Trong bdi viet ndy, cdc tdc gia tap trung phdn tich cdc yeu to dnh hudng den ty li thdt nghlip nhuddn so, tong gid tri sdn xudt cdc nganh nong nghlip vd cong nghiep theo gid so sdnh ndm
Trang 1NGHIEN CQU TRAO D O !
AP DPG MO mm HOI QUY VOI so LIEU Mm
DE NHAN DANG THAT NGHIEP 6 VIET NAM
^ PGS.TS Nguyen Cao Van - Ths Pham Ngoc HiTng
Dai hoc Kinh teOudc ddn Ha Noi
Tmh trgng thdt nghiep vd vdn de thieu viec Idm doi vdi ngudi lao dgng luon dugc nhieu nhd nghien cUu
va quan ly kinh tequan tdm, ddc biet la cdc yeu to dnh hudng den thdt nghlip vd nhdn dgng thdt nghiep
Trong bdi viet ndy, cdc tdc gia tap trung phdn tich cdc yeu to dnh hudng den ty li thdt nghlip nhuddn so,
tong gid tri sdn xudt cdc nganh nong nghlip vd cong nghiep (theo gid so sdnh ndm 1994) bdng mgtmd hinh
kinh te lugng md cu the Id mo hinh hoi quy vdi so lieu mdng, tUdd dUa ra mgt sd thdo ludn denhdn dgng cd
tinh chdt thuc chdng ve thdt nghiep d nudc ta
Van de that nghiep theo chu ky hay that nghiep
CO caiu
Cic hpc thuyet kinh te hpc giii thich that nghiep
theo cic cich khic nhau Kinh te hpc Keynes cho ring
khi tdng cau t o i n xa hpi g i i m dan den c i t giam sin
xuit v i sa t h i i cdng nhin (thdi ky suy giim kinh te)
thi diy l i dang thdt nghiep theo chu ky Mpt so n h i
nghien cffu khic lai cho rang cic van de ve co cau i n h
hudng den thj trudng lao dpng thi diy l i dang that
nghiep do cacdu Kinh te hpc cd dien ly giii i p Iffc thj
trudng lao dpng den tff ben ngoii, nhU mffc lUOng tdi
thieu, thue Cd y kien lai cho rang that nghiep chu ye'u
l i sff Iffa chpn tff nguyen Cic quan diem khic nhau co
the dung theo cic cich khic nhau gdp phan dUa ra cii
nhin t o i n dien ve tinh trang that nghiep Van de that
nghiep theo chu ky hay that nghiep do co ciu trong
nen kinh te My d giai doan hien nay cung dupc mpt
so nha nghien cffu kinh te nUdc niy tranh luin nham
tim c i u t r i Idi cho loai hinh that nghiep cua nffdc niy
Mot so phan tich cTe lUa chon mo hinh
Tff ngudn sd lieu dffpc cung c i p bdi Tdng cue
Thong ke, ta nhin t h i y sd lieu cua cic bie'n, dd l i : ty le
t h i t nghiep khu vffc t h i n h thj, d i n sd, tong g i i trj sin
xui't cic nginh ndng nghiep v i cdng nghiep (theo g i i
so sinh n i m 1994) theo 6 vung kinh te do l i : Viing
1 = (Vffng ddng b i n g sdng Hdng), Viing 2 = (Vung
Trung du v i mien nui phia bic), Viing 3 = (Vung Bic
Trung bp v i duyen h i i mien Trung), Viing 4 = (Vung
Tiy Nguyen), Vung 5 = (Vung Dong Nam bp), Vung 6 =
(Vung ddng b i n g song Cffu Long), moi vung lai dupc
quan sit tff n i m 1996 de'n n i m 2009 Neu ta phin
tich cic yeu td i n h hffdng de'n ty le that nghiep cua
mdi vung theo thdi gian (tffc l i ta xet md hinh hoi quy
vdi so lieu thdi gian cho mdi vung) thi ta da bo qua
i n h hudng cua cic vung khic den ty le that nghiep
cua vung niy Tuong tff, neu ta phin tich cic yeu to
i n h hudng den ty le t h i t nghiep cua t i t c i cic vung
theo tffng n i m (tffc l i ta xet mo hinh hoi quy vdi so
lieu cheo cho tffng nam) thi ta lai bo qua nhffng i n h hudng xu the theo cic nam den ty le that nghiep cua moi vung
Mpt khic biet nffa giffa mo hinh hdi quy vdi so lieu mang va mo hinh hdi quy vdi so lieu cheo (hay so lieu thdi gian) dd l i : Mo hinh hoi quy vdi so lieu cheo xem xet t i t c i nhffng yeu to ngoii mo hinh (nhU cic yeu to khong co sd lieu, cic die tinh khdng quan sit dupc.v.v.) va nhffng yeu to nay cP i n h hUdng den bien phu thupc thi ta dai dien chung bdi cic sai so ngiu nhien ui, trUdng hpp nay ta lUu y den mpt g i i thie't quan trpng cua phuong phip Udc lUpng OLS (Ordi-nary Leats Squares) do l i cic bie'n dpc lap trong mo hinh khong tUOng quan vdi cac sai so ngau nhien ui, trudng hpp gia thie't niy khong dUpc thoa man thi ta khong dung phUOng phap OLS de Udc lUpng dUpc
Mpt ciu hoi d i t ra nffa la cic dac tinh khong quan sit
duqc khong thuin nhat theo cic vung v i thdi gian
nhUng lai co i n h hUdng den ty le that nghiep thi ta Udc Iffpng mo hinh nhUthe nio? Oe t r i Idi cho cic ciu hoi tren, ta se dung mo hinh hoi quy vdi so lieu ming
Mo hinh vdi so lieu mang
Xet mo hinh
};_ = ^^_ + a, + ,y + /?, X,„ + yS,^,,, +••• + /],X^^, + e, (1)
i = hN t = VJ
Trong do:
-I-) N l i so vung kinh te (6 vung kinh te), T l i so nam
quan sit (14 nam)
-I-) Y l i bie'n phu thupc (ty le t h i t nghiep), cic bien
X^, X^, • •, \ l i cic bien dpc l i p (Ln(Dan so), Ln(T6ng
g i i trj sin xuit nganh nong nghiep), )
-I-) /? l i he so chan chung cua mo hinh theo cic vung kinh te va theo thdi gian
-I-) P, l i cic he sd hdi quy ffng vdi cic bien
,V ( / = i 7 X ) , ta g i i thiet cic he sd nay khdng ddi theo thdi gian va cic vung kinh te, hay cic vung kinh
TAP CHl LAO OONG VA XA H 6 I - Sd407- TU 16-31/5/2011
Trang 2NGHIEN CU'U TRAO DO!
te khdng cd sff khic biet ve t i c dpng bien cua cic bie'n
giii thich den bien phu thupc trong mP hinh
-I-) Sj, la cic sai sd ngiu nhien thda man mpi gia
thiet cua phuong p h i p udc lupng bang binh phuong
nhd n h i t thong thudng
-I-) CC l i he sd cua cic die tinh rieng khong quan
sit dupc ffng vdi mdi vung kinh te (theo t i t c i cic
nam) cd i n h hudng de'n bie'n phu thupc, Y: la he so
cua cic die tinh rieng khdng quan sat dUpc ffng vdi
moi n i m (cho t i t c i cic vung kinh te) co i n h hudng
den bien phu thupc
Vin de ta-cin xem xet cie a v i Y, de dUa ra mpt
phuang p h i p udc lupng tdt nhi't doi vdi mo hinh (1)
TrUdng hap T
Neu a^^a(\/i = \\N).Y^=y{\ft = \:T)
tffc l i eic die tinh khdng quan sit dUpc thuan nha't
theo thdi gian v i cic vung kinh te thi ta udc lupng mo
hinh (1) b i n g phuong phip binh phuong nhd nhit
thdng thffdng la phu hpp TrUdng hpp niy ta gpi l i
udc lupng mo hinh bang phuong p h i p binh phuang
nhd nhdt gdp (Pooled Ordinary Least Squares - POLS)
Truang hap 2: Neu cic die tich khdng quan sit
dupe cua cic vung kinh te khong t h u i n nha't nhUng
CO i n h hudng de'n bien phu thupc v i tUOng quan vol
cic bien giii thich trong mo hinh thi ta UPc lUpng md
hinh (1) bing phuong phip tdc dong cd dinh MP hinh
t i e ddng ed djnh xem xet cic a l i cic he sd chin
rieng ffng vdi mdi vung kinh te Do vay phuong p h i p
ffdc Iffpng md hinh t i c ddng co dinh l i phuong phip
cd sff dung bien gia (Least Squares Dummy Variable
•- LSDV)
TrUdng hap 3 : Neu cic dac tich khong quan sit
dffpc cua cic vung kinh te khPng t h u i n nhi't nhung
CO i n h hudng den bien phu thupc v i khong tUOng
quan vol cic bien giii thich trong mo hinh thi ta udc
lupng mP hinh (1) bing phuong p h i p tdc dgng ngau
nhien Md hinh t i c dpng ngau nhien xem xet cic die
tinh khong quan sit dUpc nhU l i cic bien ngiu nhien
ffng vdi moi vung kinh te v i cic a la cic he so ffng vdi
cic bien ngau nhien do
Vdi y ta phin tich tUOng tff
Phan tich anh hUdng cua dan so, gia trj san xuat
cac nganh nong nghiep va cong nghiep den ty le
that nghiep (khu vffc thanh thj) theo vung kinh te
va theo thdi gian
Md binh dupe lUa chpn l i md hinh hoi quy dang
tuyen tinh - loga vdi so lieu ming
TN^^ = /?„ -¥a^+y,+ /^,Ln{DS), + /3.Lii{NN)_^
^P^LniCN)^^ + £•„ (2)
Vdi TN - (Ty le that nghiep khu vUc thanh thi theo
vung kinh te)
Ln(DS) = Loga(Din sd), Ln(NN) = Loga(Tdng g i i
tri sin xui't (gii so sinh 1994) nganh Ndng nghiep),
Ln(CN) = Loga(Tdng g i i tri sin x u i t (gii so sinh 1994)
nginh Cong nghiep) / la chi sd vung kinh te, r la chi sd thdi gian
cT.V 1
Giii thich y nghia cua /? :Ta cd -—- = P 7— vdi
,_ • cDS DS
so lieu roi rac ta co
6^- hay ATN = fi
'^ DS - DS
\DS DS ' DS dieu nay cho
biet khi d i n so t i n g 1% thi ty le t h i t nghiep thay doi
/]\ (tuytheodiucuay? ),vdi/? ,/? giii thich tuong tu
Tai sao ta dUa ra md hinh (2) ? -) Do don vj cua ty le that nghiep l i % cdn don
vj cua cic bie'n tdng g i i trj sin xui't cie nginh cong nghiep v i nong nghiep l i ty ddng, don vi cua bien
d i n so trung binh la nghin ngudi nen mo hinh phu hpp l i mo hinh dang tuye'n tfnh - loga
-) Xet bien ty le t h i t nghiep phu thupc vio loga cac bien d i n so, tdng g i i trj cic nganh ndng nghiep, cong nghiep va dich vu, nhUng khi dd cie bien dpc lap trong
md hinh cd nguy eo da cpng tuye'n cao nen tic gii dat van de xem xet udc lupng md hinh (2)
Ta udc lupng mo hinh (2) bang cic phuong phip khic nhau va kiem dinh tinh phu hpp cua mo hinh ffng vdi tffng phuong p h i p udc lUpng
Ket qud Udc lugng md hinh hoi quy gpp
Method: Panel Least Squares TNGHIEP = -0.7421272 -I- 2.39559*Ln(DS)
- 1.390298*Ln(NN) - 0.2627755*Ln(CN)
t = (-0.365183) (7.929388) (-6.36951) (-2.80316)
n = 6, T = 1 4 R^ = 0.487345, F-statistic = 25.35007
Kit qud Udc lugng mo hinh tdc dpng codinh theo viing
Method: Panel Least Squares - Cross-section fixed (dummy variables)
TNGHIEP = 3.4628 -1- 2.243565*Ln(DS)
-0.65502*Ln(NN)-1.252314*Ln(CN)
t = (0.249223) (1.106272) (-0.884505) (-6.116770)
n = 6,T=14, R^ = 0.791284 Ket q u i kiem djnh mo hinh hdi quy gpp phu hpp hay mo hinh t i c dpng cd djnh theo vung phu hpp ? Redundant Fixed Effects Tests
Test cross-section fixed effects Effects Test
Cross-section F Cross-section Chi-square
Statistic
21.843576 75.485010
d.f
(5,75)
5
Prob
0.0000 0.0000
Ket luin Udc lupng mo hinh hoi quy gdp khong phu hpp
TAP CHi LAO OONG VA XA HOI - Sd407- TU 16 -31/5/2011
Trang 3NGHIEN Cl/U TRAO DOI
Kit qud udc lugng md hinh tdc dpng ngdu nhiin
theo viing
Method: Panel EGLS (Cross-section random effects)
TNGHIEP = -2.090888 -(- 3.5722465*Ln(D5)
-1.83647*Ln(NN)-0.79n9968*Ln(CN)
t = (-0.528688) (7.05338) (-5.885357) (-6.041751)
n = 6,T=14, R^ = 0.577065
Ket q u i kiem djnh md hinh t i c dpng ngau nhien
theo vung phu hpp hay mo hinh t i c dpng ed djnh
theo vung phu hpp ?
Correlated Random Effects - HausmanTest
Test cross-section random effects
Test Summary Chi-Sq Chi-Sq d.f Prob
Statistic Cross-section 20.170744
and period
random
3 0.0002
Ket luin Udc lUpng mo hinh t i c dpng ngiu nhien
theo vung khdng phu hpp
Ket q u i kiem djnh cho thiy, md hinh t i c dpng
CO djnh theo vung phu hpp nhUng chi cd he sd cffa
bie'n Ln(CN) cd y nghia thdng ke Vi viy ta lan lupt udc
lupng cic mP binh t i c dpng cd djnh v i t i c dpng ngau
nhien theo c i vung v i thdi gian ddng thdi kiem djnh
sff phu hpp cua t i t c i cic md hinh nay Cudi cung ta
tim dffpc md hinh phu hpp nhi't l i md binh t i c dpng
ngau nhien theo c i vung va thPi gian
Kit qud Udc lugng mo hinh tdc dpng ngdu nhiin
theo vimg vd thdi gian
Method: Panel EGLS (Two-way random effects)
TNGHIEP = -2.053657 + 3.55232*Ln(DS)
- 1.805507*Ln(NN) - 0.806417*Ln(CN)
t = (-0.4377) (5.733) (- 5.0057) (-5.2509)
n = 6, T =14, Total panel observations - 84,
R^ = 0.521608
Ke't q u i kiem djnh sff phu hpp cua mP hinh cudi
Correlated Random Effects - HausmanTest
Test cross-section and period random effects
Chi-Sq d.f Prob
Test Summary Chi-Sq
Statistic
Cross-section
and period
ran-dom
Dffa v i o ke't q u i kiem dinh ta ket luin md hinh t i c
dpng ngiu nhien theo vung v i theo thdi gian l i phu
hpp vol c i 3 mffc y nghia 1 %, 5% v i 10%
Nhdn xet:
He so chin chung cua mo hinh khong co y nghia thdng ke, eic he sd edn lai deu co y nghia thong ke vdi mffcy nghia 5%
Khi g i i trj sin xui't cic nginh nong nghiep va cong nghiep khong doi, d i n so theo vung v i thdi gian tang 1% thi ty le that nghiep theo vung trung binh tang 3,55%
Khi g i i tr| sin xuit nganh cong nghiep v i d i n so khong ddi, gia tri sin xui't nginh nong nghiep theo vung va thdi gian t i n g 1% thi ty le t h i t nghiep trung binh theo vung giim 1,8%
Cic die tinh khong quan sit dupc co tic dpng den
ty le that nghiep theo vung CROSSID Effect
1 0.829288
2
Chang han ta giii thich con sd 0,829288, diy chinh l i he so ffng vdi 1.042109 cic die tinh khong quan
sit dupc cua vung 1 cho
3 -0.913141 biet cic die tinh khong
quan sit dUpc l i m ting
4 -0.104658 ty le that nghiep vung
niy len 0,829288% Day
5 1.001112 la Ipi the CO b i n cua mP
hinh so lieu ming so vdi
6 0.229508 cic loai mP hinh khic
Mot so ket luan
1 Tff ket q u i udc lupng ta nhin thay cac dac tinh
khong quan sit duoc d Vung 1, Vung 5 va Vung 6 tic ddng cung chieu den ty le t h i t nghiep, hay noi khic di cic dac tfnh niy lim t i n g ty le that nghiep 3 vUng niy Quan sit thffc te ta thi'y chinh sich cua Nha nude ta (nhffng nam vffa qua va hien nay) la chuyen dich kinh
te nginh nong nghiep sang cic nganh cong nghiep va dich vu Vl viy ta xem xet chinh sich nay inh hUdng den 3 vung kinh te ndi tren nhUthe nio?Theo sd lieu
do Tong cue Thong ke cong bo thi tdng g i i tri sin xui't nginh nong nghiep (theo gii so sinh nam 1994) cua 3 vung niy so vdi c i nudc nam 1996 la 68,28%, nam 2005
la 63,27% v i nam 2009 l i 61,26%, dieu niy chffng to chinh sich cua Nhi nudc tic dpng manh den g i i trj sin xua't nginh ndng nghiep cffa 3 vung niy
Nhu vay, khi cO ciu chuyen djch nginh nong nghiep sang nginh cdng nghiep v i dich vu thi mpt luong Idn ngUdi lao dpng nginh nong nghiep 3 vung niy bi t h i t nghiep, v i do viy cP the ket luin thuc
chffng ring that nghiep cua nUdc ta la "Thdt nghiep
do cacdu"
2 Mpt die tinh khic ta cin luu y do l i so ngudi lao
dpng qua dio tao cua 3 vung nay rit IPn so vol 3 vung con lai Dieu niy cho thiy sd ngudi lao dpng va khi nang cua ngUdi lao dpng d mpt vung ting len lai lim ting ty
le thit nghiep cua vung niy.Q
TAP CHf LAO OONG VA XA H 6 I - 5d407- TU 16-31/5/2011