HUCNG DAN QUAN LI SUDUNG Sljr DUNG Sd DO TU DUY Oi DAY HOC CAC BAI THUC HANH HOA HOC HOU CO l6P 11 ThS L^ Huy Hodng; ThS Trdn Thj Ngpc Anh Truang Dgi hgc Dong Thdp So dd Ur duy (SDTD) cdn ggi la ban d[.]
Trang 1Sljr DUNG Sd DO TU DUY Oi DAY HOC CAC BAI
THUC HANH HOA HOC H O U CO l 6 P 11
ThS L^ Huy Hodng; ThS Trdn Thj Ngpc Anh
Truang Dgi hgc Dong Thdp
So dd Ur duy (SDTD)
cdn ggi la ban do tu
duy, luge dd tu duy
la mpt hinh thdc ghi
chep su dyng mau sac, hinh
anh de md rpng va dao sau
cac y tudng, dugc xay dyng
va phat triln bdi tdc gid Tony
Buzan Sir dyng SDTD ttong
day hgc la mpt ky thugt day
hgc tich cue giup giao vien
(GV) chu dpng, Imh hoat,
tiet kiem thdi gian ttong
vifc thiet ke bai day, truyen
dat kien thiic mdi, cimg cd
kien thiic bai hpc, tdng hgp
kien thuc chuang, cau tnic
va phan loai cac y tudng ,
hinh thanh cho hpc sinh (HS)
phuong phap ty hgc hifu
qua, phat huy toi da tinh sang
tgo,^ kha nang tu duy, nang
Idiieu hpi hga, ddng thdi tgo
tam li thoai mai, kich thich
hiing thli hgc tap cua HS
Hda hgc la mdn khoa
hgc vda ly thuyet vua thyc
nghifm, do dd cdc gid thuc
hanh cd mpt vi tri dac biet
quan ttgng ttong chuang trinh
phd thdng Hien nay, chuang
trinh sach giao khoa mdi da
chii ttpng va tang cudng gid
thyc hanh cho HS De cac
gid hoc thyc hanh dat ket
qua tdt, vifc chuan bj d nha
cua HS la rat cdn thilt GV
yeu cdu HS thilt kl SDTD
cho bai thyc hanh trudc khi
len ldp Khi thyc hanh, HS
diln hien tugng va giai thich
vao SDTD, sir dung SDTD
dd ldm ban tudng trirdi thi nghifm GV sii dyng SDTD
de minh hpa va tdng kit ket qud thyc hanh
1 Vai trd cua stf do tir duy trong d^y hgc hoa hpc SDTD giup cho GV hpa hoc thiet ke bai giang, sap xep cac y tudng theo mgt tririh ty logic, tryc quan, hf thpng fren ca sd myc tieu, kien thiic frgng tam cua bdi hgc Giiip GV cdp nhat kidn thuc mpt each de dang vd nhanh chdng
Npi dung bai hpc fren ldp dugc td chirc thyc hien qua SDTD khdng nhung the hifn kien thuc hda hgc ma cdn cho thay mdi quan he giua cac kien thiic Do la mpt cdng cu ghi nhd tdi uu, giup trinh bay bdi giang mpt each he thdng
Giiip HS cd cdi nhin tdng quat ve npi dung bai hgc
SDTD tang cudng hoat dpng tich cyc cua moi HS thdng qua sy hudng dan ciia
GV cho HS tir hpc theo SDTD
va d miic dp cao han nlia, HS
cd the til lyc xdy dung SDTD theo cac muc tieu ciia bai hgc
da dugc vach san
2 Quy trinh lap SDTD trong day hoc cdc bai thvc hanh hoa hgc
- Buac 1: Xac dinh tii
khda cua SDTD, cd the la ten bai thyc hanh
- Buac 2: Xdc dinh cac
nhanh chinh cua SDTD, la cdc phdn kiln thiic chmh, cd
the Id: hda chat, dyng cu, sa
do thi nghiem each tien hanh, hifn tugng, giai thich, Mdi mpt ddng ciia SDTD tuang ling vdi mpt tii khda Trong timg nhdnh chinh cd the chia thdnh timg nhanh nhd hon _
- Buac 3: Thiet lap mdi
lien hf giiia cac nhanh Chu y: Ludn su dung cac mdu sac vi mau sac cd tac dung kich thich nao nhu hinh anh; Dimg cachinhdnh hda hgc xuyen sudt dd tgo hiing thii cho HS ttong qua trinh hpc tap nhu hinh ve cau tnic phan tii, thi nghidm, iing dung,
3 Hoat dpng day va hoc vdi SDTD cdc bai thyc hanh hda hgc hun co
Buac L Chudn bi
Chudn bi cua GV yd HS
la yeu td quyet dinh den chat lugng va sy thanh cdng cua tiet thyc hanh
* Chuan bi ciia GV
GV xac dinh muc tieu bdi hpc, lua chgn phuang phap va phuofng tifn dgy hpc phil hgp vdi npi dung cua bai, sau do thiet ke ^iao
an bang SDTD vdi sy hd ttg cua cdc phan mem tin hgc
nhu Mindjet MindManager, Concept Draw.Mindmap Pro.v5.2.2, e'MindMap_4.0 (Hinh 1) ,
* Chudn bi cua HS: Trudc cac budi thuc hanh,
GV yeu cau cac nhdm HS (mdi nhdm tir 6-8 em) lap
Ngdy nhgn bdi 23/01/2013; N^Ay duvp.t ddnp 25/02/2013
Trang 2Hinh 1 Cdu true chimg ticn lrinh day hgc hdi thuc hdnh hdng SDTD
m
Hinh 2 Sa do tu duy bdi 28 - Hoa hgc lap 11
mpt SDTD bai thuc hanh cho
tiet hgc thyc hanh do, vdi tu
khda la npi dung^ chinh ciia
bai thuc hanh Moi HS trong
nhdm se phu trach mpt mang
ciia npi dung chinh tuang
ling vdi mpt nhanh chinh cua
SDTD, thiet lap moi lien he
cua npi dung kien thuc minh
phu trach vdi cac nhanh npi
dung kien thuc khac trong
SDTD
GV khuyin khich HS
phat huy _tdi da su san^ tao,
nang khieu hpi hga, ket hop
sir dung nhieu mau sac^ hinh
anh minh hpa lam ndi bat
kiln thijc trgng tam, thu hut
dugc sy chii j , giiip ngudi
dgc di nhd, de lien tudng
Buac 2 To chirc hogt
dong dgy vd hoc tren l&p
Mpt tiet thyc hanh hda hgc thong thudng cd mgt sd hoat dpng nhu sau:
Hoat dpng 1: Hoat dpng
khdi dpng
GV neu muc tieu cua gid thyc hanh, npi dtmg cac thi nghifm, phan chia cac nhdm thyc hanh (mdi nhdm ttr 6 den 8 HS) va yeu cau HS thyc hien gid hpc nghiem tlic, tuan thti cac npi qui phdng thi nghiem, dam bao tuyet ddi an toan, ty giac lam viec ca nhan va ttao ddi phdi hgp frong nhdm
HS nghe, hieu muc dich, cac yeu cau ciia gid hgc va nhan cac nhdm hgc tap ciia minh
Hoat dpng 2: Kiem fra su
chuan bi cua HS
GV ggi tiing nhdm HS len trinh bay klt_qud ve SDTD
da chudn bi sin d nha
Hoat dpng 3: Hoat dpng
tien hanh thi nghiem Cdc nhdm HS tien hanh thi nghifm va hoan thien SDTD cua timg nhdm
Hoat dgng 4: Hogt dpng
ket thuc gid thyc hanh
GV cho tirng nhdm bdo cao ngan ggn ve ket qud hogt dpng cua nhdm qua SDTD Cac nhdm nhan xet lln nhau
GV nhgn xet qua SDTD
ma GV da chuan hi tnrdc
Vi du: day bai thyc hanh 3
"Phan tich dinh tinh nguyen
td, dieu che va tinh chat oia metan" (SGK Hda hoc ldp 11)
Hoat dpng 1: Hogt dpng
khdi dpng
GV neu muc tieu bai thi nghiem: HS can dat dugc cac muc tieu sau khi hodn thanh thi nghiem:
- Phan tich dinh tinh cdc nguyen to C vaH
- Dieu che va thu khi metan
- Dot chay khi metan
- Dan khi metan vao dung dich thudc tim
GV: chia ldp thanh cac nhdm nhu da phan cdng trudc
Hoat dpng 2: Kilm tta sir
chuan bj cua HS
Cac nhdm HS tiln hdnh thi nghiem vd hoan tiiien SDTD ciia tiing nhdm
Hoat dpng 3: Hoat dpng
tien hanh thi nghifm Cac nhdm HS tiln hanh thi nghiem va hoan thifn SDTD ciia tumg nhdm
Hoat dpng 4: Hoat ddng
kit thuc gid thyc hanh
Trang 3Cac nhdm lan lugt bao
cao ket qud thi nghifm qua
SDTD, GV tdng kit thdng
qua SDTD da thiet kl sin Ien
man chilụ
4 Kit lu^n
GV su dyng SDTD trong
day hpc se cung cap cho HS
cd cai nhin tdng quat vl vdn dl
dang hgc t£^ Thdng qua SDTD
do cdc em ty thilt kd cd the danh
gid dugc iniic dp ty hoc tap, mure
dp hieu biet va nam b^t van de d
mdc dp nao, GV cd die nhanh
chdng dieu chinh cho phu hgp
Ngoai vifc diilt ke SDTD cho
cac bai 1hi^ hanh, GV cdn cd
the thilt ke cac Mi luyfn t ^
GV cd the hirdng đn HS 1^
SDTD eho bai mdi, ghi chep
kien ihiic tren ldp, dn tap khi thi
cir, ^ ke hoach ca n h ^ minh
hga cac y tirdng cua ca nhan Sii
dung SDTD ttong day hgc that
sy la đi mdi phuong p h ^ day hgc, gdp phan nang cao hifu qud dgy hgc hda hgc ndi rieng
va cac mdn hgc khac, gdp phan nang cao nang lyc nhan thiic cuaHS
Tdi lifu tham khao
1 Tran Dinh Chau, Dgng
Thi Thu Thiiy Dgy lot - hgc
tot cdc mdn hgc bdng bdn do tu duy, NXB Giao dye Vift Nam,
2011
2 Nguyen Xudn Trudng,
tdng chil bien, Sdch gido khoa
Hoa hgc II, NXB Gido due
2007
3 PGS.TS Nguyin Thj Sim (Chu bien), TS Le Van Nam,
Phuang phdp dgy hgc hoa hgc,
NXB Khoa hoc va ky thuat,
2009
4 Tony Buzan, Sa do tu
duy, NXB Tong hgp TP Hd Chi
Minh, 2008
Summary IMindMap huge role in teaching chemistry, especially the exercises IMindMap
in teaching chemistry to help lectures become more intuitive, more scientific and logic Instmctional practices
to help students IMindMap to maximize the ability to think,
to create, and stimulate the imagination, inspire students
to bring positive results in teaching chemistrỵ In this article we introduce you how to build and use IMindMap from advanced exercise class taught organic chemistry 11
KHAM PHA DirdNG CYCLOID ,
3 Mpt s6 tinh chdt cua
dvdng cycloid \k astroid
Vi dv 1 ^
Chi ra rang difn tich xdc
dinh bdi mdt cung ciia dudng
cycloid bang ba ldn difn tich
cua dudng ttdn lan
That vdy, mpt cung dugc
xdc dinh khi dudng ttdn
chuyen dpng dung mpt vdng
trdn xoaỵ Vi vgy sit dung tich
phdn tinh dif n tich vdi tham
sd 6 la tham sd bifn lay tich
phdn
A=Jydx = J y 2 | i 9 = Jăl-cos6)
aO - cosewe = J âa - cose)^de
= â J a - 2cose + cos^ e)de
2Jt 1 =
= a ^ J O + cos^e>de = âJ"d6 +
1 ° °
â J - (1 + cos 2e)de ^ 3jtậ
Vi du 2 Xet dudng thang tiep xuc vdi dudng asttoid tgi diem P ttong gde phan tu thii nhat
Chi ra rang dogn thang dugc tgo bdi khi tiep tuyen nay cat bdi cdc true tga dp cd dp đi khdng đi, khdng phy thupc vao vi tri cua P
That vdy, tu phuang trinh x
= acos^G, y = asin^9, hf so gde cua tilp tuyen Id
ý = -i- = = - tan6
dx -3asinecos^ede Nen phuomg trinh ciia tilp tuyin Id y - asin^G = -tan9(x-acos^O)
Chiing ta tun giao vdi ttyc
Ox bdng each cho y = 0 va tim X
x = acos'6 + asm^ecos9 = acos9
Tuong ty, giao vdi ti-yc Oy
Id y = asinG Vi vay dogn tiidng dugc tgo bdi khi tiep tuyen cat
(liep trang 30)
bdi cac tryc tga do cd dp đi la V^cos^ + âsin^ ^ a la hang sd Tren day la mdt sd khdm phd xoay quanh cdc dudng cycloid vd hypocycloid Bdi viet ndy can trao đi gi therả Mong dugc su chia se ciia cdc ban
Tai lifu t h a m khao
1 George F Simmons,
Gidi tich mgt bien so, Gido
trinh trudng Dai hpc Thiiy lpị
2 Phgm Thanh Phuong,
Dgy vd hgc todn vai phdn mem Cabri, tdpl Hinh hoc phang, NXBGD, 2006
S u m m a r y This article will explore
to the cycloid, hypocycloid curves and some their properties by the aid of Cabri interactive softwarẹ