va nang Ipc todn hpe cho HS ddi hdi su no luc quyet tam eua dpi ngu GV todn Chiing tdi hy vpng day Id mdt tai lieu tham khdo ed ieh eho

GV tiong viec ren luyen nang Ipc gidi todn cho

HS, ciing nhu eiing nhu ttong day hoc toan d trudng tnmg hoc pho thdng /

Tai lidu tham khao

[ 1 ] Hoang Chung (1979), Phuang phdp day hgc mdn todn d trudng trung hoe ea sd, NXB Giao

dpe Ha Npi

[2], G Polia (\997), Gidi mdt bdi todn nhu thi ndo^, NXB Gido due, Hd Ndi

[3] Tran Van Hao (Tong chu bien), Nguyen Mdng Hy (Chu bien), Nguyen Van Doanh, Tran

Dire Huyen, Hinh hgc 10, NXB Giao dpe Ha Npi

[4] Huynh Thanh Huong (2010), Phdt triin tu duy sdng tgo cho hgc sinh thdng qua viec dgy hoc chuang "Phuong phdp tga do trong mat phdng-Hinh hoc 10-Ndng cao ", Lugn van Thac sT giao due

hpc, Trudng Dai hpc Vinh, Vinh

Trang 7

[5] Nguyen Ba Kim (Chij bien), Vii Duong Thuy (1992), Phitcmg phdp dgy hgc mdn Tom,

NXB Gao dpe Ha Ndi

[6] Kruchetxki V A (1973), Tdm li ndng luc todn hgc cua hgc sinh, NXB Gido dpe Ha Ndi,

[7], Le Ngoc Son (2015), "Dgy hpc todn ttong trudng pho thdng theo dinh hudng phdt trien nang lue", Tgp chi Todn hpe ttong nhd trudng, (so 1), tt 21-25

[8] Dao Tam (Chii bien), Le Hien Duong (2009), Cdc phuang phdp day hgc khdng truyen thong trgng day hoc todn a truang dai hoc vd trudng phd thdng, NXB Dgi hpe Su phgm Ha Ndi [9] Nguyen Dinh Trai (2001), Nang luc tu duy li lugn cho cdn bd gidng dgy li ludn Mdc - Lenin

d edc trudng chinh tri, Luan an Tien sT triet hpc, Vi§n Triet hoc - Hpc Vipn Chinh tri Quoc gia Ho

Chi Minh, Hd Npi

SOME METHODS IMPROVING STUDENTS' COMPETENCY OF ANALYZING FOR MATHS SOLUTIONS VIA TEACHING THE LESSON THEME

OF COORDINATE PLANE METHOD-GRADE 10 GEOMETRY

Summary This article reviews competencies of maths, analyzing matiis problems and finding solutions; thereby it suggests some methods improving students' competency of analyzing for finding solutions via teaching the lesson theme: "Coordinate Plane Metiiod-Grade 10 Geometry"

Key words: competency, analysis, method, students, exercise, coordinate plane

Ngay nhdn bar 12/5/2017; Ngdy nhgn lgi- 19/6/2017; Ngdy duyet ddng: 15/8/2017

Ngày đăng: 12/11/2022, 14:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w