TheJRC-POLESmodelisaglobalpartialequilibriumsimulation modeloftheenergysector,covering38regionsworld-wideplus theEU.Themodelcovers15fuelsupplybranches,30technologies inpowerproduction,6i
Trang 1A global stocktake of the Paris pledges: Implications for energy systems
a
European Commission, Joint Research Centre (JRC), Seville, Spain
b
E3MLab, National Technical University of Athens, Greece
A R T I C L E I N F O
Article history:
Received 18 April 2016
Received in revised form 25 July 2016
Accepted 26 August 2016
Available online 13 September 2016
JEL classification:
C60
Q40
Q50
Keywords:
International climate negotiations
Mitigation policy
Paris agreement
INDC
Modelling
Global stock taking
A B S T R A C T
(http://creativecommons.org/licenses/by/4.0/)
1.Introduction
The twenty-first edition of the annual United Nations-led
conferenceonclimatechange(ConferenceoftheParties,COP21)
washeldinParisinDecember 2015.TheParisAgreementisan
importantstepforwardininternationalclimatechange
negotia-tions Itsmain merits include a legally binding2C target,the
introductionofa five-yearlyreviewprocessfrom2018onwards
withafirstglobalstocktakescheduledfor2023andanagreement
oninternationalclimatefinancing.Comparedtopreviouseditions
suchasCOP3inKyotoandCOP15inCopenhagen,thebottom-up
approach to climate change mitigation (introduced in Durban,
COP17in2011)wasafundamentalshiftinthenatureofthepolicy
process.Intherun-uptoCOP21,mostcountriessubmittedclimate
actionpledgeslabelled‘IntendedNationallyDetermined
Contri-butions'(INDCs).Thegreenhousegasemissionsofthecountries
emissionsin2010(UNFCCC,2016).Hence,incontrasttotheKyoto
protocol, the Paris pledges have a broad coverage in terms of
sufficient conditiontoavoid globalwarmingof more than 2C above pre-industrial levels by theend of the century, a target includedintheCopenhagenAccord(COP15)in2009 andinthe CancunAgreement(COP16)in2010.Pre-COPanalysesindicatethat theINDCsimplyanincreaseinglobaltemperaturesintherangeof 2.6–3.1C by2100 (Fawcett et al.,2015; Gütschowetal., 2015; Rogeljetal.,2016).Anotheroutstandingchallengeisthevoluntary natureofindividualcountries’emissionreductions.Onceratified, the Paris Agreement will be legally binding, but the INDCs of
reduction,itdoesnotincludeanyexplicitreferencetotheaviation andshippingsector
The outcomes of previous rounds of international climate changenegotiationshave beenassessedby variousstudies.For
Protocoldoesnotimplyacost-effectiveclimatechangemitigation policy and highlight the cost-reducing potential of emission
combinationofpermittradeandthepresenceof‘hotair'(dueto emissiontargetswellabovetheprojectedbusinessasusual)may
* Corresponding author.
E-mail addresses: toon.vandyck@ec.europa.eu , vandycktoon@hotmail.com
(T Vandyck).
http://dx.doi.org/10.1016/j.gloenvcha.2016.08.006
0959-3780/ã 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Global Environmental Change 41 (2016) 46–63
ContentslistsavailableatScienceDirect
j o u r n a lh o m e p ag e :w w w e l s e vi e r c o m / l o c a t e / g l o en v c h a
Trang 2strongly reduce the environmental effectiveness of the Kyoto
Protocol.Theanalyses ofthepledgesoftheCopenhagenAccord
basedonintegratedassessmentmodels(denElzenetal.,2011a,b;
vanVlietetal.,2012;Riahietal.,2015)andcomputablegeneral
equilibrium(CGE) models(Dellink etal.,2011; McKibbin etal.,
2011;Petersonetal.,2011;Saveynetal.,2011;Tianyuetal.,2016)
typicallyfindapolicycostbetween0and3%ofGDPcomparedtoa
baselinein2020fordifferentcostmetrics(abatementcost,GDP,
welfare) Pre-COP21assessments of theINDCs canbe foundin
Fawcettetal.(2015)andIEA(2015)
Thispaperassessestheenergy-relatedandeconomic
implica-tionsoftheclimatemitigationpoliciesembeddedintheINDCs.The
maincontributiontotheliteratureistwofold.First,wepresenta
timely, policy-relevant, global stocktake of the Paris mitigation
pledges that translates the outcome of thelatest international
climate negotiations into quantifiable changes in a range of
variablesincludingenergydemand,thecompositionofenergyand
electricityproduction,economicactivity,tradeandemployment
Thesecond contributionliesin the methodologicalframework,
presentedinthefollowingsection.Thecombinationofa
bottom-up,detailedenergysystemmodelandatop-downglobaleconomic
modelexploitsthecomplementaritiesbetweenbothandenables
anextensivestudyofclimatechangemitigationpolicies
The remainder of the paper is organised as follows After
presentingthemethodology, wedescribethescenariosstudied:
theReferencescenario,theINDCscenariocoveringthemitigation
componentoftheParispledgesandascenariothatislikelytoput
theworldontracktomeetthe2Ctarget.Resultsarepresentedin
Section4.Wehighlighttheimpactonenergyproduction,demand
presenthowthegapbetweentheINDCsandthe2Cpathwaycan
bebridged.Thefinalsectionconcludes
Theassessmentofclimatechangemitigationpoliciespresented
inthispaperbuildsonthecombinedmodellingeffortofadetailed,
europa.eu/jrc/en/poles)and aneconomy-wideComputable
Gen-eralEquilibrium(CGE)model(JRC-GEM-E3,https://ec.europa.eu/
jrc/en/gem-e3/) The models are harmonized along a common
Referencescenarioandaresoft-linkedtoexploit
complementar-itiesofa detailedrepresentation ofenergyproduction, demand
mechanisms including international trade, intermediate input
linksbetweenindustries,andrecyclingoftaxationrevenueonthe
otherhand.Assuch,thispaperaddressespartofthecritiqueon
standard modellingpractices put forwardbyRosen (2016) and
Rosen and Guenther (2016), particularly onthehigh degreeof
aggregationinmostintegratedassessmentmodels.Incontrastto
exercisesusingnumerousmodelsinordertoprovidearangeof
resultsforacommonsetofoutputvariables(Kriegleretal.,2013,
2015;Riahietal.,2015),thispaperemphasizesthatdifferentmodel
typescancontributecomplementarypartstoacomplexpuzzle
ThescenariosanalysedherebuildontheanalysesbyLabatetal
(2015), Kitous and Keramidas (2015) and Kitous et al (2016),
adopted by Russ et al (2009) and Saveyn et al (2011) The
bottom-uprepresentationofthepowersectorcontributestobutis
distinctfromtheliteraturereconcilingtop-downandbottom-up
informationwhilebuildingahighdegreeofenergysystemdetail
intoaCGEmodel(e.g.McFarlandetal.,2004;Hourcadeetal.,2006;
Sue Wing, 2008; Böhringer and Rutherford, 2008; Abrell and
Rausch,2016;LiandZhang,2016).Thefollowingparagraphsbriefly
describetheJRC-POLESmodel,theJRC-GEM-E3modelandtheway
inwhichthetwomodelsarecombined.Formoredetailedmodel descriptionswerefertoAppendicesAandB,theabove-mentioned modelwebsitesandthemathematicaldescriptionofJRC-GEM-E3
inCaprosetal.(2013) TheJRC-POLESmodelisaglobalpartialequilibriumsimulation modeloftheenergysector,covering38regionsworld-wideplus theEU.Themodelcovers15fuelsupplybranches,30technologies
inpowerproduction,6intransformation,15finaldemandsectors andcorrespondinggreenhousegasemissions.GDPisanexogenous inputintothemodel,whileendogenousresourceprices, endoge-nous global technological progress in electricity generation
mitigation policies discussed in the next section and listed in
AppendixCareimplementedbyintroducingcarbonpricesupto thelevelwhereemissionreductiontargetsaremet.Carbonprices affect the average energy prices, inducing energy efficiency responsesonthedemandside,andtherelativepricesofdifferent fuelsandtechnologies,leadingtoadjustmentsonboththedemand side (e.g fuel switch)and the supply side (e.g investments in renewables)
model.Themodeldescribestheeconomicbehaviourof
(exogenous) government policies,different typesof energy use
Inter-industryconnectionsareexplicitlyrepresentedvia interme-diateconsumption.Climatepoliciesareintroducedinthemodel
endoge-nouslyderivestheshadowpricestomeettheseconstraints,raising thecostofemission-intensiveinputsforfirmsandconsumptionof emission-intensive goods for households Emission reductions occurviathreemechanisms:areductioninoutputand consump-tion,substitutiontowardslow-carboninputsandgoodsand end-of-pipeabatementtechnologies
combinationofthetwomodelsinawaythatallowsforabroad assessmentwhilepreservingthedetailsandparticularstrengthsof each First,a Reference sharedbythe twomodelsis developed basedoncommonassumptionsforthe(exogenous)evolutionof two important factorswith regardsto climatechange: region-specificeconomic(GDP)andpopulationgrowth.Theevolutionof the sector composition of economic activity follows the same
developing countries based on historical data In addition, the
scenarioresultsofthedisaggregatedenergymodelfeedintothe economy-wideCGEmodeltomakeuseofthein-depthtreatment
of the energy system in JRC-POLES In particular, the totals of greenhouse gasemissionsderived fromthebottom-upanalysis determineregionalemissionconstraintsfortheeconomic assess-ment withJRC-GEM-E3.In addition,thesharesof thedifferent technologiesinelectricitygenerationinJRC-POLESareusedasan inputintheJRC-GEM-E3analyses.Thissoft-linkisenabledbythe splitofelectricitygenerationinto10technologiesinthe JRC-GEM-E3model.Asaresult,thetechnologymixinelectricitysupplyin theJRC-GEM-E3modelisconsistentwithanenhanced represen-tation of the specific features that characterize real-world
technology, capacity investment decisions, intermittency, re-gion-specificpotentialsofrenewableenergysources(per technol-ogy)andendogenoustechnologicalprogress.Changesinelectricity
technologies (e.g.solar panels) arenot considered explicitly in
Trang 3includechangesincoal,oil,gasandelectricityvolumesandprices
(whichareendogenousinbothmodels).Futureworkcanfurther
exploretheseoptionsfortheintegrationofmodels
3.Scenarios
This section describes the three scenarios analysed in this
paper:theReference,theINDCscenariorepresentingthe
mitiga-tioncomponent of theParis pledgesand the2C scenario All
scenarioshaveidenticalassumptions onpopulationgrowth For
theEU,populationforecastsaretakenfromEuropeanCommission
(2013).Forallotherregions,populationprojectionsofUN(2015)
Reference,theINDCscenarioand the2Cscenario,respectively,
greenhousegas emissionsand emissionintensitiesof GDP.The
trajectoryoftotalgreenhousegasemissionsineachofthethree
scenariosisdepictedinFig.1.Adetaileddescriptionofthepolicies
includedintheReference,theINDCscenarioandthe2Cscenario
canbefoundinAppendixCandintheonlineAppendix
TheReferenceservesasabenchmarkforcomparisonandbuilds
on various data sources and assumptions First, the Reference
includestheclimatepoliciesthatarecurrentlyimplementedor
announced,particularlyfor2020,withoutaddingnewadditional
policies(takingintoaccounttheinformationprovidedindenElzen
etal.,2015).Inmodellingterms,theexistingorannouncedcarbon
policiesarerepresentedbyacorrespondingcarbonprice.Carbon
valuesintheReferencearelow(EU)orzero(restoftheworld)in
2015.Furthermore,carbonvaluesrangebetween0and39US $
(2015)pertonneofCO2eintheyear2030.Second,growthofGross
DomesticProduct(GDP)intheReferenceisexogenousandbased
onforecastsbytheOECDEconomicOutlook(2013)andtheWorld
Bank (2014) Sector-specific growth pathsin the Reference are
considertheimpactsofchangingclimaticconditionsoneconomic
growth, as described in Fankhauser and Tol (2005) Third,the
growing scarcity of conventional oil resources and consequent
increasingmarketpowerofOPECdrivetheoilpriceupwardsover
time(endogenousinJRC-POLES).Theoilpricesinthemodelreflect
thelowlevelsobservedrecentlyandareprojectedtoreacharound
100US$2005in2030.Fourth,asaresultoftheabove-mentioned
assumptionsandpolicies,theglobalaverageenergyintensityof
GDPfollowsadownwardtrend,atarateobservedintheperiod
1995–2008,butslightlyfasterthantheaveragerateobservedover thepast25years( 1.4%peryear1990–2015, 1.7%peryear2015– 2030).Inadditiontotheimplementedpolicies,thisdecouplingis drivenbythepotential forenergy efficiency (especiallyin fast-growinglow-incomecountries)andtheincreasingtechnological maturityoflow-carbontechnologies.Fifth,themaindatasources
2014)andFAO-Stat(FAO,2014).A moredetailed descriptionof
AppendixA.Thelevelofglobalgreenhousegasemissionsinthe
considered,asillustratedinFig.1.For non-CO2 GHGs,marginal abatementcostcurvesarebasedonEMF21(Weyantetal.,2006),
USEPA(2013)and GLOBIOMforland use,land-usechangeand forestry(LULUCF)andagriculture(IIASA,2015a)
The INDCscenario represents theclimatechangemitigation pledgesmadebyindividualcountriesintherun-uptotheCOP21in
ambitions in the conditional INDCs, i.e including mitigation
provision of climatefinancing The financial transfers resulting fromtheGreenClimateFund(thefinancingmechanismunderthe UNFCCC)arenotpartoftheanalysishere,aslittleisknownabout the allocation of thefund at this point In the case where the mitigationpledgeswerealreadyreachedintheReferencescenario (asaresultofmarketforcesand technologicaldeployment),no additionaleffortwas required.The availableinformation in the INDCsistranslatedintoemissiontargets,whichareimplemented
inthemodelbyregion-specificeconomy-widecarbonprices.More detailontheincludedpoliciesisgiveninAppendixCandinthe online Appendix Implicitly and due to lack of more detailed information this assumes that policies are efficient within a region'sborders.Widelydifferingcarbonprices,rangingfrom0to
119 US $ (2015) in 2030, indicate that there is potential for
aggregate of GHG emissions stabilises around the level in the year2025(Fig.1).GHGintensityoftheeconomydecreasesatan
emissionsin2030aremorethan13%lowerthanintheReferencein
2030.Themainfocusoftheresultspresentedinthispaperlieson theyear2030,asmostoftheINDCsdonotextendbeyondthistime frame,Someoftheresults,however,consideratimehorizonupto theyear2050.Fortheseresults,weassumeacontinuedclimate changemitigationeffortsinallregionsafter2030.Inparticular,we assumethatpoliciesareintroducedsuchthattheyearlyrateof reductionofGHGintensity(GHGexcludingsinksperGDP;Sinks are defined as negative CO2 emissions from land-use related
managementcouldrepresent3GtCO2in2010andabout2GtCO2
in2050intheReference.However,duetosignificantuncertainty
on the historical estimates of sinks, they are generally not considered in the result section.) implied by the INDCs in the
2020–2030periodiscontinuedintheperiod2030–2050(global averagereductionrateof3.2%peryear)
The2Cscenarioconsidersapathwayofglobalgreenhousegas emissions that is likely to be consistent with limiting global temperatureincreaseto2Cbytheendofthecenturycomparedto levelsintheperiod1850–1900.Withatotalcarbonbudgetof1160
GtCO2over2011–2050andareductionofKyotogasesof72%in
scenario430–480ppmwithovershoot>0.4W/m2inIPCC(2014, AR5WGIIITable6.3)witha22–37%probabilityofexceedingthe
2Cwarmingtarget.AsillustratedinFig.1,GHGemissionsupto
Fig 1 Global greenhouse gas emissions in the Reference, the INDC and the 2 C
scenario Shaded areas represent the (median, 80th and 20th percentile per
temperature range of) scenarios included in the IPCC AR5 WGIII Scenario Database
( IIASA, 2015b ) Temperature ranges are based on IPCC (2014) with at least 60%
probability for the scenarios below 2 C, and 55% probability for staying between
Trang 4intheIPCCScenarioDatabasewithaprobabilityofstayingbelow
2Cofatleast60%,andfallbelowthe20thpercentileinthe2040–
2050period.Apeak inworldaggregateGHGemissionsappears
aroundtheyear2020(Fig.1).Thespecificationofthe2Cscenario
considersconvergenceofcarbonprices,henceimplicitlyassumes
enhancedeconomicefficiencyformitigationeffortsandenhanced
technologydiffusionduetointernationalcollaborationovertime
Formiddle-andhigh-incomeregions,carbonpricesconvergeto
around53US$(2015)in2030,whichcorrespondswiththehighest
levelofcarbonvaluesintheINDCscenario(excludingRepublicof
emissionsare reduced in thecountriesand sectors where it is
cheapesttodoso.However,the2Cscenariostudiedinthispaper
allows for a two-track climate policy, acknowledging political
responsibilities” as included in the United Nations Framework
ConventiononClimateChange,negotiatedattheRioEarthSummit
in1992.Inparticular,carbonvaluesoflow-incomecountries(with
incomepercapitain2030lowerthan10000US$PPP,including
India,IndonesiaandanumberofcountriesinSub-SaharaAfrican,
CentralAmerica, South-EastAsia andthePacific) convergetoa
levelofaround26US$(2015)in2030,whichisapproximatelyhalf
ofthecarbonvalueinhigh-incomeregionsandbringsglobalGHG
emissionsonthepathwaydescribedaboveandillustratedinFig.1
Amoreelaborateassessmentofpotentialburdensharing
agree-mentsandtheunderlyingethicalprinciplesisoutsidethescopeof
thispaper(seeBabonneauetal.,2016,Marcuccietal.,2016and
Roseetal.,2016,foradiscussionontheequitydimensioninthe
contextoftheParisAgreement).Importantly,allregionscontribute
tothereductionsinGHGemissionsandtheintensitiesofclimate
actions – and, correspondingly, the carbon prices – gradually
increaseovertime.Forallcountries,wetaketheeffortintheINDC scenarioasalowerboundforthe2Cscenario.Therefore,the2C scenarioassumesacooperativesettingwithglobalparticipationin which free-riding is not considered Total GHG emissions are around27%lowerthanintheReferencein2030.Accordingly,GHG intensityoftheeconomydecreasesatmorethandoubletherateof thepast25years( 3.9%peryearovertheperiod2015–2030)
Table1summarizesthemainassumptionsbehindtheanalysis The lasttwo columnspresentthe inputsfor theINDCand 2C scenarios.ThepercentagechangesofGHGemissionsfrom2005to
2030intheINDCscenarioarebasedontheINDCssubmittedby individualcountries.Thelastcolumnindicateswhetheraregion wasincluded(basedonGDPpercapita)inthegroupofcountries forwhichcarbonpricesareassumedtoconvergetohighorlow levelsof53and26US$(2015)in2030.TheRestofCentraland SouthAmericaisaregionthataggregatescountriesofbothgroups (withChileinthehigh-incomegroup),hencetheoverallcarbon pricewillliebetweenthehighandthelowvalues
4.Results Thissectionpresentstheresultsofthenumericalsimulations
discussestheimpactof theclimatechangemitigationscenarios
onthecompositionofenergydemand.Next,wezoominonthe greenhousegasemissionpathsbygastypeandbyemittingsector
Wepayparticularattentiontotheelectricity productionsector Thesecondpartpresentstheeconomy-wideresults,highlighting thedifferentiationofimpactsacrossregionsandsectors
Animportantcaveatforallresultspresentedhereisthatthe scenariosdonotconsiderthe(avoided)damagesfrom(mitigating) climatechange(Rosen,2016).Forstudiesontheimpactofclimate
Table 1
The main characteristics of the Reference, the INDC scenario and the 2C scenario.
GHG a
Yearly GDP growth rate
GHG/GDP b
a
Greenhouse gas emissions are expressed in Gt CO2 e and exclude emissions from LULUCF and bunkers.
b
GHG/GDP is expressed in t CO2 e /US$(2005) PPP.
c ‘High', ‘Intermediate' and ‘Low' carbon values converge to 53, 45 and 26 US $ (2015) in 2030 respectively Carbon values of Republic of Korea and New Zealand are higher
Trang 5
change,werefertoOECD(2015)foraglobalassessmentand to
Ciscaretal.(2014)andHouseretal.(2014)forstudiesonthelevel
oftheEuropeanUnionandtheUnitedStates,respectively
4.1.Energydemand
Fuelcombustionisoneofthemainsourcesofgreenhousegas
emissions.Hence,policiesthatenvisagerestrictingemissionswill
haveanimpactontheaggregatelevelandcompositionofenergy
consumption Carbon pricing raises the price of energy, which
leadstoadecreaseoftotalenergydemandby3.8%(9.2%)and8.6%
(33.6%)intheINDCand2Cscenariosrespectivelyin2030(2050)
comparedtotheReference.Thisresultindicatestheimportanceof
energyefficiencyasacontributortoemissionreductions.Table2
decomposesthechangeinaggregateenergydemandbyfueltype
andillustratesthesubstitutionbetweenprimaryenergysources
ThelatterisdrivenbycarbonpricingbasedonaCO2equivalent
basis, which affects relative prices of different fuel types and
incentivizessubstitutiontowardslow-carbonenergysources
TheINDCshaveanegligibleimpactonglobaloilandnaturalgas
consumption.Thedemandforsolidfuels –coalandlignite–is
Hence,replacing solid fuels bynon-fossil fuels is animportant
element for climate change mitigation policies In contrast to
increasingvolumesofglobalcoalconsumptionintheReference
(comparedto2010,a41%increasein2030,73%in2050),thelevels
remainroughly constant in the2020–2030period in the INDC
scenario.Theseresultsareconsistentwiththefindingspresented
byIEA(2015)
Table 2 furthermoreindicatesthat the2C scenario implies
substantialreductionsinworlddemandforoilandgasfrom2025
onwards.GoingfromtheINDCstoapathwaythatislikelytolimit
globalwarmingto2C impliesanincreasedrate ofdecreaseof
solid fuel consumption, despite allowing for the possibility of
CarbonCaptureandStorage(CCS).ThecontributionofCCSwillbe
discussedin moredetail in Section 4.4 The impacts shown in
Table2areinlinewiththeresultspresentedbyBaueretal.(2015),
temperature increase of 2C with several models and with a
focusonfossilfuelmarkets
4.2.Emissionreductionsbygreenhousegas
Carbondioxide(CO2)istheprimaryanthropogenicgreenhouse
gas,coveringaroundthreequartersofglobalGHGemissions(in
CO2equivalentterms,IPCC,2014).However,theresultsillustrated
inFig 2 showthat both theINDC and the2C scenarioimply
implementcarbonpricesthatareuniform(onaCO2-equivalent
basis)acrossthedifferenttypesofgases.Hence,cost-minimising producerswilldeterminetherelative contributionsof different gases totheoverall emission reduction in anefficient manner, using least-cost options before more expensive alternatives In particular,theunderlyingsector-andregion-specifictechnology options(forCO2)andmarginalabatementcostcurves(fornon-CO2
emissionsandCO2emissionsinagriculture)leadtodifferenttime
considered
The INDC scenarioleads tostrongreductions inhydro
reveals thefactthat theemissionsof thesegasesarerelatively
(European Commission, 2012) The reduction of nitrous oxide (N2O)emissionsisoneofthemorecostlyoptions:acost-effective
approximately8%lowerthanthelevelsintheReferencein2030 The emission reduction profiles in the 2C scenario show strongerreductionsfor allgases.Interestingly,theemissionsof HFCsarereducedatafasterratethanintheINDCscenarioupto
2030,butconvergetowards2050.Thisresultindicatesthatthe INDCsexploitnearlythefullpotentialofHFCemissionreductions Furthermore,Fig.2illustratesawidegapbetweenthereductions
ofCO2inbothscenarios:theINDCsleadtoalevelofCO2emissions thatisapproximately30%lowerthanthelevelintheReferencein
2050,whilethe2CpathwaystudiedheresuggestsalevelofCO2
emissionsaroundonethird ofthelevelin theINDC scenarioin 2050
4.3.Emissionreductionsbysector Theprevious sectiondecomposed theaggregateGHG reduc-tionsintogas-specificabatementprofilesovertime.Asecondway
todisentangletheemissionreductionsisonasector-specificbasis
Fig.3presentsemissionsreductionsin2030disaggregatedintosix categories: electricity generation, the energy sectors, industry, landuse,land-usechangeandforestry(LULUCF),agricultureand
anaggregatecategoryforbuildings,transportandwaste.Anumber
ofinsightscanbedeductedfromtheJRC-POLESmodelsimulations First, the power sector emergesas the main contributor to emissionreductionsinbothINDCand2Cscenarios.A transfor-mationoftheelectricityproductionsectorcoversmorethanathird
oftheemissionreductionsbetweentheReferenceandtheINDCin
2030.Inaddition,thepowergenerationsectorbridgesaround31%
of the gapbetweenthe INDCs and the2C scenario.The next
electricitysectorisachieved
Table 2
Changes in primary energy demand (total and by fuel type) in the INDC and the 2 C
scenarios, expressed as% change from the Reference Non-fossil fuels include
renewables and electricity generated by nuclear power plants.
Fig 2 Emission reduction by type of greenhouse gas in the INDC and the 2 C scenario CO 2 emissions included LULUCF but exclude sinks Greenhouse gases shown are carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), hydrofluor-ocarbons (HFCs) and other fluorinate gases (F-gases).
Trang 6shiftawayfromemission-intensivefossilfuels (inlinewiththe
previoussection)isthemaindriverofemissionreductionsinthe
energy sector In the numerical simulations presented here, a
carbonpriceonaCO2-equivalentbasisprovidestheincentivesfor
thischange.GreenhousegasesotherthanCO2representmorethan
halfoftheemissionreductionsinthiscategory,whichistoalarge
extentduetoreductioninmethaneemissionfromtheproduction
offossilfuels
Third,decreasinggreenhousegasemissionsintheindustrial
sectorisanon-negligiblepossibility,representing17%oftheGHG
process CO2 emissions in the steel, non-metallic minerals and
chemicalsectors,andothergreenhousegasemissions(N2O,HFCs,
PFCsandSF6)inindustrialsectorssuchasthealuminiumsector.In
linewiththeprevioussection,theabatementpotentialofnon-CO2
greenhousegasesistoalargeextentusedintheINDCscenario,
while further emission reductions to reach the 2C pathway
mainlyrelyondecreasingCO2emissions.Asaconsequence,the
contributionofindustrialsectorstobridgethegapbetweenthe
INDCandthe2Cscenariofallsto13%
Fourth,reductionsinCO2 emissionsfromLULUCF(excluding
sinks) coveraround 11% in theINDC scenario Whensinks are
included, CO2 emissions fall by 1.4 Gt in the INDC scenario
comparedtotheReference,aresultthatiscomparablewiththe
numberof1.6GtobtainedbyGrassiandDentener(2015).Moving towardsa2Cpathwayimpliesamoresubstantialcontributionof
CO2reductioninLULUCF.Someregionswithasignificantshareof emissions fromLULUCF haverelativelyunambitious INDCs.For these regions, reducing CO2 emissions from LULUCF are cost-effective options In addition, due to a relatively flat marginal abatementcostcurve,avoideddeforestationbecomesan impor-tantsourceofemissionreductionsinreachingthe2Ctarget
improvements in energy efficiency beyond what is realized in theReference)andafuelshiftinthebuildingandtransportsector and areduction ofmethaneemissionsinwasteandagriculture sectors(seeIPCC,2014,Chapters10and11,respectively,foramore in-depthdiscussionofthetechnologicaloptions)togethercover aroundonefifthofthetotaldecreaseofGHG
4.4.Electricitygeneration
contributionofthepowersectortotheglobalemissionreductions Thissectionzoomsinonthetechnologycompositionofelectricity productioninthedifferentscenariosin2030and2050,presented
inFig.4
Afirstresultisthathighercarbonpriceslowerthetotallevelof electricityconsumption.Bothin2030andin2050,theINDCand
2C scenarios slightly reduce global electricity consumption compared to the Reference This result illustrates that energy
45 50 55 60 65
Gt CO2e
CO2 Non-CO2
31%
Energ y se ctor Industry Land use (c hang e), for estry Buildings, tr ansport, waste Agricul ture
18%
17%
11%
10%
9%
17%
13%
17%
13%
10%
Fig 3 Sector contributions to greenhouse gas emission reductions in 2030 The percentage above the bars indicates the share in reductions between scenarios CO 2 emissions exclude sinks The darker, lower end of the bar represents CO 2 reductions, while the upper part in a lighter colour shows the reductions in non-CO 2 greenhouse gases Non-CO 2 emission reductions in electricity generation and CO 2 emissions in agriculture are hardly visible, while emission reductions from land use, land use change and forestry (LULUCF) only cover CO 2 emissions Energy sector emissions include greenhouse gases emitted during extraction, production, transformation (e.g refining) and transport of energy fuels and associated fugitive emissions.
0 20000 40000 60000
Other Solar Wind Hydro Biomass Nuclear CCS Gas Oil Coal 2050
Fig 4 Electricity generation by technology in the Reference, the INDC scenario and the 2C scenario in 2030 and 2050 at global level Carbon Capture and Storage (CCS) covers coal-, gas- and biomass-fired electricity generation with CCS Other technologies include geothermal electricity, wave and tidal energy, and (stationary) hydrogen fuel cells Units are expressed in terawatt hour of electricity (TWhe).
Trang 7totalenergydemand,mainlyinthebuildingandtransportsector
after2030,leadingtolowerelectricityconsumptionlevelsoverall
By2030,theINDCsleadtoatransformationofthepowersector
throughasubstitutionfromfossilfuelstolow-carbon
technolo-gies In the Reference, fossil fuels account for around 60% of
electricityproduction.Thisnumberreducesto53%and47%inthe
INDCand2Cscenario,respectively.Thedecreaseintheshareof
increasingshareoflow-carbontechnologies,mainlynuclearand
windenergy,butalsobiomass,hydroandsolar.Gas-firedpower
Referenceaswellasinbothscenarios
Inthelongerrun(2050),CarbonCaptureandStoragebecomes
animportanttechnologyforclimatechangemitigationpolicy.In
the2Cscenario,electricitygenerationfromcoalwithoutCCSis
closetozero.Inaddition,carbonpricesleadtomoreelectricity
being generated from nuclear, solar, wind, biomass and other
(geothermal,tidal,hydrogen)energycomparedtotheReference
The2Cscenarioimpliessubstantialinvestmentsinwindandsolar
capacity,whichunlocks(endogenous)technologicalprogressfor
thesetechnologies.Asaresult,windandespeciallysolarpower
becomes morecompetitive in the 2C, and consequently gains
marketshare
Fig 5 sheds more light on the technological progress in
electricity production technologies (in the 2C scenario; the
ReferenceandtheINDCcurvesfollowasimilartrendininvestment
costs) Incorporating technological change can have important
implicationsfortheoptimalemissiontrajectory.Aspointedoutby
vanderZwaanetal.(2002),includingtechnologicalimprovement
in climatechangemodelling maylead tofaster deployment of
renewables.TheJRC-POLESmodelincludestechnologicalprogress
re-sponsetothecumulativeinstalledcapacitiesonagloballevel.Fora
broaderdiscussionontheapproachesusedintheliterature,we
refertoLöschel(2002)andGillinghametal.(2008).Atwo-factor
learning-by-researchinthePOLESmodelisdescribedinCriquietal.(2015)
presentedinvanderZwaanetal.(2013)andvanSluisveldetal (2015).Thetechnologicalprogressinelectricitygenerationfrom solarstandsoutfromFig.5.Furthermore,theinvestmentcostsof oil and gas power plant installation decrease, but represent a smallerfractionoftotalcostsduetohighervariablecostsoffuel input
4.5.Macro-economiccosts Thissectionandthetwosectionsthatfollowconcentrateonthe economicimpactofclimatechangemitigationpolicies.Notethat thescenarioshereimplementadomesticemissiontradingscheme
butwithoutinternationaltradeofpermits.Section4.7considers carbon taxes and studies alternativerevenue recycling mecha-nisms
TheresultsoftheINDCscenariosuggestthattheParispledges haveonlyalimitedimpactonworldaggregateGDPof 0.42%.The
2Cscenarioimposesstrongerconstraintsonemissions,leadingto moresubstantialtransformationseconomy-wide.Thisisreflected
inareductionofglobaleconomicoutputlevelsof 0.72% Fourcommentstoframetheseresultsareinorder.First,yearly growthratesremainhigh:the2.98%yearlygrowthofglobaloutput levelintheReferencefor theperiod 2020–2030isonlyslightly reduced to2.93% and 2.90% in theINDC and 2C, respectively Hence, climate mitigation policies are compatible with robust
thatweonlyassessthecostsideofmitigationpolicyanddonot incorporatetheavoideddamagesofclimatechange.The JRC-GEM-E3modelisbasedonoptimisingbehaviouroffirmsand house-holdsundermyopicexpectations.Inabsenceofthemodellingof damagesofclimatechange,imposingGHGemissionrestrictionsin themodel implies thatagents havefeweroptions tomaximise profits or welfare Therefore, the resultsshould be seen as an assessmentoftheabatementcostandshouldnotbeconfusedwith theresultofacost-benefitanalysis.Third,theseresultsareinline withIPCC(2014),asshowninFig.6below.Foreachofthemodels involvedwithendogenousGDP,Fig.6(panela,left-handside)plots the model- and scenario-specific changein GDPaggregated at global levelagainst thecorrespondingreduction in greenhouse
emissions are expressed here relative tothe respective model references or baselines Results from different projects are included,includingEMF27 (Weyantetal.,2014), EMF22(Clarke and Weyant, 2009), AMPERE(Kriegleret al., 2015)and LIMITS (Kriegleretal.,2013;Tavonietal.,2014).TheFigureshowsaclear relationbetweenabatementeffortandcost,butwithsubstantial heterogeneityduetodifferingassumptionse.g.onavailabilityof technologies.Theright-handsideofFig.6(panelb)illustratesthat higheremissionlevelsintheReferencerequirestrongeremission reductionsrelativetothis Referenceinorder tomeet thesame targetfortemperatureincrease(indicatedbythecoloursinFig.6) Someofthereferencesorbaselinesdonotincludethepoliciesthat arecurrentlyinplace,whichexplainswhytheemissionlevelsin theReferenceoftheanalysispresentedinthispaperarerelatively low.Fourth,byimplementingregion-specificemissionreduction targetsbasedontheresultsoftheJRC-POLESmodeloptimization exercise in the 2C scenario,we get differentcarbon prices in variousregions.Anefficientscenariowithauniformglobalcarbon priceislikelytoleadtoalowercostestimateonaglobalaverage
Ontheotherhand,theresultspresentedheremayunderestimate thecostofclimatepoliciesinreality.Lobbygroups,overlappingor partial (e.g sector-specific instead of economy-wide) policies, institutional barriers,myopicpolicy-makersand theabsenceof
900
1000
1500
2000
2500
3000
4000
5000
6000
Solar central ized Solar dis tribut ed Wind offsho re Wind onsh ore Hydro Biomass Nuclear Biomass wit h C CS Gas wit h C CS Coal with C CS Gas Oil Coal
Investment cost
of ne w capac ity
US $ 2 015 / kW
Cumulat ive capacity insta lled ( GW)
Impl ied learning rates 2015 -2050 (%)
10
5 1 5 11
6 11 2
5 2 2
2010 2030 2050
12 9
Fig 5 Technological progress in electricity generation technologies in the 2 C
scenario from 2010 to 2050 The learning curves depicted here are based on a
learning-by-doing approach and show the relation in capacity investment cost and
installed capacity on the global level The representative technologies shown here
are conventional thermal turbines for coal, oil, gas and biomass; pressurized water
reactor generation III/III+ for nuclear; and large hydro installations Progress in
technologies with Carbon Capture and Storage (CCS) aggregates the learning in CCS
technology with the learning in the relevant coal-, gas- and biomass-fired electricity
generation technologies The learning rate is defined as the percentage cost
Trang 8prices) could lead to suboptimal policies from an economic
efficiencypointofview
differentiation across regions and sectors The following two
sectionsthereforedisaggregatetheseresultstoprovidea better
effectsoftheINDCand2Cscenarios
4.6.Regionaleconomicimpact
OneofthemainnoveltiesoftheParisCOP21isthebottom-up
policyframework:countriesputforwardINDCsandconsequently
revealthe level ofambition of theirclimatechange mitigation
policies.Thebroadrangeofambitionlevelsislikelytotranslate
into economic impacts that differ substantially across regions
Differences in historical emission reduction efforts, energy
intensity,sectorcomposition,naturalresourceendowments,the
productionoffossilfuels,therelativeimportanceoftrade-exposed
additionalfactorsthatmaygiverisetoimpactvariationbetween regions.Alltheabove-mentionedaspectsarecapturedbythe JRC-GEM-E3analysis,ofwhichtheresultsaredisplayedinFig.7and
Table3
AfirstpointillustratedbytheINDCscenarioresultsisthata substantialnumberofregionsundertakesignificantclimateaction that leads to relatively small reductions in GDP (less than 1% reductionfromtheReferencein2030)comparedtotheReference However,theINDCscenarioshowsthatanumberofregionshave relativelyunambitioustargets,suchthattheiremissionlevelsare closetoorevenslightlyhigherthanintheReferencein2030.Some
oftheseregionsgainincompetitivenesscomparedtoregionswith more ambitious climate change mitigation policiesand conse-quentlyhavemarginallyhigherGDPlevelsthanintheReference.In themajorityoftheseregions,exportsincreaseorimportedgoods arereplacedwithdomesticallyproducedgoods(Table3).Hence, carbonleakageleadstoageographicalshiftofemission-intensive production
Fig 6 Impact on global aggregate GDP of the INDC and 2 C scenario in 2030 (JRC-GEM-E3 results) compared with results (of models with endogenous GDP) included in the IPCC AR5 WGIII Scenario Database ( IIASA, 2015b ) Each dot represents a model- and scenario-specific result, relative to the respective baselines Temperature ranges are based
on IPCC (2014) with at least 60% probability for the scenarios below 2 C, and 55% probability for staying between the ranges 2–3 C and above 3 C GHG reduction of the 2 C scenario and the INDC scenario cover emissions from energy, industry and agriculture, excluding LULUCF a) More stringent temperature targets require stronger emissions reductions leading to higher abatement costs b) Higher emission levels in the Reference or baseline imply stronger reductions relative to the Reference to meet a similar target for the rise in global temperature.
Fig 7 GDP impact by region in the INDC and 2 C scenario (% change from Reference in 2030) Colours reflect income groups as expressed by GDP per capita in 2010 (market prices, constant 2004 thousand US $) Some of the labels are omitted to improve the clarity of the figure; numerical results provided in Table 3 GHG emissions cover emissions from energy, industry and agriculture, excluding LULUCF a) Emission levels that deviate stronger from the Reference imply larger GDP impacts, although there is substantial
Trang 9
inpanel a, left-handside) reveals a shiftdownand totheleft
implies stronger emission reductions, leading tomore sizeable
GDPimpactscomparedtotheReferencein2030.PanelbofFig.7
displaysthegreenhouse gasemission reductionsrelativetothe
levelsintheyear2010.ThisvisualizationshowsthattheINDCsof
comparedtohistoricallevels.Inaddition,theright-handsideof
Fig.7 illustrates clearly that the 2C target can be met while
allowinglow-incomeregionstoincreaseemissionsrelativetothe
levelsobservedin2010
Amoredetailedanalysisoftheresultsofthe2Cscenarioyields
anumberoffindings.First,fossilfuel-producingregions,suchas
SaudiArabiaandRussia,experiencearelativelystrongdropinGDP
comparedtotheReferencein2030.TheReferencedoesnotassume
atrend-breakingtransformation towardsadiversifiedeconomy,
suchthat economic activity in some countriesremains torely
heavilyon fossilfuel exports Asindicated inTable 2, the2C
pathwayleadstodemandreductionsforoil,gasandsolidfuels
Since these goods typically represent a substantial share of
economicactivityandexportsinsomeofthefossil-fuelproducing
regions,strong global climateaction appears tolowertheGDP
levelsinthesecountries.Second,theclimateambitionsinfluence
therelativecompetitive positions betweencountries Indiais a
countriesforwhichcarbonpricesconvergetorelativelylowlevels
(around26US $(2005)in2030) leadstocompetitivegains:an
increaseintheexportsofenergy-intensiveindustriesdriveGDPto
higherlevelsthanintheINDCscenarioin2030.Moregenerally,the
contributionof changesin trade balancetothechange inGDP
differsbyregionsandispositiveforsome,butnegativeforothers
Third,forsomeLatinAmericancountries,suchasArgentinaand
Brazil,the agricultureand consumer goods industry (including
foodproductionandprocessing)representasignificantshareof
economicactivityandarestronglyaffectedbyemissionreductions
policies.AsshowninSection4.3,agricultureisoneofthesectors with substantial (non-CO2) emission reduction potential The resultisthatthedropinGDPcomparedtotheReferencein2030is strongrelative tothereductionlevels forArgentina and Brazil Hence, sector-specific considerations are an important driver behindtheresults.Therefore,thenextsectiondisaggregatesthe globaleconomicimpactbysector
Investmentsonaveragearereducedless thantheotherGDP componentsas,despitethereductionofeconomicactivitydueto the reallocation of resources, the mitigation action is closely related tolow-carboninvestmentsin thepower, industrialand
decreasesmorethanGDPfornearlyallregionsasmostdomestic andinternationalpricesincreaseduetothecarbonpriceandthe reallocationofresourcesawayfromtheoptimalallocationofthe Referencescenario
contains substantialclimateaction,as indicatedinTable 1 The resultspresentedherethusonlylookattheimpactofadditional climatepolicies.Sinceambitiouslegislationisalreadyinplace,the ReferenceisclosetotheINDCscenariofortheEU.Inparticular,the Referenceincludesthe2020ClimateandEnergyPackage,which impliesa20%cutingreenhousegasemissionscomparedto1990,a
considersthe2030ClimateandEnergyFramework:40%reduction
ofGHGemissionscomparedto1990(43%comparedto2005inthe
comparedto2005innon-ETSsectors),27%renewablesinenergy consumption andan indicativetarget 27%forimprovements in energyefficiencycomparedtoprojectionsby2030
4.7.Sector-specificeffects Thissectiondisaggregatestheglobalresultsonasector-specific basis.Table4presentsoutputlevelsandchangesinemployment
Table 3
Macro-economic results of climate change mitigation; GHG changes exclude LULUCF.
Trang 10assumeacommoncarbonpriceacrossallsectorswithinaregion
Thenotableexceptionis theEU, whereweimplementdifferent
targets between ETS and non-ETS sectors, as discussed in the
previoussection
Afirstobservationisthatrelativelystrongreductionsinoutput
and,correspondingly,employmentlevelsoccurinthefossilfuel
sectors:coal,(crude)oilandgas.Theseresultsareconsistentwith
Section4.1.Theunderlying explanationisthat strongerclimate
policiesleadtomoreefficientuseofenergyandtoashiftinthe
compositionoffuelconsumption.Energyefficiencyalsoleadstoa
lowerdemandforelectricity,which resultsinloweroutputand
employmentlevelsinthepowersector,inlinewithSection4.4
Table 4 shows the electricity supply sector as an aggregate of
generation, transmission and distribution, and illustrates that
sufficient tocompensate for the employment reduction due to
lower electricity demand and for the jobs lost in coal-based
electricity generation.The results hereconsider economy-wide
feedback mechanismsand inter-industry interactions via
inter-mediateinputs.Thereforetheyshouldbeseenascomplementary
withtheresultsinprevioussections
Second,energyintensivesectors, suchas ferrousmetals and
non-metallicmineralsareamongthesectorsthataremostaffected
bystrongerclimatepoliciesduetomoregreenhousegas-intensive
production inputstructures In addition, someof these sectors
greenhouse gases, as discussed in Section 4.3 Conversely, the
impactonoutputlevelsofrelativelylow-carbonservicesectorsis
smaller
Theresultsonemployment includeadditionalscenariosthat
explicitlyconsidertheimpactofrevenuerecyclingandalternative
scenarios withtaxrecycling (indicatedby‘Labour tax recycling:
yes'inTable4 therevenueraisedbycarbontaxesisusedtolower
existing distortionary labour taxes As a consequence, labour
becomesamoreattractiveinputintheproductionprocess,leading
tomorejobseconomy-wide:thejobdecreaseismitigatedfrom
0.34%to 0.26%intheINDCscenario,andfrom 0.74%to 0.66%
unem-ploymentratesaccordingtoawagecurvemechanism(indicated
empirical evidence (Blanchflowerand Oswald,1995), while the latterrepresentstheviewthatclimatepolicywillnotaffectthe fundamentaldeterminantsofunemploymentinthelongrun,such
BlanchardandKatz, 1997,forabroaderdiscussion).Theoutcomeof
transitionofjobsfromemission-intensivesectorstolow-carbon, serviceorientedsectors,inlinewiththefindingsofHafsteadand Williams(2016).ThejobtransitionisclearlyillustratedbyFig.8
(fixedunemploymentrate,withlabourtaxrecycling).Inaddition,
Fig.8showsthatthesectorsthatexperiencethestrongestnegative impactintermsofemploymentarenotnecessarilythesectorsthat providethelargestnumbersofjobs(indicatedbytheheightofthe barsinFig.8)
5.Conclusions Thispaperprovidesamodel-basedassessmentoftheINDCs,a centralelementintheglobalclimatechangenegotiationsheldin
Table 4
Sector-specific output and employment results in 2030.
Fig 8 Transition of jobs from energy-intensive sectors to more service-oriented sectors The employment impact per sector is shown for the 2 C scenario with carbon tax revenue recycling via lower labour taxes and fixed unemployment rates per region The length of the bars shows the percentage change relative to the Reference in 2030, while the height of the bars is scaled to reflect the employment levels in the Reference in 2030 As a result, the surface of the bars reflects the change